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Programme of Lectures

January 27t:

e Lecture 1: 10-1045am IST (230pm-3:15pm AEST)
Identifying the Intrinsic Dimension of High-Dimensional Data

e Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:

e Lecture 3: 10-1045am IST (230pm-3:15pm AEST)
Describing Systems of Data

e Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of
Challenging Data

Lecture 4:
Making new sources of data trustworthy

Cath Leigh, Erin Peterson,
Edgar Santos-Fernandez, Julie Vercelloni



Case study 1: Using citizen science
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THE DAILY NEWSLETTER - -
Sign up to our daily email newsletter ew . Ien IS

News Technology Space Physics Health Environment Mind Video Travel Events Job:

Koala conservation goes high-tech
with virtual reality and drones

ENVIRONMENT 21 May 2019

You ain‘t seen me, right?

roberto sawo/Getty

C. Leigh et al. (2019) Using virtual reality and thermal imagery to improve statistical modelling of vulnerable and protected
species. PLoS ONE. LIS


https://www.youtube.com/watch?v=IZ2w78_yZ-0

Case study 2: Using low-cost sensor data to inform models

Water Quality Monitoring Sonde

"
we
e us

pumped froem the rver Lo the sonde

Cleaning brush

- Source: US EPA



Case Study 3: Explainable models




Image ID: 0607
Latitude:  -23.30670085
Longitide:  151,92228603
Depth: 7483

Temp: 24,08

Image Size: 2400 x 1200
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Case study 1: Using citizen science data to inform models
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IMPACT

HOW MUCH WORK HAS BEEN DONE BY VIRTUAL REEF DIVER CITIZEN SCIENTISTS?

Did you know that 77% of Australians align their identity with the Great Barrier Reef? It is widely recognised as one of Australia’s most iconic environments, and is one of the most biologically
diverse ecosystems on Earth. It also provides a range of ecosystem services including coastline protection from wave exposure, recreational and cultural heritage benefits, as well as
economic benefits to the Australian economy, with an estimated asset value of $56 billion dollars. Thank you for your ongoing contributions to help monitor the Great Barrier Reef?

v *

TODAY’S ACTIVITY TOTAL ACTIVITY

286" 4.3K. 02:26 181.8K 2.7M 2346




Analysing crowdsourced data

“the data source of the 215 century”

Participatory method of building or analysing a dataset
Many platforms, eg mobile apps, internet marketplaces (Amazon Mechanical Turk)

Advantages: Cheap, real-time, numerous, widespread observations

Tradeoff: precision, quality, sampling frame, simple tasks/questions



Crowdsourcing in ecology

* Popularity:
* Hundreds of CS projects

* e.g. Federal Crowdsourcing and Citizen Science Toolkit (US Federal, 2018), Zooniverse,
iNaturalist, eBird

e Concerns:

* inherent presence of misclassification or measurement errors resulting from participants'
variable skill levels and abilities.

 spatial dependence in the data must be taken into account.
* citizen scientists tend to capture observations in easily accessible areas.



Approaches to modelling error-prone CS data

1. Ignore measurement error.

2. Weighted linear regression with observation weights proportional to the user's
accuracy or performance measures (Peterson et al., 2020).

3. Take into consideration the user's sensitivity (se) and specificity (sp): ability to correctly
detect presence/absence (true positive/negative) of target species.

spatially dependent misclassification error (SDME) approach



Case study

* Experiment within the Virtual Reef Diver project.
* Aims:
* determine impact of different reef disturbances on hard coral cover changes

 assess participants' abilities to identify hard corals within geotagged images
e evaluate the quality of the estimates obtained from the experiment.

* Four covariates: Degree heating weeks (max DHW/yr), no-take (binary, marine reserve), outer
(outer/inner reef), cyc (cumulative hrs exposure to waves in cyclone)

N = 1585 images from unique locations in GBR, 2008-2017
* Each image had 40 spatially balanced, random points, classified by experts.

Want to expand experts’ data to larger regions - CS.



Crowdsourcing via Mechanical Turk

Displayed 514 images on Amazon Mechanical
Turk

Workers asked to classify points into 5 benthic
categories (hard coral, soft coral, algae, sand,
other)

Help file, qualification test (>60% to pass)
Data collected Jan-14 to Feb-12 2020.

