

Bayesian Modelling and Analysis of Challenging Data

Kerrie Mengersen School of Mathematical Sciences QUT

PC Mahalanobis Lecture Series January 2021

Programme of Lectures

January 27th:

- Lecture 1: 10-1045am IST (230pm-3:15pm AEST) Identifying the Intrinsic Dimension of High-Dimensional Data
- Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST) Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:

- Lecture 3: 10-1045am IST (230pm-3:15pm AEST) Describing Systems of Data
- Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST) Making New Sources of Data Trustworthy

Bayesian Modelling and Analysis of Challenging Data

Lecture 3: Describing Systems of Data

Sandra Johnson, Paul Wu, Charisse Farr, Fabrizio Ruggeri

Everything is a complex system!

Case study 1: Bayesian network modelling of lyngbya

What are the main factors that influence the initiation of lyngba? What management approaches are most effective?

University of Queensland

Caboolture Shire Council

Case Study 2: "Beyond compliance"

- Requires pest risk mitigation (biosecurity) measures
 - Subject to international standards (ISPMs). Must be based on pest risk, scientifically justified, proportional to risk and least trade-restrictive
- Pest risk mitigation measures are usually single, e.g. pest area freedom or chemical treatment. These can:
 - Be difficult (or impossible) to achieve
 - Damage the commodity
 - Carry health and environmental risks
 - Halt the whole trade on a minor failure
 - Convey a power imbalance between trading partners

Case study 3: from BN to DBN

Can we find "ecological windows" for dredging to reduce the impact on seagrass?

Case Study 4: Wayfinding – Combining expert information

Using Bayesian Networks to model complex systems

Markov Assumption: (1st order)

If we know the present, then the past has no influence on the future

Markov Blanket children, parents, children's parents

• *d-separation:*

If nodes X & Y are d-Separated given Z, then $X \perp Y \mid Z$

BN Chain Rule

• Instead of calculating the joint probability distribution across all the nodes using the multiplication law of elementary probability theory:

$$P(X_1, \ldots, X_n) = P(X_1)P(X_2/X_1)P(X_3/X_1, X_2)\dots P(X_n/X_1, \ldots, X_{n-1})$$

• By using d-Separation (i.e. conditional independence) and the Markov property this simplifies into the well known BN chain rule:

$$P(X_1, \ldots, X_n) = \prod_{i=1}^n P(X_i \mid \mathbf{PA}(X_i)) \qquad [\mathbf{PA}(X_i) \text{ parents of } X_i]$$

Probabilistically quantify the BN using 'evidence':

- data
- literature
- model outputs
- expert judgement

etc

		G	
E	F	normal	high
	low	0.4	0.6
yes	medium	0.2	0.8
	high	0.1	0.9
	low	0.5	0.5
no	medium	0.6	0.4
	high	0.4	0.6

Extensions to BNs

- Object-oriented Bayesian networks
 - Used to model large, complex hierarchical systems
- Dynamic Networks
 - Used to model beliefs changing over time
 - Hidden Markov Models and Kalman Filters are special cases.
- Decision Networks (Influence Diagrams)
 - Used for decision making

Why Bayesian Networks?

- 1. Bring together disparate scientific knowledge
- 2. Create a 'conceptual map' of the scientific drivers
- 3. Quantify the map with data, model outputs, expert knowledge, etc
- 4. Identify key drivers
- 5. Explore scenarios of change
- 6. Understand impact of management and policy decisions

Case study: Bayesian network modelling of lyngbya

What are the drivers of lyngbya? What management actions should be taken?

University of Queensland

Caboolture Shire Council

Most influential factors

- 1. Available Nutrient Pool
- 2. Bottom Current Climate
- 3. Sediment Nutrients
- 4. Dissolved Iron
- 5. Dissolved Phosphorous
- 6. Light
- 7. Temperature

Μ

G

Α

С

Ν

S

"What-if" scenarios

Factor	Change in P(Bloom) (%)
Available Nutrient Pool	77 (3% - 80%)
Bottom Current Climate	28 (15% - 43%)
Sediment Nutrient Climate	17 (21% - 38%)
Dissolved Fe	16 (21% - 37%)
Dissolved P	15 (23% - 38%)
Light Climate	14 (18% - 32%)
Temperature	14 (21% - 35%)
Dissolved N	13 (22% - 35%)
Rain – present	10 (25% - 35%)
Light Quantity	9 (21% - 30%)

