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Main points of this lecture

This lecture is meant to be a gentle introduction into this
series.
Betting is a useful metaphor in statistics and probability.
The role of martingales, in the form of test martingales, in
online hypothesis testing.
Their use in the foundations of probability.
Betting as metaphor is a very old idea: some history.
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Betting

The standard ways of testing statistical hypotheses are
based on p-values or Bayes factors.
Alternative: testing by betting.
We start from a capital of 1 and are not allowed to borrow
money; gamble against the null hypothesis. Our current
capital: the degree to which the hypothesis has been
falsified.

Glenn Shafer.
The language of betting as a strategy for statistical and
scientific communication.
To appear as discussion paper in the Journal of the Royal
Statistical Society A. Read in September 2020.
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Batch vs online testing

Traditional methods of testing statistical hypotheses: batch
setting.
Given a batch of data, we compute a measure of evidence
against the null hypothesis (a p-value or Bayes factor).
Alternative: the online setting, in which the items of data
(observations) keep arriving sequentially.
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How realistic is the batch setting?

In science, we rarely have a single study if the
phenomenon under study is really important.
Usually there are follow-up studies, and we need to have a
mechanism for combining the results of sequential studies.
This will be a topic of the next lecture.
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Test martingales

The usual formalization of test martingales is that we first
define a filtration (nested family of σ-algebras) in our
probability space (Ω,F ,P): Fn is generated by the first n
observations Z1, . . . ,Zn.
A test martingale is an adapted sequence of nonnegative
random variables Xn such that X0 = 1 and
E(Xn | Fn−1) = Xn−1 for all n, where E is the expectation
w.r. to P.
Their use in online hypothesis testing: if Xn is big, there is
a mismatch between Z1, . . . ,Zn and P; we are entitled to
reject P as our null hypothesis. (Justification: Ville’s
inequality P(supn Xn ≥ 1/ε) ≤ ε.)
Test martingales are easily mixable: a convex mixture of
test martingales is again a test martingale.
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Martingales in the foundations of probability and
stochastic processes

It is interesting that martingales do not have to be defined
in terms of probability.
We can reverse the process and start from martingales.
Probability and expectation become derivative notions.
Glenn Shafer and I called this approach game-theoretic
probability (in a way it is dual to the standard
measure-theoretic probability).
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Advantages of game-theoretic probability

Some of the advantages of game-theoretic probability:
Strategies for testing (=strategies for Sceptic, one of the
players in our games). Theorems of probability are made
constructive.
Limited betting opportunities: the assumptions required for
those results can be weakened.
Strategies for Reality (another important player), also
constructive.
Strategies for Forecaster, also constructive.
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Perfect-information games as an alternative
foundation for probability

Example: Kolmogorov’s strong law of large numbers (SLLN) as
a typical limit theorem.

Forecasting protocol:

K0 = 1
FOR n = 1,2, . . . :

Forecaster announces mn ∈ R and vn ≥ 0
Sceptic announces Mn ∈ R and Vn ≥ 0
Reality announces yn ∈ R
Kn := Kn−1 + Mn(yn −mn) + Vn((yn −mn)2 − vn)

Example: predicting temperature for tomorrow.
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Player’s goals

A strategy for Sceptic forces an event E if it guarantees both
Kn ≥ 0 for all n
either Kn →∞ or E happens.

A strategy for Reality forces E if it defeats Sceptic in the sense
of

Kn < 0 for some n, or
Kn is bounded and E happens.
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Game-theoretic version of Kolmogorov’s SLLN

Theorem
Sceptic can force

∞∑
n=1

vn

n2 <∞ =⇒ 1
n

n∑
i=1

(yi −mi)→ 0.

Reality can force

∞∑
n=1

vn

n2 =∞ =⇒ 1
n

n∑
i=1

(yi −mi) 6→ 0.

The strategies constructed in the proofs are explicit (and
computable; in particular measurable).
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SLLN for bounded variables

If we bound Reality’s moves, yn ∈ [A,B], we can drop vn
and still claim that Sceptic can force

1
n

n∑
i=1

(yi −mi)→ 0.

A standard interpretation for a trusted Forecaster: we do
not expect Sceptic to become infinitely rich, and so expect
limn→∞

1
n
∑n

i=1(yi −mi) = 0 (calibration).
Curious example: predictions in a prediction market either
allow us to become infinitely rich or are calibrated. Which?
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Connection with measure-theoretic probability

Kolmogorov’s SLLN is an easy corollary of the game-theoretic
version (in combination with the measurability of Sceptic’s
strategy): if ξ1, ξ2, . . . are independent random variables with
expected values E(ξ1),E(ξ2), . . . and variances
var(ξ1), var(ξ2), . . . ,

∞∑
n=1

var(ξn)

n2 <∞ =⇒ lim
n→∞

1
n

n∑
i=1

(ξi − E(ξi)) = 0 a.s.

