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Programme of Lectures

January 27th:
• Lecture 1: 10-1045am IST (230pm-3:15pm AEST)

Identifying the Intrinsic Dimension of High-Dimensional Data

• Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:
• Lecture 3: 10-1045am IST (230pm-3:15pm AEST)

Describing Systems of Data

• Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy
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Lecture 3: 
Describing Systems of Data 



Everything is a complex system!



Case study 1: Bayesian network modelling of lyngbya

University of Queensland Caboolture Shire Council

What are the main factors that influence the initiation of lyngba?

What management approaches are most effective?



Case Study 2: “Beyond compliance”

● Requires pest risk mitigation (biosecurity) measures
○ Subject to international standards (ISPMs). Must be based on pest risk, 

scientifically justified, proportional to risk and least trade-restrictive
● Pest risk mitigation measures are usually single, e.g. pest area freedom or chemical 

treatment. These can:
○ Be difficult  (or impossible) to achieve
○ Damage the commodity
○ Carry health and environmental risks
○ Halt the whole trade on a minor failure
○ Convey a power imbalance between trading partners



Can we find “ecological windows” for dredging to reduce the 

impact on seagrass?

Case study 3: from BN to DBN



Case Study 4: Wayfinding –
Combining expert information



Using Bayesian Networks to model complex systems
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Markov Assumption: (1st order) 

If we know the present, then the past 
has no influence
on the future

Markov Blanket
children, parents, children’s parents



● 3 types of structural connections:

● d-separation:
If nodes X & Y are d-Separated given Z, then  X ⊥ Y | Z

Diverging connection

(common cause)

Converging connection

(common effect)

Serial connection



BN Chain Rule

● Instead of calculating the joint probability distribution across all the nodes using the 
multiplication law of elementary probability theory:

P(X1, . . .,Xn) = P(X1)P(X2/X1)P(X3/X1, X2)…..P(Xn/X1,…,Xn-1)

● By using d-Separation (i.e. conditional independence) and the Markov property  this 
simplifies into the well known BN chain rule:

n 

P(X1, . . .,Xn) = ∏ P(Xi | PA(Xi ))        [PA(Xi) parents of Xi ]
i=1
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Probabilistically quantify the 
BN using ‘evidence’:
• data
• literature
• model outputs
• expert judgement 
etc



Extensions to BNs

● Object-oriented Bayesian networks
○ Used to model large, complex hierarchical systems

● Dynamic Networks
○ Used to model beliefs changing over time
○ Hidden Markov Models and Kalman Filters are special 

cases.

● Decision Networks (Influence Diagrams)
○ Used for decision making



Why Bayesian Networks?

1. Bring together disparate scientific knowledge

2. Create a ‘conceptual map’ of the scientific drivers

3. Quantify the map with data, model outputs, expert 
knowledge, etc

4. Identify key drivers

5. Explore scenarios of change

6. Understand impact of management and policy decisions



Case study: Bayesian network modelling of lyngbya

What are the drivers of lyngbya?

What management actions should be 
taken?

University of Queensland Caboolture Shire Council
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1. Available Nutrient Pool

2. Bottom Current Climate

3. Sediment Nutrients

4. Dissolved Iron

5. Dissolved Phosphorous

6. Light

7. Temperature
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Most influential factors



Factor
Change in P(Bloom)

(%)

Available Nutrient Pool 77    (3% - 80%) 

Bottom Current Climate 28   (15% - 43%)

Sediment Nutrient Climate 17   (21% - 38%)

Dissolved Fe 16   (21% - 37%)

Dissolved P 15  (23% - 38%)

Light Climate 14   (18% - 32% )

Temperature 14   (21% - 35%)

Dissolved N 13   (22% - 35%)

Rain – present 10   (25% - 35%)

Light Quantity 9   (21% - 30%)

“What-if” scenarios



Management

Model

Science BN

Model

P(Bloom Initiation) Evaluation of factors, scenario assessment

Integration of information, adaptive updates

Translating science to management



Case Study 2: Vietnam case study - Dragon fruit

Binh Thuan province: 
20,000 ha
18,000 growers
500,000 tonnes/yr
$0.20-$1.00/kg farm gate

Large semi-official export to China
Small, high quality markets in Korea, EU, US



Control point BN

1. Field measures, with pest 
monitoring

2. Harvest sorting and 
hygiene

3. Inspection and sorting at 
packing



BN control point 1 - field measures with monitoring



Protein bait BN sub-model



Decision support spreadsheet

Efficacy & implementation from 
stake-holder/expert elicitation

Systematic elicitation for all 14 
measures on common scales



Case Study 3: Seagrass Case Study

• Seagrass ecosystems

• Habitat, $1.9 trillion in ecosystem 
services, carbon, declining at a 
rate of ~110km2 since 1980 
(Waycott et al, 2009)

• Need to manage threats to marine 
ecosystems

• Urban and agricultural runoff

• Infrastructure development

• Dredging

Courtesy of: Gary Kendrick



World distribution of seagrasses (green) & ports (blue dots).

