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Programme of Lectures

January 27th:
• Lecture 1: 10-1045am IST (230pm-3:15pm AEST)

Identifying the Intrinsic Dimension of High-Dimensional Data

• Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:
• Lecture 3: 10-1045am IST (230pm-3:15pm AEST)

Describing Systems of Data

• Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of 
Challenging Data

Cath Leigh, Erin Peterson,
Edgar Santos-Fernandez, Julie Vercelloni

Lecture 4: 
Making new sources of data trustworthy



Case study 1: Using citizen science data to inform models



C. Leigh et al. (2019) Using virtual reality and thermal imagery to improve statistical modelling of vulnerable and protected 
species. PLoS ONE.

https://www.youtube.com/watch?v=IZ2w78_yZ-0


Case study 2: Using low-cost sensor data to inform models

Source: US EPA



Case Study 3: Explainable models



Case study 1: Using citizen science data to inform models





Analysing crowdsourced data

“the data source of the 21st century”

• Participatory method of building or analysing a dataset

• Many platforms, eg mobile apps, internet marketplaces (Amazon Mechanical Turk)

• Advantages: Cheap, real-time, numerous, widespread observations

• Tradeoff: precision, quality, sampling frame, simple tasks/questions



Crowdsourcing in ecology

• Popularity:
• Hundreds of CS projects

• e.g. Federal Crowdsourcing and Citizen Science Toolkit (US Federal, 2018), Zooniverse, 
iNaturalist, eBird

• Concerns:
• inherent presence of misclassification or measurement errors resulting from participants' 

variable skill levels and abilities.

• spatial dependence in the data must be taken into account. 

• citizen scientists tend to capture observations in easily accessible areas. 



Approaches to modelling error-prone CS data

1. Ignore measurement error. 

2. Weighted linear regression with observation weights proportional to the user's 
accuracy or performance measures (Peterson et al., 2020). 

3. Take into consideration the user's sensitivity (se) and specificity (sp): ability to correctly 
detect presence/absence (true positive/negative) of target species.

spatially dependent misclassification error (SDME) approach



Case study

• Experiment within the Virtual Reef Diver project.

• Aims: 
• determine impact of different reef disturbances on hard coral cover changes 
• assess participants' abilities to identify hard corals within geotagged images
• evaluate the quality of the estimates obtained from the experiment.

• Four covariates: Degree heating weeks (max DHW/yr), no-take (binary, marine reserve), outer 
(outer/inner reef), cyc (cumulative hrs exposure to waves in cyclone)

• N = 1585 images from unique locations in GBR, 2008-2017

• Each image had 40 spatially balanced, random points, classified by experts. 

Want to expand experts’ data to larger regions → CS.



Crowdsourcing via Mechanical Turk

• Displayed 514 images on Amazon Mechanical 
Turk

• Workers asked to classify points into 5 benthic 
categories (hard coral, soft coral, algae, sand, 
other)

• Help file, qualification test (>60% to pass)

• Data collected Jan-14 to Feb-12 2020.

• Participants paid 0.10 USD per completed 
image (> U.S. federal min. wage $7.25/hr)

• Assigned up to 40 random images, classify 15 
points per image.



Setup

• Spatial model using stochastic partial differential 
equations (SPDE) via STAN

• Images defined by latitude & longitude, centroids of 
Voronoi polygons

• Presence/absence of target class (hard coral) in a subset of 
points (q = 15) within an image:
• 𝑞: No. points within an image (𝑞 = 15)
• 𝑦: True proportion of points containing target class
• 𝑧𝑖𝑗𝑘 = (0,1) Presence/absence of target class in point 𝑘 from 

image 𝑗 classified by subject 𝑖
• ො𝑦𝑖𝑗: apparent proportion from CS

ො𝑦𝑖𝑗 = ෍

𝑘=1

𝑞

𝑧𝑖𝑗𝑘 /𝑞

Voronoi diagram: Heron Island, GBR
Test & training data
Coral cover (y_cat) classified by experts



Performance of subjects



Model

𝑦𝑗|𝛼𝑗, 𝛽𝑗 ~ Beta(𝛼𝑗, 𝛽𝑗)

𝛼𝑗 = 𝜇𝑗𝜙 ; 𝛽𝑗= −𝜇𝑗𝜙 + 𝜙

𝜇𝑗 = E 𝑦𝑗 𝛼𝑗, 𝛽𝑗

𝑉𝑎𝑟 𝑦𝑗 = 𝜇𝑗(1 − 𝜇𝑗)/(1 + 𝜙)

logit 𝜇𝑗 = 𝑋𝑗𝑏 + 𝑢𝑗 + 𝜀𝑗

𝑢𝑙|𝑢𝑡 , 𝜏𝑢 ~ N
1

𝑛𝑙
෍

𝑙~𝑡

𝑢𝑡 ,
1

𝜏𝑢𝑛𝑙

• Hamiltonian Monte Carlo (HMC) simulation in Stan, based on the no-U-turn sampler (NUTS). 
• 3 chains each with 60,000 samples, half burn-in, thin 1 in 3.



