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Main points of this lecture

An interesting application of conformal prediction: the
existence of exchangeability martingales (conformal test
martingales).
Exchangeability martingales can be used for detecting a
point at which the IID assumption becomes violated.
Open problem: how efficient are conformal test
martingales?
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Setting the problem

Conformal prediction also allows us to test the IID model.
Why is this important? For example, to decide when we
need to retrain a prediction algorithm.
For this, our testing procedure has to be online: the
observations keep arriving sequentially, and at each point
in time we want to know the amount of evidence we have
found against the IID hypothesis.
Conformal prediction is the only known method for doing
that.
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Gambling against randomness

The online way of testing the IID model: a test martingale.
We start from a capital of $1 and gamble against each
observation in such a way that the game is fair and our
capital is always nonnegative.
Formally, our capital Sn at time n satisfies
E(Sn | S1, . . . ,Sn−1) = Sn−1 (with S0 = 1) under the IID
model (i.e., under any probability measure in the IID
model). Such S is called a test martingale.
How to get a test martingale (valid under the IID model,
which is massive): gamble against the p-values output by
conformal prediction (which is easy).
Remember Ville’s inequality.
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Details of betting

A betting martingale is a measurable function
F : [0,1]∗ → [0,∞] such that F (�) = 1 and, for each
sequence (u1, . . . ,un−1) ∈ [0,1]n−1 for any n ∈ {1,2, . . . },∫ 1

0
F (u1, . . . ,un−1,u) du = F (u1, . . . ,un−1).

The test martingale associated with the betting martingale
F and a sequence (P1,P2, . . . ) uniformly distributed in
[0,1]∞ (the input p-values) is the sequence of random
variables

Sn = F (P1, . . . ,Pn), n = 0,1, . . . .

Vladimir Vovk Lecture 4: Conformal hypothesis testing 6



Conformal testing
Deciding when to retrain

Efficiency of conformal testing

Conformal test martingales
Is it even possible?
Concept shift

Details of randomized p-values

Let (x1, y1), (x2, y2), . . . be an input stream of data.
For each n = 1,2, . . . ,

compute the conformity scores

αi := A({z1, . . . , zi−1, zi+1, . . . , zn)}, zi ), i = 1, . . . ,n,

with the dependence on n suppressed;
compute the (randomized) p-value

pn :=
|{i : αi < αn}|+ τn |{i : αi = αn}|

n
,

i ranging over 1, . . . ,n and τn ∈ [0,1] being IID uniformly
distributed numbers.

Theorem (intuitive backward argument): pn ∈ [0,1] are IID
and uniformly distributed.
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USPS dataset

A dataset of 9298 hand-written digits, popular in machine
learning and known to be somewhat non-IID.
Objects: 16× 16 matrices of pixels (see below).
Labels: 0 to 9.
Can we detect non-exchangeability using our methods?
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Gambling against the USPS dataset (black line)
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Gambling against a permuted USPS dataset
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How we can achieve this (1)

The conformity measure is of the nearest-neighbour type:
the conformity score of (x , y) as compared with
ζ = {(x1, y1), . . . , (xn, yn)} is

α = A(ζ, (x , y)) := min
i∈{1,...,n}

‖xi − x‖ ,

where ‖. . . ‖ is Euclidean norm.
The betting martingale: Simple Jumper (SJ). The main
components of the SJ are two calibrators,

fε(p) := 1 + ε(p − 0.5), p ∈ [0,1],

where ε ∈ {−1,1}.
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How we can achieve this (2)

For any probability measure µ on {−1,1}∞ the function

F (u1, . . . ,un) :=

∫ n∏
i=1

fεi (ui)µ(d(ε1, ε2, . . . ))

is a betting martingale.
The measure µ is defined as the probability distribution of
the following Markov chain with state space {−1,1}.