Translating science to management

Case Study 2: Vietnam case study - Dragon fruit

Binh Thuan province: 20,000 ha 18,000 growers 500,000 tonnes/yr \$0.20-\$1.00/kg farm gate

Large semi-official export to China Small, high quality markets in Korea, EU, US

Control point BN

- 1. Field measures, with pest monitoring
- 2. Harvest sorting and hygiene

3. Inspection and sorting at packing

BN control point 1 - field measures with monitoring

Protein bait BN sub-model

Decision support spreadsheet

Efficacy & implementation from stake-holder/expert elicitation

	Efficacy	Uncertaint	y Imp	lementatio	n Uncertair	ity
4.7 Protein bait Bait	High	Low	1 0.8 0.6 0.4 0.2 0 VH H M L VL	Easy	Low	1 0.8 0.6 0.4 0.2 0 VE E SD D VD

Systematic elicitation for all 14 measures on common scales

Case Study 3: Seagrass Case Study

- Seagrass ecosystems
 - Habitat, \$1.9 trillion in ecosystem services, carbon, declining at a rate of ~110km² since 1980 (Waycott et al, 2009)
- Need to manage threats to marine ecosystems
 - Urban and agricultural runoff
 - Infrastructure development
 - Dredging

World distribution of seagrasses (green) & ports (blue dots).

Heat maps show average recovery time (bottom panel) & average ratio of extinction risk to baseline risk (top panel).

Bars correspond to dredging periods: 1, 2, 3, 6, 9, 12 mths

Labels coloured by genera – *Halophila, Zostera, Amphibolis*.

Key outcome is resilience

Resilience (Levin, 2008; Holling, 1973)

- Resistance, loss of individuals and/or species as the result of stress
- Recovery, expected recovery time
- Persistence, risk of local extinction (probability of zero population of species)

Dynamic Bayesian Networks

• Generalised form of Hidden Markov Models (HMMs) and Kalman filter models

t

 Allows state space representation in factored form rather than single discrete random variable, arbitrary probability distributions (Murphy, 2002)

Conditional probabilities

P(ShootDensity(t)|{genera, location, light,...})

Seagrass Model

Forwards and backwards inference

Forwards

$$\pi(s_t | \boldsymbol{y}_t) = P_{\boldsymbol{y}_t, s_t} \sum_{j \in \mathbb{Z}^1}^K \lambda_{j, s_t} \pi(S_{t-1} = j | \boldsymbol{y}_{t-1})$$
$$\pi(s_{t+1} | \boldsymbol{y}_t) = \sum_{j=1}^K \lambda_{j, s_{t+1}} \pi(S_t = j | \boldsymbol{y}_t)$$

Backwards

$$\pi(s_t|s_{t+1}, y_{t+1}) = \lambda_{s_t, s_{t+1}} \frac{\pi(s_t|y_t)}{\pi(s_{t+1}|y_t)}$$

Link Node Based Non-Homogeneous DBN Inference

- Complex systems characterised by "small world networks" (Watts, 1998)
- Use link nodes (small number of nodes connecting between time slices)
- Use dynamic forward-backward algorithm

Results

х

Whole-of-Systems Response

Resilience Criteria

- Resilience criteria using baselines (Levin, 2008, Halpern, 2007)
 - Resistance, loss of individuals and/or species as the result of stress
 - 80% of baseline population in that month
 - Recovery, expected recovery time
 - Within 6 months
 - Persistence, risk of local extinction (probability of zero population of species)
 - Within 2.5% of baseline risk of zero

Ecological Windows

Ecological Windows

So What?

- Resilience is dynamic in space and time
 - Windows emerge from interactions of life histories, local conditions and growth patterns
- Ecological windows can enable up to four-fold reduction in recovery time, 35% reduction in extinction risk
- Consistent windows for greater robustness
 - Tend towards Autumn and Winter
- We can manage resilience much more effectively with planned scheduling of dredging

Case Study 4: Wayfinding

Probabilistically quantify the BN using 'evidence':

- data
- literature
- model outputs
- expert judgement

etc

		G	
E	F	normal	high
	low	0.4	0.6
yes	medium	0.2	0.8
	high	0.1	0.9
	low	0.5	0.5
no	medium	0.6	0.4
	high	0.4	0.6

But what about *multiple* experts?