Simulation study225 locations
67 known

Test locations Training locations   Unsampled locations



Results – classes of user ability

• About half responses slightly 
over-estimated.

• Exact class obtained in 199 
out of 225 locations.

• The SDME model captured 
the true parameter values 
much better than the 
weighted model.



Results – classes of user ability



Results – bias correction from SDME model

O elicited ො𝑦

O estimated latent variable 
𝑦𝑒𝑠𝑡𝑖𝑚 after accounting for 
misclassification errors



Case Study Results

Images classified per user



Case Study Results

• DHW and cyclone impact 
covariates have a substantial 
negative effect on the proportion 
of hard corals (97.5% CrI << 0).

• No-take marine reserves and 
middle shelf reefs tend to have 
substantially higher proportions of 
corals.



Alternative IRT approach to correcting CS data

• Aim to account for user ability and task difficulty in a geospatial setting

• Build on Rasch model (Rasch, 1960) → 3 parameter logistic model (3PL)  → GLM 
perspective → allow for space and time → dynamic response to map latent 
variables over time → dynamic IRT for sequential updates

• Propose 3PLUS model : extension of 3PL (U)sing (S)patially dependent item 
difficulties and variation of the linear logistic test model (LLTM)



3PLUS model

For user 𝑖, image 𝑗, point 𝑘, ask if the point contains the target class (Yes/No)

𝑌𝑖𝑗𝑘 ~ Bern 𝑝𝑖𝑗𝑘

𝑝𝑖𝑗𝑘 = 𝜂𝑗 + (1 − 𝜂𝑗)
1

1 + exp{−𝛼𝑗(𝜃𝑖 − 𝑏𝑗)}

• 𝜃𝑖 : latent ability of the 𝑖th user

• 𝑏𝑗 : difficulty of the 𝑗th image

• 𝛼𝑗 : discrimination parameter

• 𝜂𝑗 : pseudoguessing parameter  

𝑏𝑗|𝑏𝑚, 𝜏𝑏 ~ N
1

𝑛𝑙
෍

𝑙~𝑚

𝑏𝑚 ,
1

𝜏𝑏𝑛𝑙

Can extend to include 
Covariates associated 
with ability and difficulty



Simulation study

• Same study as before

• 3PLUS model vs 3PL model: 

• improved prediction accuracy (80% vs 62.2%)

• smaller RMSE (0.26 vs 0.48), WAIC (44587 vs 44637), LOO (44588 vs 44639)

• improved correlations between estimated and true difficulties (0.97 vs 0.88)

• similar estimates of discrimination, but better estimate of pseudoguessing



Case study – “Hakuna my data”

• Project “Snapshot-Serengeti” on 
Zoouniverse : 
Crowdsourcing to identify species 
in camera trap photos

• >1M images, 225 locations, 
10.8M classifications from 28,000 
users

• Gold standard dataset : 4,140 
images classified by experts

• 50 species identified.



Big data computation

• How to handle datasets too large to be fit directly in one machine or even on a HPC?

• Divide-and-conquer or a divide-and-recombine approach: 
• split into multiple shards or subsets

• fit models to independent subsets on independent machines

• Combine subposterior estimates into global estimates using consensus Monte Carlo

• Weighted averages of the posterior MCMC chains, weights prop. to 1/variance

• Alternative:
• Divide users into 10 equal groups w.r.t. no. classifications

• 10 shards with ~ 0.5M classifications per shard.

• Fit shards in parallel with no communication.

• Combine using stratified sampling principles. 



Results – user abilities



Results - Posterior estimates of species difficulties





Summary

• New measurement error and item-response models for combining and adjusting 
crowdsourced geospatial data.

• Models outperform current popular approaches.

• Methods help to improve quality, accuracy and trust for crowdsourced data.

• Methods are scalable.



Case Study 2: Anomaly Detection in High-Dimensional Time Series

In-situ sensors produce high-volume, high 

velocity data describing fine-scale patterns, 

trends and extremes in space and near-real time

Data are prone to errors due to miscalibration, 

biofouling, and battery or other technical errors

 Manual QA/QC is too inefficient

Partner Organisations
• QLD Department of Environment and Science

• Southeast QLD Healthy Land & Water

Research Providers

• Universities: QUT, Monash, RMIT, University of Pau, 
University of Moratuwa, University of Alaska, EP 
Consulting

Other Collaborators:

• US National Ecological Observatory Network (NEON)

• US National Oceanographic & Atmospheric 
Administration (NOAA)



PIONEER RIVER

Type Class

Large sudden spike A 

Low variability / persistent 

values
B

Constant offset (e.g. 

calibration error)
C

Sudden shifts D

High variability E

Impossible values F

Out-of-sensor-range values G

Drift H

Clusters of spikes I

Small sudden spike J

Missing values K

Types of anomalies



Can data from nearby sensors be used to detect anomalies?

