Problems for January-March 2008 Last date for submitting solutions : 31.03.2008

1. (i) Prove that $\sum_{n=1}^{\infty} \frac{\sum_{i=1}^{n} \frac{1}{i}}{n^2} = \sum_{n=1}^{\infty} \frac{2}{n^3}$. (ii) Obtain an expression for $\sum_{n=1}^{\infty} \frac{\sum_{i=1}^{n} \frac{1}{i}}{n^3}$ in terms of $\sum_{n=1}^{\infty} \frac{1}{n^4}$ and $\sum_{n=1}^{\infty} \frac{1}{n^2}$.

2. Given arbitrary groups G_1, G_2 get a necessary and sufficient condition for every normal subgroup of $G_1 \times G_2$ to be of the form $N_1 \times N_2$ with N_1 normal in G_1 and N_2 normal in G_2 . Using such a criterion, or otherwise, show for any group G that each normal subgroup of $G \times G$ must be of the form $N_1 \times N_2$ with N_1, N_2 normal in G if, and only if, $[G, M] \leq M$ for every normal subgroup M of G.

3. Determine the number of maps $f : \mathbf{Z}_m \to \mathbf{Z}_n$ satisfying

$$f(a+b) = f(a) + f(b)$$
, $f(ab) = f(a)f(b)$.

Here \mathbf{Z}_m and \mathbf{Z}_n denote the integers modulo m and the integers modulo n respectively.

4.

Let x_1, \dots, x_n be independent variables. Define the elementary symmetric functions

$$s_r = \sum_{i_1 < \dots < i_r} x_{i_1} \cdots x_{i_r} \ (1 \le r \le n)$$

as usual. Denote by N_k the sum $\sum_{i=1}^n x_i^k$ for $k = 0, 1, \cdots$ Writing $N_l = 0$ if l < 0, prove the Newton identities :

$$N_k - s_1 N_{k-1} + \dots + (-1)^n s_n N_{k-n} = 0.$$

Try to give a proof which works both for k < n and for $k \ge n$.

5.

Find all real a > 0 satisfying [a[(a + 1)n]] = n - 1. Here [x] is the 'greatest integer' function.

6.

Given distinct real numbers a, b, c satisfying $x^2 - y = y^2 - z = z^2 - x$, compute (a+b+1)(b+c+1)(c+a+1).

7.

Show that a 28×17 rectangle cannot be tiled by 4×7 rectangles. Obtain a necessary and sufficient condition for an $l \times m$ rectangle to be tile-able by $a \times b$ rectangles.