		G	
E	F	normal	high
	low	0.4	0.6
yes	medium	0.2	0.8
	high	0.1	0.9
	low	0.5	0.5
no	medium	0.6	0.4
	high	0.4	0.6

Linear Pooling

Information about node X provided by *n* experts $E_1, ..., E_n$ Joint model:

 $P(P(X|E_1) \dots P(X|E_n))$

Pooled approximation:

$$P(X) = \sum_{i=1}^{n} \lambda_i P_i(X) ; \sum_{i=1}^{n} \lambda_i = 1$$

If all experts are equally weighted:

$$\lambda_i = 1/n$$

$$P(X) = \sum_{i=1}^{n} P_i(X)/n$$

Linear Pooling - Options

- Prior linear pooling:
 - probabilities pooled within each node (apply at this stage)
 - resultant CPTs are then propagated through network to find marginal probabilities for nodes of interest
- Posterior linear pooling
 - quantify and compute BN for each expert separately
 - pool the marginal probability distributions for the final nodes in the n BNs (apply at this stage)

Drawbacks of Linear Pooling

- Point estimate for the consensus; variation in expert opinions is lost.
- Does not follow from a coherent probability model (de Finetti, 1964: can only be considered an estimator if each observation is indept & Gaussian)
- The different methods can result in different outcomes for the nodes of interest.
- The conditional independence structure of the BN is not reflected in the way in which the expert opinions are combined particularly for prior linear pooling.

Measurement Error Approach - Univariate

- Consider a single node of interest.
- Model the marginal probability for expert E_i , i = 1, ..., n as $p_i \sim \text{Beta}(a_i, b_i)$
- Allow for variation between experts:

$$logit\left(\frac{a_i}{a_i + b_i}\right) = logit\left(\frac{a_i}{b_i}\right) + \mu + \epsilon_i$$
$$\mu \sim N(0, \tau_u^{-1}), \ \epsilon_i \sim N(0, \tau_{\epsilon}^{-1})$$

• Since E(logit...) = 0, this implies $a_i = b_i$, so an alternative is to model: $a_i + b_i \sim \text{Gamma}(\alpha_0, \beta_0)$

Measurement Error Approach - Multivariate

- Form consensus for multiple nodes j = 1, ..., m in the BN.
- Then

$$p_{ij} \sim \text{Beta}(a_{ij}, b_{ij})$$

• MVN random effect for each expert + extra between-expert variation:

$$logit\left(\frac{a_{ij}}{a_{ij}+b_{ij}}\right) = \mu_j + \epsilon_{ij}$$

$$\mu_{j} \sim N(0, \tau_{\mu}^{-1}), \quad \boldsymbol{\epsilon}_{i} \sim N(0_{m}, Q^{-1}), \qquad i = 1, \dots, n; \quad \boldsymbol{\epsilon}_{i} = (\boldsymbol{\epsilon}_{i1}, \dots, \boldsymbol{\epsilon}_{im})$$
$$a_{ij} + b_{ij} \sim \operatorname{Gamma}(\alpha_{\tau}, \beta_{\tau})$$

Multivariate Measurement Error Approach - Comments

• Structure of random effect term:

 $\epsilon = \mathbf{Rs}$

R: Cholesky decomposition of precision matrix **Q**

s: vector of i.i.d. standard normals, i.e. s = N(0, I)

- Hence by definition, ϵ has a precision matrix s.t. $Q = (\mathbf{R}\mathbf{R}^{\mathrm{T}})^{-1}$.
- Implication: if **R** has the correct sparsity required, then **Q** will also have the correct sparsity structure.
- Hence $\boldsymbol{\epsilon} \sim \mathrm{N}(\boldsymbol{0}_m, \mathbf{R}\mathbf{R}^{\mathrm{T}})$
- Similarly, by finding **R**, we can give **Q** the right structure to reflect the conditional independence of a BN.