Heat maps show average recovery time (bottom panel) & average ratio of

extinction risk to baseline risk (top panel).

Bars correspond to dredging periods: 1, 2, 3, 6, 9, 12 mths

Labels coloured by genera – Halophila, Zostera, Amphibolis.



Resilience (Levin, 2008; Holling, 1973)

• Resistance, loss of individuals and/or species as the result of stress

• Recovery, expected recovery time

• Persistence, risk of local extinction (probability of zero population of species)

Key outcome is resilience



• Generalised form of Hidden 
Markov Models (HMMs) and 
Kalman filter models

• Allows state space representation 
in factored form rather than single 
discrete random variable, 
arbitrary probability distributions 
(Murphy, 2002)

Dynamic Bayesian Networks



𝑷(ShootDensity(𝒕)| genera, location, light,... )

Conditional probabilities



Seagrass Model



Forwards

𝜋 𝑠𝑡|𝒚𝑡 = 𝑃𝑦𝑡,𝑠𝑡 ෍

𝑗=1

𝐾

𝜆𝑗,𝑠𝑡𝜋 𝑆𝑡−1 = 𝑗 𝒚𝑡−1

𝜋 𝑠𝑡+1 𝒚𝑡 =෍

𝑗=1

𝐾

𝜆𝑗,𝑠𝑡+1𝜋 𝑆𝑡 = 𝑗 𝒚𝑡

Backwards

𝜋 𝑠𝑡 𝑠𝑡+1, 𝒚𝑡+1 = 𝜆𝑠𝑡,𝑠𝑡+1
𝜋 𝑠𝑡 𝒚𝑡
𝜋 𝑠𝑡+1 𝒚𝑡

Forwards and backwards inference



Link Node Based Non-Homogeneous DBN Inference

• Complex systems characterised by “small world networks” (Watts, 1998)

• Use link nodes (small number of nodes connecting between time slices)

• Use dynamic forward-backward algorithm



Results

























Whole-of-Systems Response



Resilience Criteria

• Resilience criteria using baselines (Levin, 2008, Halpern, 2007)

• Resistance, loss of individuals and/or species as the result of stress
• 80% of baseline population in that month

• Recovery, expected recovery time
• Within 6 months 

• Persistence, risk of local extinction (probability of zero population of species)
• Within 2.5% of baseline risk of zero



Ecological Windows



Ecological Windows



So What?

• Resilience is dynamic in space and time

• Windows emerge from interactions of life histories, local conditions and growth patterns

• Ecological windows can enable up to four-fold reduction in recovery time, 35% reduction in 

extinction risk

• Consistent windows for greater robustness

• Tend towards Autumn and Winter 

• We can manage resilience much more effectively with planned scheduling of dredging

80



Case Study 4: Wayfinding
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Probabilistically quantify the 
BN using ‘evidence’:
• data
• literature
• model outputs
• expert judgement 
etc
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But what about multiple experts?



Information about node X provided by n experts 𝐸1, … , 𝐸𝑛

Joint model:
P(P X 𝐸1 …P X 𝐸𝑛 )

Pooled approximation: 

𝑃 𝑋 = ෍

𝑖=1

𝑛

𝜆𝑖𝑃𝑖 𝑋 ; ෍

𝑖=1

𝑛

𝜆𝑖 = 1

If all experts are equally weighted:
𝜆𝑖 = 1/𝑛

𝑃 𝑋 = ෍

𝑖=1

𝑛

𝑃𝑖 𝑋 /𝑛

Linear Pooling



• Prior linear pooling: 

• probabilities pooled within each node (apply     at this stage)

• resultant CPTs are then propagated through network to find marginal 
probabilities for nodes of interest

• Posterior linear pooling

• quantify and compute BN for each expert separately

• pool the marginal probability distributions for the final nodes in the n BNs
(apply      at this stage)

Linear Pooling - Options



• Point estimate for the consensus; variation in expert opinions is lost.

• Does not follow from a coherent probability model (de Finetti, 1964: can only be 
considered an estimator if each observation is indept & Gaussian)

• The different methods can result in different outcomes for the nodes of interest.

• The conditional independence structure of the BN is not reflected in the way in which 
the expert opinions are combined particularly for prior linear pooling.

Drawbacks of Linear Pooling



• Consider a single node of interest. 

• Model the marginal probability for expert 𝐸𝑖 , 𝑖 = 1,… , 𝑛 as 
𝑝𝑖 ~ Beta 𝑎𝑖 , 𝑏𝑖

• Allow for variation between experts:

logit
𝑎𝑖

𝑎𝑖 + 𝑏𝑖
= logit

𝑎𝑖
𝑏𝑖

+ 𝜇 + 𝜖𝑖

𝜇 ~ 𝑁 0, 𝜏𝑢
−1 , 𝜖𝑖~ 𝑁(0, 𝜏𝜖

−1)

• Since E(logit…) = 0, this implies 𝑎𝑖 = 𝑏𝑖, so an alternative is to model:
𝑎𝑖 + 𝑏𝑖 ~ Gamma(𝛼0, 𝛽0)

Measurement Error Approach - Univariate



• Form consensus for multiple nodes 𝑗 = 1,… ,𝑚 in the BN.

