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Programme of Lectures

January 27t:

e Lecture 1: 10-1045am IST (230pm-3:15pm AEST)
Identifying the Intrinsic Dimension of High-Dimensional Data

e Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:

e Lecture 3: 10-1045am IST (230pm-3:15pm AEST)
Describing Systems of Data

e Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of
Challenging Data

Lecture 3:
Describing Systems of Data

Sandra Johnson, Paul Wu,
Charisse Farr, Fabrizio Ruggeri



Everything is a complex system!




Case study 1: Bayesian network modelling of lyngbya

What are the main factors that influence the initiation of lyngba?
What management approaches are most effective?

University of Queensland Caboolture Shire Council



Case Study 2: “Beyond compliance”

Pest in ~ Importing
exporting 5y country is
country free of pest

o Requires pest risk mitigation (biosecurity) measures
o Subject to international standards (ISPMs). Must be based on pest risk,
scientifically justified, proportional to risk and least trade-restrictive
o Pest risk mitigation measures are usually single, e.g. pest area freedom or chemical
treatment. These can:
- Be difficult (or impossible) to achieve
- Damage the commodity
o Carry health and environmental risks
- Halt the whole trade on a minor failure
- Convey a power imbalance between trading partners



Case study 3: from BN to DBN

Can we find “ecological windows” for dredging to reduce the
Impact on seagrass?



Case Study 4: Wayfinding —
Combining expert information




Using Bayesian Networks to model complex systems
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Markov Assumption: (1st order)

If we know the present, then the past
has no influence
on the future

Markov Blanket
children, parents, children’s parents

_..-Parent of G

ild of Eand F



e 3 types of structural connections:

A oo

Diverging connection Serial connection Converging connection
(common cause) (common effect)

e d-separation:
If nodes X & Y are d-Separated given Z, then X LY [ Z



BN Chain Rule (8> (>

response

Instead of calculating the joint probability distribution across all the nodes using the
multiplication law of elementary probability theory:

P(X, ... X,)=P(X)P(Xy/X)P(Xs/Xy, X5).....P(X /Xy X 1)
By using d-Separation (i.e. conditional independence) and the Markov property this
simplifies into the well known BN chain rule:

P(X, .. .,an) =TT P(X. | PA(X.)) [PA(X.) parents of X; ]

i=1



Probabilistically quantify the
BN using ‘evidence’:

e data

* literature

* model outputs

e expert judgement

etc

_..-Parent of G

ild of Eand F

low 0.4 0.6
yes | medium 0.2 0.8
high 0.1 0.9
low 0.5 0.5
no medium 0.6 0.4
high 0.4 0.6




Extensions to BNs

e Object-oriented Bayesian networks
o Used to model large, complex hierarchical systems

e Dynamic Networks
o Used to model beliefs changing over time
o Hidden Markov Models and Kalman Filters are special
cases.

e Decision Networks (Influence Diagrams)
o Used for decision making



Why Bayesian Networks?

1. Bring together disparate scientific knowledge
2. Create a ‘conceptual map’ of the scientific drivers

3. Quantify the map with data, model outputs, expert
knowledge, etc

4. ldentify key drivers
5. Explore scenarios of change
6. Understand impact of management and policy decisions



Case study: Bayesian network modelling of lyngbya

What are the drivers of lyngbya?

What management actions should be
taken?

University of Queensland Caboolture Shire Council
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INITIATION MODEL

[Low 57.4
High 42.6

|_No.of previous dry days
Low 10.0

Medium

|_High

75.6 £ 110

Light Quality l
Poor 10.0m
Borderline  40.0 [ o Light Climate
High 50.0 Inadequate  71.3

Adequate 28.7 |

Light Quantity — 20.7+12 Bloom Initiation
Optimal 20.0 m No 76.4
SubOptimal  80.0 |— Yes 23.6 mm




Most influential factors

~N o Ok wbh e

Avalilable Nutrient Pool
Bottom Current Climate
Sediment Nutrients
Dissolved Iron
Dissolved Phosphorous
Light

Temperature

Iaf




“What-if” scenarios

Available Nutrient Pool 77 (3% - 80%)
Bottom Current Climate 28 (15% - 43%)
Sediment Nutrient Climate 17 (21% - 38%)
Dissolved Fe 16 (21% - 37%)
Dissolved P 15 (23% - 38%)
Light Climate 14 (18% - 32% )
Temperature 14 (21% - 35%)
Dissolved N 13 (22% - 35%)

Rain — present 10 (25% - 35%)

Light Quantity 9 (21% - 30%)




Translating science to management

Management
Model

|

Science BN
Model

|

P(Bloom Initiation)

Evaluation of factors, scenario assessment
Integration of information, adaptive updates




Case Study 2: Vietnam case study - Dragon fruit

Binh Thuan province:
20,000 ha
18,000 growers
500,000 tonnes/yr
$0.20-51.00/kg farm gate

: Large semi-official export to China
. Small, high quality markets in Korea, EU, US




Control point BN

Field measures, with pest

monitoring

Harvest sorting and

hygiene

Inspection and sorting at

packing

Vietnam Dragonfruit BN for Fruit Fly

Draft version: 6 June 2012

Adjusted for new template: 21 June 2012

Updated by: Vietnam Team 20 November 2012

Updated by: QUT 28 March 2013 for new template

Updated by ICL team 17 July 2013. Model modified to admit
possibility of pest reinfestation along production chain; and
control points where there can be knowledge of the infestation