Improvement on usual approach (linear pooling)

Example

- 99 experts: P(good), P(good), P(effective) for H,E,W
- Model allows for combination of all opinions.
- Coherence is maintained under reordering of the independent expert opinions.
- **Q** allows the model to 'borrow strength' from other parts of the model: information can travel up and down the levels of the hierarchy.
- $Q = \begin{pmatrix} \times & \times \\ & \times & \times \\ & \times & \times \end{pmatrix}$ the hierarchy. • **Q** also ensures that the conditional independence structure of the BN is reflected when combining opinions: $\mathbf{Q}_{ij} \neq 0$ iff node *i* depends on node *j* in the BN.

Need to construct **R**, Cholesky decomposition of \mathbf{Q} : use expert priors on \mathbf{Q} . Write:

$$logit(\mu_H) = \mu_H + \beta_1 \epsilon_W + \epsilon_H$$

$$logit(\mu_E) = \mu_E + \beta_2 \epsilon_W + \epsilon_E$$

$$logit(\mu_W) = \mu_W + \beta_3 \epsilon_H + \beta_4 \epsilon_E + \epsilon_W$$

 μ_H, μ_E, μ_W : mean opinions for nodes H, E, W.

 β terms indicate how much of the random effects comes from the other nodes.

Hence

 $logit(\boldsymbol{\mu}_X) = \boldsymbol{\mu}_X + \mathbf{Rs}$

$$\mathbf{R} = \begin{pmatrix} \tau_{\mathrm{H}}^{-1/2} & 0 & \beta_{1}\tau_{\mathrm{W}}^{-1/2} \\ 0 & \tau_{\mathrm{W}}^{-1/2} & \beta_{2}\tau_{\mathrm{W}}^{-1/2} \\ 0 & 0 & \tau_{\mathrm{W}}^{-1/2} \end{pmatrix}, \qquad \mathbf{Q} = \begin{pmatrix} \tau_{\mathrm{H}} & 0 & \beta_{1}\tau_{\mathrm{H}} \\ 0 & \tau_{\mathrm{E}} & \beta_{2}\tau_{\mathrm{E}} \\ -\beta_{1}\tau_{\mathrm{H}} & -\beta_{2}\tau_{\mathrm{E}} & \beta_{1}^{2}\tau_{H}\tau_{\mathrm{W}}^{2} + \beta_{1}^{2}\tau_{H}\tau_{\mathrm{W}}^{2} + \tau_{\mathrm{W}} \end{pmatrix}$$

 $\tau_X \sim \text{Gamma}(1, 5 \times 10^{-5}), \beta_X \sim \text{N}(0, 5 \times 10^{-5})$

Priors:

- Gamma(1,0.1) for a + b
 [2.5% & 97.5% interval for anticipated values for p implied by this prior is (0.53,1)]
- Proper but relatively uninformative priors for μ so ~ uniform distribution on p_i : $\tau_{\mu}^{-1} = 10^4$
- $(a_{\tau}, b_{\tau}) = (1.5 \times 10^5)$: small contribution of measurement error to overall value of p_i

Analysis:

- In R INLA
- Utilises deterministic Laplace approximations by fitting Gaussian conditional posteriors via an optimisation step for latent Gaussian models.
- Faster, more accurate alternative to simulation-based MCMC schemes in many cases.
- Applicable here because of the sparsity of $oldsymbol{Q}$

Results

Summary

- New measurement error approach for combining opinions in Bayesian networks
- Results indicate improved performance and increased inferential capability compared with current approaches such as linear pooling
- Can extend model to include bias and additional covariates.

e.g. to investigate effect of experienced (E) and inexperienced (I) travellers, modify μ_j (overall mean for node *j*) as

$$\mu_I \sim \mathrm{N}(\mu_j - \delta_I, \sigma_I^2); \quad \mu_E \sim \mathrm{N}(\mu_j + \eta_I, \sigma_E^2)$$

References

Caley MJ, O'Leary RA, Fisher R, Low-Choy S, Johnson S, Mengersen K (2013) What is an expert? A systems perspective on expertise. *Ecology and Evolution*.

Farr C, Mengersen K, Ruggeri F, Simpson P, Yarlagadda P (2020) Combining opinions for use in Bayesian Networks: a measurement error approach. *International Statistical Review*.

Santos-Fernandez E., et al. (2020) Correcting misclassification errors in crowdsourced ecological data: a Bayesian perspective. Journal of the Royal Statistical Society Series C – under revision.

Santos-Fernandez E., et al. (2020) Bayesian item response models for citizen science ecological data. Methods in Ecology and Evolution – under revision.