Participants paid 0.10 USD per completed
image (> U.S. federal min. wage $7.25/hr)

Assigned up to 40 random images, classify 15
points per image.



Setup

» Spatial model using stochastic partial differential
equations (SPDE) via STAN

* Images defined by latitude & longitude, centroids of
Voronoi polygons

dataset
+  test
+  train
- unsampled

8

[0.0.1)
[0.1,0.214)
[0.214,0.369)
[0.369,0.61)
[0.61,1]

NA

* Presence/absence of target class (hard coral) in a subset of
points (g = 15) within an image:
* g: No. points within an image (g = 15)
* y: True proportion of points containing target class
* Ziji = (0,1) Presence/absence of target class in point k from

image j classified by subject i Voronoi diagram: Heron Island, GBR
. yij: apparent proportion from CS Test & training data
1 Coral cover (y_cat) classified by experts
Vij = z Zijk /9

k=1



Performance of subjects
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Model

yila; B; ~ Beta(a; ;)
aj = pip; pi= —ujp+¢
uj = E(yj|a;, ;)
Var(y;) = uj(1 — u))/(1 + )

logit(uj) =Xjb+ u; + ¢
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* Hamiltonian Monte Carlo (HMC) simulation in Stan, based on the no-U-turn sampler (NUTS).
* 3 chains each with 60,000 samples, half burn-in, thin 1 in 3.
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Results — classes of user ability

About half responses slightly
over-estimated.

Exact class obtained in 199 g
out of 225 locations. 5
The SDME model captured g
the true parameter values s
much better than the

weighted model.
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Results — classes of user ability
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Results — bias correction from SDME model

O elicited y

O estimated latent variable
Yestim after accounting for
misclassification errors
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Case Study Results

Images classified per user
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Case Study Results

* DHW and cyclone impact
covariates have a substantial
negative effect on the proportion
of hard corals (97.5% Crl << 0).

* No-take marine reserves and
middle shelf reefs tend to have
substantially higher proportions of
corals.
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Alternative IRT approach to correcting CS data

* Aim to account for user ability and task difficulty in a geospatial setting

e Build on Rasch model (Rasch, 1960) - 3 parameter logistic model (3PL) - GLM
perspective - allow for space and time - dynamic response to map latent
variables over time — dynamic IRT for sequential updates

* Propose 3PLUS model : extension of 3PL (U)sing (S)patially dependent item
difficulties and variation of the linear logistic test model (LLTM)



3PLUS model

For user i, image j, point k, ask if the point contains the target class (Yes/No)

Y;jr ~ Bern(p;jx) .
Pijk = Nj + (1 —n;)

1+ exp{—aj(Hi — b])}
* 0; : latent ability of the ith user
: difficulty of the jth image

* a; : discrimination parameter Can extend to include
Covariates associated

* 7; : pseudoguessing parameter with ability and difficulty

b;|b = z !
]l m» Tp n, m’Tbnl

[l~m



Simulation study

e Same study as before

e 3PLUS model vs 3PL model:

improved prediction accuracy (80% vs 62.2%)

smaller RMSE (0.26 vs 0.48), WAIC (44587 vs 44637), LOO (44588 vs 44639)

improved correlations between estimated and true difficulties (0.97 vs 0.88)

similar estimates of discrimination, but better estimate of pseudoguessing



Case study — “Hakuna my data”

Project “Snapshot-Serengeti” on
Zoouniverse :

Crowdsourcing to identify species
in camera trap photos

>1M images, 225 locations,
10.8M classifications from 28,000
users

Gold standard dataset : 4,140
images classified by experts

50 species identified.
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Big data computation

« How to handle datasets too large to be fit directly in one machine or even on a HPC?

 Divide-and-conquer or a divide-and-recombine approach:
« split into multiple shards or subsets
* fit models to independent subsets on independent machines
« Combine subposterior estimates into global estimates using consensus Monte Carlo
» Weighted averages of the posterior MCMC chains, weights prop. to 1/variance

« Alternative:
* Divide users into 10 equal groups w.r.t. no. classifications
10 shards with ~ 0.5M classifications per shard.
* Fit shards in parallel with no communication.
« Combine using stratified sampling principles.