The initial state is ε1 := ±1 with equal probabilities.
The transition function prescribes maintaining the same
state with probability 1− J and, with probability J, choosing
a new state from the set {−1,1} with equal probabilities;
J := 0.1.
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How we can achieve this (3)

Notice: our betting martingale is a deterministic function,
even though the Markov chain is stochastic.
The intuition behind the calibrators is that

ε = −1 corresponds to betting on small p-values,
and ε = 1 corresponds to betting on large p-values.

Sometimes ε = 0 is also useful (not betting), but not in this
case.
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Do non-trivial exchangeability martingales exist?

It is interesting that exchangeability martingales, despite
their impressive performance on many datasets, barely
exist.
Let Fn be the σ-algebra generated by the first n
observations.
The usual definition of a martingale requires
E(Sn | Fn−1) = Sn−1.
But since this holds under any distribution for the nth
observation, we must have Sn = Sn−1.
So S must be a constant!
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Why they exist: two reasons

One reason is that our filtration is not Fn.
It is the filtration generated by the martingale itself, or the
larger filtration generated by the input p-values.
By itself this is not enough (think of the binary case).
Another reason: the input p-values are randomized.
Even a tiny amount of randomization is often sufficient!

Other examples: defensive forecasting (we can replace the
continuity used in lecture 1 by slight randomization);
differential privacy.

Vladimir Vovk Lecture 4: Conformal hypothesis testing 15



Conformal testing
Deciding when to retrain

Efficiency of conformal testing

Conformal test martingales
Is it even possible?
Concept shift

Is all dataset shift interesting?

In machine learning, the moment when the IID assumption
becomes violated is known as dataset shift.
Not all kinds of dataset shift are considered dangerous.
Sometimes, an irrelevant marginal distribution changes.
In other cases, we can have a “concept shift”, which is
more important.
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Two kinds of concept shift

There are two kinds of datasets, X → Y and Y → X :
sometimes X causes Y (“regular case”, e.g., weather
prediction), and in other cases Y causes X (medicine,
hand-written digits).
For the former, concept shift means a change in the
conditional distribution Y | X , whereas for the latter, it
means a change in the conditional distribution X | Y .

Tom Fawcett and Peter A. Flach.
A response to Webb and Ting’s “On the application of ROC
analysis to predict classification performance under varying
class distributions”.
Machine Learning, 58:33–38, 2005.

Vladimir Vovk Lecture 4: Conformal hypothesis testing 17



Conformal testing
Deciding when to retrain

Efficiency of conformal testing

Conformal test martingales
Is it even possible?
Concept shift

USPS dataset again

The USPS dataset is obviously Y → X .
For it we can have a label shift (the distribution of Y
changes) and a concept shift (the distribution of X | Y
changes).
Interestingly, we can gamble against the label shift and
concept shift separately obtaining two exchangeability
martingales.
Their product will also be an exchangeability martingale
(gambling against dataset shift).
But in this lecture I will discuss only concept shift.
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Partial exchangeability

It will be possible to use our exchangeability martingales
for detecting concept shift for testing “partial
exchangeability”.
Suppose a sequence of hand-written characters x1, x2, . . .
comes from a user writing a letter.
The objects xn are matrices of pixels and the
corresponding labels yn take values in the set {a,b, . . . }.
Different instances of the same character, say “a”, may well
be exchangeable among themselves (even conditionally on
knowing the full text of the letter), whereas the text itself
will be far from IID.
For example, “q” will be almost invariably followed by “u” if
the letter is in English.
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Label-conditional p-values

For the input stream of data zi = (xi , yi), i = 1,2, . . . ,
compute αi as before, but the p-values are
label-conditional:

pn :=

|{i : yi = yn ∧ αi < αn}|+ τn |{i : yi = yn ∧ αi = αn}|
|{i : yi = yn}|

.