 Turbidity ~ level, conductivity, and temperature from pairs of NEON sensors

 Estimate cross-correlation between up & downstream data, accounting for time lags

 Use GAM models to predict at downstream sensor 

Cross-correlation approach



Methods

 Rule-based:

 e.g. ‘no negative values’ 

 Feature-based:

 Consider patterns in multiple series (e.g., turbidity, conductivity)

 e.g. HDOutliers, aggregated k-nearest neighbour (kNN-agg)  

 Regression-based: 

 Fit model, e.g. ARIMA:                             ;

 Classify as ‘anomaly’ if the one-step-ahead prediction does not fall in the predictive interval.

Results

 Combination of methods facilitated the correct classification of impossible values, sudden isolated 

spikes and level shifts.

 Drift and periods of high variability still tended to be associated with high rates of false positives. 

Framework for anomaly detection



 Two approaches:

 Semi-supervised – train using only non-anomalous data; fit models with prediction errors; 

predict anomalous events as those observed to fall outside prediction intervals.

 Supervised – train using labelled anomalous and non-anomalous data; generate 

probabilities that are binary-classified according to a predefined threshold.

 Used long short-term memory (LSTM) networks:

 Type of Recurrent Neural Network (RNN), which is a special case of auto-regressive 

integrated moving average (ARIMA) and nonlinear auto-regressive moving average models

 Structured in network units (memory blocks) composed of self-connected memory cells and 

three multiplicative units (“input”, “output”, “forget gates”)

 Explored different learning methods and hyperparameter values.

 Used ‘keras’ software interfaced with R.

Artificial Neural Network (ANN) approach



 Calibrated the models using a Bayesian multiobjective optimization procedure:

 Objective function based on combinations of accuracy, sensitivity, specificity, positive predictive value, 

negative predictive value

 Iteratively improve the posterior distribution of functions (assuming a Gaussian process) associated with the 

variability of each hyperparameter, to maximise objective function.

 Used ‘mlrMBO’ toolbox in R 

 Selected and evaluated the “best” model for each water-quality variable, 

environment, and anomaly type.

 Identified influence of WQ variables on model performance using random forest 

(VI). 

Artificial Neural Network (ANN) approach



Results

 Semi-supervised classification was better able to detect sudden spikes, sudden shifts, and 

small sudden spikes.

 Supervised classification had higher accuracy for predicting long-term anomalies associated 

with drifts and periods of otherwise unexplained high variability.

Artificial Neural Network (ANN) approach



 Temperature data for a stream network in the USA (Boise River)

 42 data points – want to predict at every 1km, i.e. 1622 locations

From Anomaly Detection to Spatio-Temporal model



 Response: Subsampled water temperature data every 3 weeks over 5 years (87 time points)

 Covariates: air temperature, stream slope, elevation, cumulative drainage area

From Anomaly Detection to Spatio-Temporal model



Spatio-temporal predictions of water temperature 



Pr(mean water temperature > 13⁰)



Case Study 2: Summary

1. Sensor data are pervasive.

2. Low-cost sensors have great potential for ecological monitoring, but they are 
prone to technical anomalies.

3. Statistical methods for anomaly detection can help to improve trust in the data.

4. Trustworthy data can provide strong data-focused insights.

Nothing remains the same from one moment to the next, you can't step into the same river twice. 
Life – evolution – the whole universe of space/time, matter/energy – existence itself
is essentially change." - Ursula K. Le Guin



Case Study 3: Explainable models





Simple discrete-time self-exciting models can describe complex 
dynamics processes

• Hawkes process: past events 
influence the short-term probability
of future events occurring.

• Neuroscience

• Crime and terrorism

• Seismic activity

• Social media

• Infectious diseases

Browning et al., 2021
Warne et al., 2020



Discrete-time Hawkes process

• Data (counts) 𝑦𝑡: number of events in a given time interval s:  𝑦𝑡 ~ Poisson(𝜆 𝑡 )

• Conditional intensity function 𝜆(𝑡): expected number of events that occur at time interval t, 
conditionally on the past.

• Number of events up to time t: 𝑁𝑡

• History of events up to but not including time t: 𝐻𝑡−1

𝜆 𝑡 = 𝐸 𝑁 𝑡 − 𝑁 𝑡 − 1 𝐻𝑡−1}

= 𝜇 + 𝛼 ෍

𝑖:𝑡𝑖<𝑡

𝑦𝑡𝑖 𝑔(𝑡 − 𝑡𝑖)

Baseline mean 
of the process

Expected no. events in a given time 
interval t given previous events

Expected no. subsequent events 
produced by a single event

Expected no. events in a given time 
interval t given previous events



Results

1. Bayesian formulation

2. Include a change-point to describe different dynamics of the epidemic.

3. Estimate (𝜇1, 𝛼1, 𝛽1) and 𝜇2, 𝛼2, 𝛽2 ; estimate/predict trajectory.



Results

Baseline mean of the process
Expected number of events 

triggered by a single event



Summary

1. Sometimes, simple models can adequately capture complex dynamics.

2. The model can also quantify the dynamics of distinct phases in the pandemic.

3. We can also describe and compare country-specific dynamics.

Ongoing work:

Develop other models to analyse covid data.

Contribute further to developing methods to enhance trust in data and 

data science.
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