Results — user abilities

estimated ability
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Results - Posterior estimates of species difficulties
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Summary

New measurement error and item-response models for combining and adjusting
crowdsourced geospatial data.

Models outperform current popular approaches.
Methods help to improve quality, accuracy and trust for crowdsourced data.

Methods are scalable.



Case Study 2: Anomaly Detection in High-Dimensional Time Series

Anomalies in sensor lime-series dala

In-situ sensors produce high-volume, high
velocity data describing fine-scale patterns,
trends and extremes in space and near-real time

Data are prone to errors due to miscalibration,
biofouling, and battery or other technical errors

= Manual QA/QC is too inefficient

Partner Organisations
QLD Department of Environment and Science

e Southeast QLD Healthy Land & Water

Research Providers

e Universities: QUT, Monash, RMIT, University of Pau,
University of Moratuwa, University of Alaska, EP
Consulting

Other Collaborators:
e US National Ecological Observatory Network (NEON)

e US National Oceanographic & Atmospheric
Administration (NOAA)
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Cross-correlation approach

Can data from nearby sensors be used to detect anomalies?
= Turbidity ~ level, conductivity, and temperature from pairs of NEON sensors
® Estimate cross-correlation between up & downstream data, accounting for time lags

" Use GAM models to predict at downstream sensor
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Framework for anomaly detection

Methods

= Rule-based:
= e.g. ‘no negative values’
= Feature-based:

= Consider patterns in multiple series (e.g., turbidity, conductivity)
= e.g. HDOutliers, aggregated k-nearest neighbour (KNN-agg)
= Regression-based:
= Fit model, e.g. ARIMA: x; =3Z;+m, : T =ARIMA(p,d,q)
= Classify as ‘anomaly’ if the one-step-ahead prediction does not fall in the predictive interval.

Results

= Combination of methods facilitated the correct classification of impossible values, sudden isolated
spikes and level shifts.

= Drift and periods of high variability still tended to be associated with high rates of false positives.



Artificial Neural Network (ANN) approach

= Two approaches:

= Semi-supervised — train using only non-anomalous data; fit models with prediction errors;
predict anomalous events as those observed to fall outside prediction intervals.

= Supervised — train using labelled anomalous and non-anomalous data; generate
probabilities that are binary-classified according to a predefined threshold.

= Used long short-term memory (LSTM) networks:

= Type of Recurrent Neural Network (RNN), which is a special case of auto-regressive
Integrated moving average (ARIMA) and nonlinear auto-regressive moving average models

= Structured in network units (memory blocks) composed of self-connected memory cells and

29 ¢¢

three multiplicative units (“input”, “output”, “forget gates”)

= Explored different learning methods and hyperparameter values.

= Used ‘keras’ software interfaced with R.



Artificial Neural Network (ANN) approach

= Calibrated the models using a Bayesian multiobjective optimization procedure:

= Objective function based on combinations of accuracy, sensitivity, specificity, positive predictive value,
negative predictive value

= |teratively improve the posterior distribution of functions (assuming a Gaussian process) associated with the
variability of each hyperparameter, to maximise objective function.

# Used ‘mlirMBQO’ toolbox in R

= Selected and evaluated the “best” model for each water-quality variable,
environment, and anomaly type.

= |dentified influence of WQ variables on model performance using random forest
(VI).



Artificial Neural Network (ANN) approach

Results

= Semi-supervised classification was better able to detect sudden spikes, sudden shifts, and
small sudden spikes.