Proof: If Reality follows the randomized strategy yn := ξn,
Forecaster always chooses mn := E(ξn) and vn := var(ξn), and
Sceptic follows his winning strategy, Kn will be a nonnegative
martingale. According to a standard result, Kn →∞ with
probability 0.
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Strategies for Reality

They do not have any analogues in the existing
measure-theoretic probability.
And they are often extremely simple; e.g., the one forcing
Kolmogorov’s SLLN is:

If Kn−1 + Vn(n2 − vn) > 1, set yn := 0.
If Kn−1 + Vn(n2 − vn) ≤ 1 and Mn ≤ 0, set yn := n.
If Kn−1 + Vn(n2 − vn) ≤ 1 and Mn > 0, set yn := −n.

Takemura and Miyabe obtained lots of beautiful results
about forcing by Reality.
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Strategies for Forecaster

This is known as defensive forecasting.
Under weak assumptions, testing strategies can be turned
into successful prediction strategies.
Idea: Forecaster can defend Reality against a known
strategy for Sceptic, making sure Kn does not grow.
If Sceptic is testing calibration, Forecaster can enforce
calibration.
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Game-theoretic SLLN for binary observations

Binary forecasting protocol:

K0 := 1
FOR n = 1,2, . . .:

Forecaster announces pn ∈ [0,1]
Sceptic announces sn ∈ R
Reality announces yn ∈ {0,1}
Kn := Kn−1 + sn(yn − pn)
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Proposition (game-theoretic SLLN)

As we know:

Sceptic has a strategy which guarantees that
Kn is never negative
either

lim
n→∞

1
n

n∑
i=1

(yi − pi) = 0

or
lim

n→∞
Kn =∞.

Vladimir Vovk Lecture 1: Martingales in the foundations of statistics 19



Online hypothesis testing
Martingales in the foundations of probability

History

Events of lower probability one
Defensive forecasting
General game-theoretic probability

Caveat

Remember that the measure-theoretic SLLN follows easily.
Reality need not be oblivious (or even follow a strategy).
Forecaster need not ignore Sceptic (this is what makes
defensive forecasting possible).
Caveat: we assumed that Sceptic’s strategy was
measurable. Fact of life: for all kinds of limit theorems,
Sceptic’s strategy we construct is measurable; moreover, it
is continuous.
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Observation

Interesting observation (first made by Foster and Vohra in
a different context): the game-theoretic approach to
probability can be used for designing learning algorithms.
For any continuous strategy for Sceptic there exists a
strategy for Forecaster that does not allow Sceptic’s capital
to grow.
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Modified protocol

K0 := 1
FOR n = 1,2, . . .:

Sceptic announces continuous Sn : [0,1]→ R
Forecaster announces pn ∈ [0,1]
Reality announces yn ∈ {0,1}
Kn := Kn−1 + Sn(pn)(yn − pn)

Theorem (Takemura) Forecaster has a strategy that ensures
K0 ≥ K1 ≥ K2 · · · .
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Proof

choose pn so that Sn(pn) = 0
if the equation Sn(p) = 0 has no roots (in which case Sn
never changes sign),

pn :=

{
1 if Sn > 0
0 if Sn < 0

QED
Has been greatly extended; Intermediate Value Theorem 7→ Ky
Fan’s fixed point theorem.
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Research programme (forecasting)

Open a probability textbook and decide which property
(such as LLN, CLT, LIL, Hoeffding’s inequality,. . . ) you
want Forecaster’s moves to satisfy.
Prove the corresponding game-theoretic result.
Apply Takemura’s theorem.
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What does it give in the case of SLLN?

In this special case, nothing interesting: Forecaster performs
his task too well. E.g., he can choose

pn :=

{
1/2 if n = 1
yn−1 otherwise,

ensuring ∣∣∣∣∣
n∑

i=1

(yi − pi)

∣∣∣∣∣ ≤ 1/2

for all n (much better than using the true probabilities).
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Forecasting without statistical assumptions

But the law of probability can be much more demanding!
There are areas of machine learning (such as prediction
with expert advice) where people design prediction
algorithms that have various performance guarantees
without making any statistical assumptions about the
observations.
Defensive forecasting is a way of obtaining such results.
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Game-theoretic probability 1

Sceptic’s part of the game-theoretic SLLN can be restated as:

∞∑
n=1

vn

n2 <∞ =⇒ lim
n→∞

1
n

n∑
i=1

(xi −mi) = 0 (1)

holds with lower probability one, for a new notion of probability.

