
Solution 1.
Apply induction on n. It is clear for n = 1. Assume that n = m + 1 ≥ 2
and that the result holds for positive integers ≤ m. If n is odd, 2φ(n) ≡ 1
(mod n) by Eulers theorem. By the induction hypothesis (since φ(n) < n),
the sequence is eventually constant modulo φ(n); say, ur ≡ c (mod φ(n)) for
large r. Consequently, ur+1 = 2ur ≡ 2c (mod n) is constant which completes
this case. If n = m + 1 = 2kl for some positive integer k and odd l. Again,
by induction hypothesis, the sequence is eventually constant modulo l. Now,
ur ≡ 0 (mod 2k) for all sufficiently large r. Thus, ur ≡ ur+1 (mod 2kl) for
large r onwards. The induction is complete.

Solution 2.
Note first that there are infinitely many primes with the property that they
divide a number of the form n4 + 1 for some n. Indeed, if p1, · · · , pr were
all such primes, then no prime would be able to divide (p1 · · · pr)

4 + 1 ! Let
P denote the set of all primes with this property. For each p ∈ P , we may
choose n < p/2 with p|(n4 + 1) because we may replace any n by its residue
modulo p and further change n to p−n in case n > p/2. Thus, for each p ∈ P ,
we have got hold of n with 2n < p and p|(n4 + 1). Of course, a particular
n4 + 1 has only finitely many prime divisors so that infinitely many integers
n are produced from the infinite set P .

Solution 3 (Solved also by Sumitra Garai, M.Math. student from I.S.I.)
It suffices to show that for each pair a1, a2 ∈ A, there is a common m,n.
Let ami

i = ani
i for i = 1, 2 and mi 6= ni. Consider m = m1m2 + n1n2, n =

m1n2 + m2n1. Then

am
1 = (am1

1 )m2(an1
1 )n2 = (an1

1 )m2(am1
1 )n2 = an

1 .

Similarly, am
2 = an

2 .

Solution 4.
The equality

1

x1x2

=
1

x1(x1 + x2)
+

1

x2(x2 + x1)

obviously generalizes (and follows by induction on n) to :

1

x1x2 · · · xn

=
∑

σ∈Sn

1

xσ1(xσ1 + xσ2) · · · (xσ1 + · · ·+ xσn)
.
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In fact, writing the RHS as

1

x1 + · · ·+ xn

n∑

r=1

∑

σ∈Sn,σ(n)=r

1

xσ1(xσ1 + xσ2) · · · (xσ1 + · · ·+ xσn−1)

and assuming the equality for n− 1, we get

1

x1 + · · ·+ xn

n∑

r=1

∑

σ∈Sn,σ(n)=r

1∏
i6=r xi

which is simply 1
x1x2···xn

. Now, if (b1, · · · , bn) ∈ B then bi’s are distinct and
let σ be that permutation for which

bσ1 < bσ2 < · · · < bσn .

Then, writing bσi
− bσi−1

as xσi
, we have

b1 · · · bn = xσ1(xσ1 + xσ2) · · · (xσ1 + · · ·+ xσn).

Also, b ∈ B means bi ≤ n for all n and are distinct; so (x1, · · · , xn) ∈ A.
Therefore,

∑

b∈B

1

b1 · · · bn

=
∑

σ∈Sn

∑

x∈A

1

xσ1(xσ1 + xσ2) · · · (xσ1 + · · ·+ xσn)
=

∑

x∈A

1

x1 · · ·xn

using the earlier equality.

Solution 6 (Due to Professor David Savitt.)
We shall prove the (apparently) stronger statement with p replaced by any
power q of p. We will prove that if A2 = C3, then either A2 = C3 = I or
there exists C with A = C3, B = C2. Note firstly that if A,B ∈ PSL2(Fq)
satisfy A2 = C3 and, if there is a solution C to A = C3, B = C2 exists in
PSL2(Fp), then C = AB−1 is automatically in the subgroup G of PSL2(Fq)
generated by A,B. Here, of course, Fp denotes an algebraic closure of Fq.
Thus, it does not matter for this problem if the matrices A,B are replaced
by conjugates PAP−1, PBP−1 for some P ∈ PSL2(Fp). The crucial result
needed for this is a knowledge of the various finite subgroups of PSL2(Fp).
There are many sources like Suzuki’s and Dickson’s texts; the latter has in
sections 255 and 260 the following result :
Any finite subgroup of PSL2(Fp) is either conjugate to a subgroup of PGL2(F

n
p )
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or PSL2(F
n
p ) for some n or the upper triangular invertible matrices or, is

isomorphic to A4, S4, A5 or D2m where D2m is the dihedral group of order 2m
for some m ≥ 2 not divisible by p.
Using this, we may consider our G =< A, B > case-by-case. If G is con-
jugate (which, by the observation made earlier, can be thought of as equal)
to PSL2(F

n
p ), then it is a simple group unless pn = 2 or 3 (in which cases,

the result can be verified directly). As < A2 >=< C3 > is a proper normal
subgroup, this must be the identity. In the case of PGL2(F

n
p ) also, a simi-

lar argument works as PSL2(F
n
p )is its unique proper normal subgroup when

pn > 3.
Consider the case of upper triangular group in PSL2(Fp). By lifting A,B to
X, Y ∈ GL2(Fp), we have X2 = tY 3 for some constant t. Thus, x = tX, y =
tY ∈ GL2(Fp) satisfy x2 = y3. We are in the case where G =< x, y >
is a subgroup of the group of upper triangular invertible matrices. Then
x2 = y3 gives x2

11 = y3
11 and since x11, y11 are in a cyclic group, we have

x11 = a3, y11 = a2 for some a ∈ Fp
∗
. Similarly, there is b for the (2, 2)-th

entries. Thus,

x =
(

a3 u
0 b3

)
, y =

(
a2 v
0 b2

)
.

Moreover x2 = y3 gives

(a2 − ab + b2)((a + b)u− (a2 + ab + b2)v) = 0.

From ths, it is an easy exercise to conclude that either x2, y3 are scalars (when
at least one of a + b, a2− ab + b2, a2 + ab + b2 is zero) - that is, X2 = Y 3 = I
- or

u

a2 + ab + b2
=

v

a + b
.

In the latter case, if this ratio is s, we have

x =
(

a s
0 b

)3

, y =
(

a s
0 b

)2

.

From this, we can get C for A,B also.
The cases A4, S4, A5, D2m(m > 1) are left as exercises as it is a routine
calculation.

The problem numbered 5 will be kept open for solution one more time. Its
solution will be given with the next set as that set involves a related problem.
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