Let us now assume that the observations are partially
exchangeable (conditionally on y1, y2, . . . , the objects of
the same class are exchangeable); formal definition
omitted.
Theorem: pn ∈ [0,1] are IID and uniformly distributed.
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Same conformity measure and betting martingale for
the USPS dataset (red line)
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Experimental setting

As an example, let’s consider the Wine Quality dataset.
It consists of two parts, 4898 white wines and 1599 red
wines.
We randomly choose a subset of 1599 white wines and
refer to it as test set 0, and the remaining white wines
(randomly permuted) will be our training set.
All 1599 red wines form our test set 1; therefore we have
two test sets of equal sizes.
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Two scenarios (1)

To detect a possible change point in the test set, the
training set of 3299 white wines is randomly split into three
folds of nearly equal sizes, about 1100.
We use each fold in turn as the calibration set and the
remaining folds as the training set proper.
For each fold k ∈ {1,2,3} we train a prediction algorithm
on the training set proper and run an exchangeability
martingale (based on the resulting model) on the
calibration set followed by a test set (one of the two).
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Two scenarios (2)

This way we obtain three paths, plots of the values of the
exchangeability martingales vs time.
We have two scenarios: scenario 0 uses test set 0, and
scenario 1 uses test set 1; thus we have 6 paths overall.
Let us use the conformity measure

α := y − ŷ ,

where ŷ is the prediction for the label y of the object x
produced by the Random Forest (in scikit-learn)
found from the training set proper.
The betting martingale is the Simple Jumper (but now we
have ε ∈ {−1,0,1} with equal probabilities).
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The martingale paths
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Procedures for change detection

We can use the Ville procedure: retrain when a conformal
test martingale on the previous slide exceeds, say, 100.
A disadvantage of the Ville procedure for deciding when to
retrain: when the IID model is valid but we keep gambling
against it (in vain), our capital goes down (typically
exponentially), and it becomes more difficult to recover it
before exceeding the threshold when a change does
happen.
We can apply the standard CUSUM and Shiryaev–Roberts
procedures for change detection on top of conformal test
martingales to obtain procedures for raising an alarm when
the IID model ceases to be true.
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CUSUM procedure

Let S be an exchangeability martingale that never takes
value 0 (typical case).
The CUSUM procedure (Page, 1954) raises an alarm at
the time

min {n | γn ≥ c} , where γn := max
i=0,...,n−1

Sn

Si

and c > 1 is the parameter.
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CUSUM procedure for deciding when to retrain

Suppose we have an idea of the target lifespan of our
predictor, say we would like it to process 106 observations.
Let us retrain when γn hits a suitable barrier.
The next figure shows in red the maximum of 100
simulated CUSUM paths.
It suggests that a reasonable barrier is a straight line with
slope 1 in the loglog representation.
In the original (x , y)-axes the barrier has the equation
y = cx .
The blue line: the records.
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Max of 100 CUSUM paths
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Choosing the slope of the barrier

A path of the CUSUM statistic γn over n = 1, . . . ,N will
trigger an alarm for a barrier y = cx if γn ≥ cn for some
n ≤ N.
Let us generate a large number K (K = 105 in the next
figure and table) of paths of the CUSUM statistic in the
ideal setting (uniform p-values).
For each N, let cN be the number such that 1% of the K
paths trigger an alarm (a false one) for the barrier y = cNx .
The black line in the next figure: cN vs N for
N ∈ {1000,2000, . . . ,106}.
It looks like a straight line (like the similar blue and red
lines, except that they cannot go under y = 1).
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Slopes in the ideal setting
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Confidence intervals for the probability of false alarm

c alarms 99.9% confidence interval
3.2 988 [0.89%,1.10%]
3.3 958 [0.86%,1.06%]
3.4 930 [0.83%,1.03%]
3.5 901 [0.81%,1.00%]
4 793 [0.70%,0.89%]
5 622 [0.54%,0.71%]
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Choosing the slope of the barrier

For example, if the target lifespan is N = 106, we can see
from the figure that cN ≈ 3.2 for 1%.
To find a suitable barrier, we need a confidence interval for
the probability of a false alarm at a suitable confidence
level that is completely inside [0,1%].
According to the table, we can take the barrier y = 4x (for
the confidence level 99.9%).
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Setting the problem

How good are conformal test martingales at detecting
violations of the IID assumption?
Are they a universal way of testing that assumption?
We can claim that they are, if, for any way W of testing the
IID assumption, we can construct a conformal test
martingale that rejects IID whenever W rejects IID.
What is “any way of testing the assumption”?