Or: the complement of (1) holds with upper probability zero.
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Game-theoretic probability 2

For an event E ,

P(E) := inf{ε : ∃ allowed strategy for Sceptic
such that sup

n
Kn ≥ 1/ε on the event E}

(upper game-theoretic probability; equivalent definition with
lim sup or lim inf in place of sup) and

P(E) := 1− P(Ec)

(lower game-theoretic probability).

For many interesting sets E , P(E) = P(E) (in continuous time)
and P(E) ≈ P(E) (in discrete time).
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Other game-theoretic results

For example:
law of the iterated logarithm [lower probability one]
zero-one law [lower probability one]
central limit theorem [general game-theoretic probability]
Itô calculus [lower probability one]
. . .

Imply their measure-theoretic counterparts.
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The problem of points and Pascal’s solution

The two approaches to probability go back to Pascal and
Fermat and earlier!
Two gamblers play three throws; each puts 32 pistoles at
stake. The first has two (points) and the other one, and
they have to stop the game. How should they divide the 64
pistoles?
Pascal to Fermat on 29 July, 1654:

��
�

HHH��
�

HHH

48
32

64

0

64

This is a martingale.
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Fermat’s solution

Imagine (some of Pascal’s and Fermat’s contemporaries
protested!) that the two gamblers make two more throws. The
first’s expected win is

64× 3
4

+ 0× 1
4

= 48.

The same answer but the methods are different: Pascal’s can
be regarded as a precursor of game-theoretic probability, and
Fermat’s as a precursor of measure-theoretic probability (in this
case, the measure assigned to each pair of outcomes is 1/4).
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Game-theoretic vs measure-theoretic foundations of
probability

Hilbert’s sixth problem: to treat axiomatically, after the model of
geometry, those parts of physics in which mathematics already
played an outstanding role, especially probability and
mechanics.

Richard von Mises (1919, 1928, 1931): probability is a
derivative notion, based on the notion of a gambling
system.
Andrei Kolmogorov (1931, 1933): probability is
axiomatized directly as a special case of measure.
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von Mises (1883–1957) Kolmogorov (1903–1987)
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Limitations of von Mises’s concept of gambling

The claim that von Mises’s gambling systems provide a
satisfactory foundation for probability was refuted by Jean Ville
(1939): they are not sufficient to derive the law of the iterated
logarithm.

Von Mises’s gambling systems choose a subsequence of trials
on which to bet. Ville: more sophisticated gambling systems
which also vary the amount of the bet and the outcome on
which to bet. He called the capital processes of such strategies
martingales.
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Jean Ville (1910–1988)
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Further developments

Joseph Doob reviewed Ville’s 1939 book about martingales for
Mathematical Reviews. He then translated the notion of
martingale into measure-theoretic probability and developed it
greatly.

Now the measure-theoretic theory of martingales is the
centrepiece of many areas of probability theory. A prominent
role in developing the theory of stochastic processes based on
martingales was played by Kiyosi Itô (his integration and
calculus).

Martingales flourish in the mathematics (but not the foundations
or philosophy) of probability.
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Doob (1910–2004) Itô (1915–2008)
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Reviving betting in the foundations of probability

Kolmogorov writing in India in 1962 during his visit to
Mahalanobis and Indian Statistical Institute:

The set theoretic axioms of the calculus of probability,
in formulating which I had the opportunity of playing
some part (Kolmogorov, 1950), had solved the majority
of formal difficulties in the construction of a mathemat-
ical apparatus which is useful for a very large number
of applications of probabilistic methods, so successfully
that the problem of finding the basis of real applications
of the results of the mathematical theory of probability
became rather secondary to many investigators.

(Sankhyā, 1963).
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Developments of Kolmogorov’s programme

Kolmogorov saw the “basis of real applications of the
results of the mathematical theory of probability” in von
Mises’s ideas.
For that, he introduced the notion of Kolmogorov
complexity, already mentioned in his 1963 Sankhyā paper.
His followers (Leonid Levin and Claus Schnorr) made a
step similar to Ville’s and replaced von Mises-type betting
schemes by martingales.

Vladimir Vovk Lecture 1: Martingales in the foundations of statistics 40



Online hypothesis testing
Martingales in the foundations of probability

History

Ancient history
Modern martingales
Conceptual revival

Moving away from Kolmogorov’s axioms

A. Philip Dawid: prequential (predictive sequential)
statistics. Calls for evaluating a probability forecaster only
using his actual forecasts. (He might not even have a
strategy.)
Sits uneasily with Kolmogorov’s axioms of probability.
Glenn Shafer’s and my books: systematization.
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Our 2001 book Our 2019 book
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Thank you for your attention!
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