• Then

𝑝𝑖𝑗 ~ Beta(𝑎𝑖𝑗 , 𝑏𝑖𝑗)

• MVN random effect for each expert + extra between-expert variation:

logit
𝑎𝑖𝑗

𝑎𝑖𝑗 + 𝑏𝑖𝑗
= 𝜇𝑗 + 𝜖𝑖𝑗

𝜇𝑗~ 𝑁 0, 𝜏𝜇
−1 , 𝝐𝑖~ 𝑁 0𝑚, 𝑄

−1 , 𝑖 = 1,… , 𝑛; 𝝐𝑖= (𝜖𝑖1, … , 𝜖𝑖𝑚)

𝑎𝑖𝑗 + 𝑏𝑖𝑗 ~ Gamma(𝛼𝜏, 𝛽𝜏)

Measurement Error Approach - Multivariate



• Structure of random effect term:
𝝐 = 𝐑𝐬

R: Cholesky decomposition of precision matrix Q

s:  vector of i.i.d. standard normals, i.e. 𝒔 = N 0, 𝐼

• Hence by definition, 𝝐 has a precision matrix s.t. 𝑸 = (𝐑𝐑T)−1.

• Implication: if R has the correct sparsity required, then Q will also have the correct 
sparsity structure.

• Hence 𝝐 ~ N(𝟎𝑚, 𝐑𝐑
T)

• Similarly, by finding R, we can give Q the right structure to reflect the conditional 
independence of a BN.

Improvement on usual approach (linear pooling)

Multivariate Measurement Error Approach - Comments



• 99 experts: P(good), P(good), P(effective) for H,E,W

• Model allows for combination of all opinions.

• Coherence is maintained under reordering of the 
independent expert opinions.

• 𝐐 allows the model to ‘borrow strength’ from other parts of 
the model: information can travel up and down the levels of 
the hierarchy.

• 𝐐 also ensures that the conditional independence structure 
of the BN is reflected when combining opinions: 
𝐐𝑖𝑗 ≠ 0 iff node i depends on node j in the BN.

Example



Need to construct R, Cholesky decomposition of 𝐐 : use expert priors on 𝐐. Write:

logit 𝜇𝐻 = 𝜇𝐻 + 𝛽1𝜖𝑊 + 𝜖𝐻
logit 𝜇𝐸 = 𝜇𝐸 + 𝛽2𝜖𝑊 + 𝜖𝐸
logit 𝜇𝑊 = 𝜇𝑊 + 𝛽3𝜖𝐻 + 𝛽4𝜖𝐸 + 𝜖𝑊

𝜇𝐻, 𝜇𝐸, 𝜇𝑊 : mean opinions for nodes H, E, W.

𝛽 terms indicate how much of the random effects comes from the other nodes.

Hence
logit 𝝁𝑋 = 𝝁𝑋 + 𝐑𝐬

𝐑 =

𝜏H
−1/2

0 𝛽1𝜏W
−1/2

0 𝜏W
−1/2

𝛽2𝜏W
−1/2

0 0 𝜏W
−1/2

, 𝐐 =

𝜏H 0 𝛽1𝜏H

0 𝜏E 𝛽2𝜏E

−𝛽1𝜏H −𝛽2𝜏E 𝛽1
2𝜏𝐻𝜏W

2 + 𝛽1
2𝜏𝐻𝜏W

2 + 𝜏W

𝜏𝑋 ~ Gamma 1, 5 × 10−5 , 𝛽𝑋 ~ N(0, 5 × 10−5)



Priors:

• Gamma(1,0.1) for 𝑎 + 𝑏
[2.5% & 97.5% interval for anticipated values for p implied by this prior is (0.53,1)]

• Proper but relatively uninformative priors for 𝜇 so ~ uniform distribution on 𝑝𝑖: 𝜏𝜇
−1 = 104

• 𝑎𝜏, 𝑏𝜏 = (1,5 × 105) : small contribution of measurement error to overall value of 𝑝𝑖

Analysis:

• In R INLA

• Utilises deterministic Laplace approximations by fitting Gaussian conditional posteriors via an 
optimisation step for latent Gaussian models.

• Faster, more accurate alternative to simulation-based MCMC schemes in many cases.

• Applicable here because of the sparsity of 𝑸



Bayesian MME:  
Posterior linear pooling:
Prior linear pooling:

Results



• New measurement error approach for combining opinions in Bayesian networks

• Results indicate improved performance and increased inferential capability compared with 
current approaches such as linear pooling

• Can extend model to include bias and additional covariates.

e.g. to investigate effect of experienced (E) and inexperienced (I) travellers, modify 𝜇𝑗 (overall mean 
for node j) as

𝜇𝐼~N 𝜇𝑗 − 𝛿𝐼 , 𝜎𝐼
2 ; 𝜇𝐸~N 𝜇𝑗 + 𝜂𝐼 , 𝜎𝐸

2

Summary
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