= Supervised classification had higher accuracy for predicting long-term anomalies associated
with drifts and periods of otherwise unexplained high variability.
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From Anomaly Detection to Spatio-Temporal model

= Temperature data for a stream network in the USA (Boise River)

= 42 data points — want to predict at every 1km, i.e. 1622 locations

15500001 Payette
-
-
.1
-
1525000
Boise
b 4 -
2 « *
& 1500000 ..
S B3
— -
1475000
14500001
—~ o _é:' -
N ﬂ;‘ﬁ. >
& el & Sl &



From Anomaly Detection to Spatio-Temporal model

= Response: Subsampled water temperature data every 3 weeks over 5 years (87 time points)

= Covariates: air temperature, stream slope, elevation, cumulative drainage area

o
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Spatio-temporal predictions of water temperature
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Case Study 2: Summary

1. Sensor data are pervasive.

2. Low-cost sensors have great potential for ecological monitoring, but they are
prone to technical anomalies.

3. Statistical methods for anomaly detection can help to improve trust in the data.

4. Trustworthy data can provide strong data-focused insights.

Nothing remains the same from one moment to the next, you can't step into the same river twice.
Life — evolution — the whole universe of space/time, matter/energy — existence itself
is essentially change." - Ursula K. Le Guin



Case Study 3: Explainable models




™ Australian Government

~ Department of Health

CURRENT 5TATUS OF CONFIRMED CASES DAILY NUMBER OF REPORTED CASES
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Simple discrete-time self-exciting models can describe complex

dynamics processes

« Hawkes process: past events
Influence the short-term probability
of future events occurring.

Neuroscience
Crime and terrorism
Seismic activity
Social media
Infectious diseases

Daily number of deaths

Country
e Brazil
we China
== France
w— Germany
=== |ndia
— |taly
w— Spain
w— Sweden
= UK
— S

Browning et al., 2021

Warne et al., 2020



Discrete-time Hawkes process

Data (counts) y,: number of events in a given time interval s: y; ~ Poisson(A(t))

Conditional intensity function A(t): expected number of events that occur at time interval t,

conditionally on the past.

Number of events up to time t: N,

History of events up to but not including time t: H;_4

A(t) = EIN() = N(t —1)| He—4}

Expected no. subsequent events
produced by a single event

\

= U+ a

*

Lt <t

/ Expected no. events in a given time
interval t given previous events

Vi, 9(t — t;)

1 )

Baseline mean
of the process

Expected no. events in a given time
interval t given previous events




Results

1. Bayesian formulation
2. Include a change-point to describe different dynamics of the epidemic.

3. Estimate (uq, a4, f1) and (u,, a,, B, ); estimate/predict trajectory.
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Results

Baseline mean of the process

Expected number of events
triggered by a single event

Country 1 12

Ttaly 4.39 (3.18,5.71)  1.17 (0.69,1.8)
France 4.57 (3.38,5.91) 1.57 (0.97,2.28)
Spain [ 5.78 (4.06,7.6)  0.49 (0.28,0.76)|
Germany 4.17 (2.89.5. 4) 0.95 (0.59,1.39)
Sweden ~ 4.05 (2.88.5.44)  1.79 (1.05,2.68)
UK. [ 4.51 (3.08.6) 2.42 (1.32,3.75)|
U.S. 1.08 (3.13.5.15) 4.1 (2.16,7.12)
China | 8.92 (6.29,11.73) 0.82 (0.48,1.22)|
Brazil 118 (2.985.52) -

India 2.81 (2.02,3.72) -

Country | o a9

Ttaly 1.07 (1.05,1.09)  0.94 (0.93,0.95)
France 1.1 (1.08,1.11)  0.92 (0.91,0.93)
Spain 1.11 (1.09,1.13)  0.96 (0.95,0.97)
Germany | 1.06 (1.03,1.09) 0.91 (0.89,0.93)
Sweden | 1.07 (1.01,1.13) 0.92 (0.89.0.95)
UK 1.14 (1.11,1.17)  0.95 (0.95,0.96)
US “1.07 (1.06,1.07) 0.97 (D.QT,WTI
China 1.07 (1.01,1.15) 0.8 (0.76,0.84)
Brazil 1.03 (1.02,1.04) -

India 1.1 (1.07,1.13) -




summary

1. Sometimes, simple models can adequately capture complex dynamics.
2. The model can also quantify the dynamics of distinct phases in the pandemic.

3.  We can also describe and compare country-specific dynamics.

Ongoing work:
Develop other models to analyse covid data.

Contribute further to developing methods to enhance trust in data and
data science.
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