Glenn Shafer (2007).
From Cournot’s principle to market efficiency.
Augustin Cournot: Modelling Economics (edited by
Jean-Philippe Touffut), pages 55–95.
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Using Cournot’s principle

The canonical way of testing a null hypothesis: choose an
event E of a small probability under the hypothesis.
If the event then happens, we are entitled to reject the null
hypothesis.
This is the basis of statistical hypothesis testing (both for
Fisher and for Neyman–Pearson).
In the history of probability, it is known as Cournot’s
principle.
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Idea

Suppose we have an event E of a small probability under
the null hypothesis.
Can we say that there exists a conformal test martingale
that takes a large value when E happens?
If “yes”, conformal test martingales are a universal means
of testing.
But what should we take as our null hypothesis, IID or
exchangeability?
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IID and exchangeability probability (1)

The relation between IID and exchangeability was of great
interest to Kolmogorov in his research programme
announced in his 1963 paper in Sankhyā (lecture 1).
For simplicity, and as a starting point, he only considered
finite binary sequences. Let’s follow him.
Let Ω := {0,1}N .
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IID and exchangeability probability (2)

The upper IID probability of E ⊆ Ω is

Piid(E) := sup
p∈[0,1]

BN
p (E),

Bp being the Bernoulli measures on {0,1}.
The upper exchangeability probability of E ⊆ Ω is

Pexch(E) := sup
P

P(E),

P being the exchangeable probability measures on Ω.
The corresponding lower probabilities are 1− Piid(Ω \ E)
and 1− Pexch(Ω \ E), but we will never need them.
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What happens for infinite sequences

We can give the analogous definitions for infinite binary
sequences.
For infinite sequences, the relation between Piid and Pexch

is trivial: Piid = Pexch.
This follows from de Finetti’s theorem: every exchangeable
probability measure is a mixture of IID.
In the finite case, this is no longer true, but the difference is
minor in a crude sense (Kolmogorov).
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And for finite sequences (1)

Proposition
For any E ⊆ Ω,

Piid(E) ≤ Pexch(E) ≤ 1.5
√

N Piid(E).

This is straightforward (follows from Stirling’s formula).
Kolmogorov’s interpretation (implicitly): the two
probabilities differ by a factor that is polynomial in N, which
can be regarded as small.
On the log scale, which he used,

− logPiid(E) = − logPexch(E) + O(log N).
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And for finite sequences (2)

Intuitively, the IID and exchangeability assumptions are
different:

a long sequence with exactly one half of 1s may be
exchangeable (if shuffled well),
but it does not look IID.
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Upper conformal probability

The upper conformal probability of E ⊆ Ω is

Pconf(E) := inf{ε : ∀(z1, . . . , zN) ∈ E :

SN(z1, τ1, z2, τ2, . . . ) ≥ 1/ε τ -a.s.},

where S ranges over the conformal test martingales.
Intuitively, for a small Pconf(E) the null hypothesis (IID or
exchangeability) can be rejected by conformal test
martingales.
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Universality of conformal test martingales

Proposition
For any E ⊆ Ω,

Pexch(E) ≤ Pconf(E) ≤ N Pexch(E).

In this crude sense, conformal test martingales are
universal.
They detect deviation from both exchangeability (factor of
N) and IID (factor of N3/2).
Can we extend this to more interesting cases? (Open
problem.)
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Thank you for your attention!
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