Solution 1.

Apply induction on n. It is clear for n = 1. Assume that n = m +1 > 2
and that the result holds for positive integers < m. If n is odd, 2™ = 1
(mod n) by Eulers theorem. By the induction hypothesis (since ¢(n) < n),
the sequence is eventually constant modulo ¢(n); say, u, = ¢ (mod ¢(n)) for
large r. Consequently, u,,; = 2" = 2¢ (mod n) is constant which completes
this case. If n = m + 1 = 2¥[ for some positive integer k¥ and odd [. Again,
by induction hypothesis, the sequence is eventually constant modulo [. Now,
u, = 0 (mod 2%) for all sufficiently large r. Thus, u, = u,4; (mod 2*1) for
large r onwards. The induction is complete.

Solution 2.

Note first that there are infinitely many primes with the property that they
divide a number of the form n* + 1 for some n. Indeed, if pi,---,p, were
all such primes, then no prime would be able to divide (p; ---p,)* + 1! Let
P denote the set of all primes with this property. For each p € P, we may
choose n < p/2 with p|(n* + 1) because we may replace any n by its residue
modulo p and further change n to p—n in case n > p/2. Thus, for each p € P,
we have got hold of n with 2n < p and p|(n* + 1). Of course, a particular
n* + 1 has only finitely many prime divisors so that infinitely many integers
n are produced from the infinite set P.

Solution 3 (Solved also by Sumitra Garai, M.Math. student from 1.S.1.)

It suffices to show that for each pair a;,as € A, there is a common m,n.
Let a]" = a;" for i = 1,2 and m; # n;. Consider m = mymsy + ning,n =
ming + mony. Then

' = (@) ) = (@)™ )" =
Similarly, a}’ = af.

Solution 4.

The equality
1 1 1

= -
T1T9 1’1(1‘1 +CL’2) I2($2+l‘1>

obviously generalizes (and follows by induction on n) to :

1 :Z 1

L1X2 " Tn o€S, Lo (xm + xUZ) T (xal +o Tt ',L'Un).
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In fact, writing the RHS as

e DD 1
Tyt T o 16€8n,0(n)=r Loy (xUl + xaz) T (xtfl +-o+ xo'n—l)
and assuming the equality for n — 1, we get
1

e DD

T+t T, r=1 €S, o(n)=r Hz;ﬁr Z;

which is simply _—"—. Now, if (by,---,b,) € B then b;’s are distinct and
let o be that permutatlon for which

boy < by < -+ < by, .
Then, writing b,, — b,,_, as z,,, we have

bl...bn:xol(xol +'I0'2)"'(xa'1 _|_..._|_xo_n)'

Also, b € B means b; < n for all n and are distinct; so (z1,---,x,) € A.
Therefore,
1 1
ébl o; rze;lxﬁl (T, + Tgy) -+ (X0, + -+ + T4,,) _g;;;ﬂ?r“xn

using the earlier equality.

Solution 6 (Due to Professor David Savitt.)

We shall prove the (apparently) stronger statement with p replaced by any
power ¢ of p. We will prove that if A2 = C?, then either A2 = C3 =TI or
there exists C' with A = C*, B = C?. Note firstly that if A, B € PSLy(F,)
satisfy A2 = C? and, if there is a solution C' to A = C?, B = C? exists in
PSLy(F,), then C = AB™! is automatically in the subgroup G of PSLy(F,)
generated by A, B. Here, of course, F,, denotes an algebraic closure of F,.
Thus, it does not matter for this problem if the matrices A, B are replaced
by conjugates PAP~!, PBP~! for some P € PSLy(F,). The crucial result
needed for this is a knowledge of the various finite subgroups of PSLy(F,).
There are many sources like Suzuki’s and Dickson’s texts; the latter has in
sections 255 and 260 the following result :

Any finite subgroup of PSLy(F,) is either conjugate to a subgroup of PG Ly(F})
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or PSLQ(FZ) for some n or the upper triangular invertible matrices or, is
isomorphic to Ay, Sy, As or Doy, where Do, is the dihedral group of order 2m
for some m > 2 not divisible by p.

Using this, we may consider our G =< A, B > case-by-case. If G is con-
jugate (which, by the observation made earlier, can be thought of as equal)
to PSLy(F}), then it is a simple group unless p" = 2 or 3 (in which cases,
the result can be verified directly). As < A? >=< C? > is a proper normal
subgroup, this must be the identity. In the case of PGLy(F}) also, a simi-
lar argument works as P.S LQ(FZ)is its unique proper normal subgroup when
p" > 3.

Consider the case of upper triangular group in PSLy(F,). By lifting A, B to
XY € GLy(F,), we have X? = tY? for some constant . Thus, x = tX,y =
tY € GLy(F,) satisfy 2 = y®. We are in the case where G =< z,y >
is a subgroup of the group of upper triangular invertible matrices. Then
22 = y? gives 22, = y3, and since 1,91, are in a cyclic group, we have
r11 = a,y;1 = a® for some a € E*. Similarly, there is b for the (2,2)-th

O b ’ y O b )

2 =93 gives

Moreover x
(a® — ab+ b*)((a + b)u — (a* + ab + b*)v) = 0.

From ths, it is an easy exercise to conclude that either 22, y* are scalars (when
at least one of a + b, a* — ab + b%, a® + ab+ b* is zero) - that is, X? =Y3 =1

- or
u (%

a2+ab+b  a+b
In the latter case, if this ratio is s, we have

3 2
s (@ s _(a s
(o b) i (o b)'
From this, we can get C' for A, B also.

The cases Ay, Sy, As, Doy(m > 1) are left as exercises as it is a routine
calculation.

The problem numbered 5 will be kept open for solution one more time. Its
solution will be given with the next set as that set involves a related problem.