P — o o o o o o o o — = =

<> Initial fruit fly population / threat

Negligible 0%
Low 90%|[
High 10%

4 : :
‘ (3_1 Field sanitation at the start of season 1\»0 Infestation ast::sw of previous

] Control Point 1

I Infestation established by Pest surveillance

Y

|
1 4 6 Protein bait -t

|
I ( 4.7 Insecticide cover sprays

I\ ( 5.2 Fruit bagging
N

o o o o D e S e e e e e e e

=) Infestation updated
Negligible 26%
Low 70%|0 \
High 4%

Key to nodes types

Unofficial control point with potential
to be an official control point

Official control point

Point where pest infestation
can be measured

.|

Infestation at farm at end of

= growing season

TNegiigible 98%
Control Point 2 LW 2% |
- High 0%||

Infestation established by fruit sorting

6.1 Harvested fruit kept in shade, in plastic boxes with insect Negligible 98%
netting for prompt transportation to processing facility

6.2 Collect rejected and dropped fruit and destroy them
at each harvest time during fruiting season

-
6.3 Sorted by worker for grower or buyer, removal and
destruction of damaged and infested fruit by grower

Control Point 3

[ 10.1 Harvested dragon fruit are in held in

pest-proof covers while awaiting packing

o Field infestation from nearby area
during growing season

¥

O Infestation updated

Low 2%

] Infestation from nearby areas
during harvesting

A

10.4 Fruits are VHTd at 46.5C for 40 minutes. Then
cooled down, washed and dried for 30 minutes

o Infestation at packinghouse and
treatment facility

™ |Negligibie 100% I |

Negligible 100%
Low 0%
High 0%

o Infestation fron_l nearby areas
between harvesting and packing
MNegligible 100%
Low 0%
High 0%

Post-harvest infestation from
O nearby areaas between packing

-~ —"|Low 0%|
11.1 Packing boxes are manufactured to a high standard with High 0%
ventilation holes are covered in mesh to prevent insects entering [ 2
O Infestation u ed
-~

11.2 Quarantine inspection (before signing phyosanitary Negligible 100%

certificate) and rejection of substandard boxes or lots Low 0%|

High 0%

== _

( 121 Consignments transported only in sealed, refrigerated vehicles

A

O Infestation at the point of export

Negligible 100%
Low 0%|
High 0%

and export
Negligible 100%
Low 0%
High 0%

Possible outstanding issue: Some
measures prevent reinfestation itself
rather than or as \We'es reducg
infestation already'on tne produchion
chain but this distinction is not
represented explicitly in the model

]



BN control point 1 - field measures with monitoring

[3.1 Field sanitation at the start of season

o Infestation

at the end of previous
season

Control Point 1

Infestation established by Pest suwelllan%

Negligible 26%
Low  70%
High 4%

Eﬁ

O

Infestation updated

4 6 Protein balt

-
~————

( 4.7 Insecticide cover sprays

( 5.2 Fruit bagging

Negligible 26%
Low  70%
High

4%

=

Infestation at farm at end of
growing season

eglghle 98%

0%

r'__[

Reinfestation during growing
season

Negllgble 100%
%|
H| 0% |




Protein bait BN sub-model

] Max possible measure efficacy

o Measure implementation
High  93% T | standard
Low 6% High79% I |
Negligible 0% | Low21%[ |

N\

O Measure efficacy as implemented
High  68% [T |

Low  28%[ | O Current level of pest infestation
Negligible 4% [

Negligible 26% [ |

O Level of pest infestation after treatment
Negligible 84% T |
Low 6% |

High 0%|




Decision support spreadsheet

Efficacy & implementation from
stake-holder/expert elicitation

Efficacy Uncertainty Implementation Uncertainty

4.7 Protein bait

Bait

1 1

08 0.8

0.6 0.6

0.4 0.4

02 0.2

0 0
VW H M L WL VE

E SD D VD

Systematic elicitation for all 14
measures on common scales

TABLE C1. Description of candidate measures (tmese may be used alone or with other measures)

Risk management
measures available

{automatically read in from Table B2)

Verification

1.2 a) The measure can be
verified?

1.2 b) Uncertainty

3.1 Field sanitation at the start af
season

Graphic

4.5 Pests surveillance

00 vo

4.

VE E

o b v

6
technique (MAT)

4.7 Pratein bait

w0 vo

4.8 Insecticide cover spray
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5.2 Fruit bagaing

w0 vo

Very low Very easy Very low

ik

6.1 Harvested fruit kept in shade, in
plastic boxes with insect netting for
prompt transportation to processing
|racitity

-

0 Vo

ik

6.2 Collect dropped fruit and destroy
them at each harvest time during
|fruiting season

v

© 0 vo

t and of
and infested fruit by grower

6.3 Sorted by woker for grower or buyer,

10.1 Harvested dragon fruit are in held
in pest-proof covers while awaiting
packing

10.4 Fruits are VHT'd at 46 5C for 40
minutes . Then cooled down, washed
and dried for 30 minutes.
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1
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Very high Very low Very easy Very low

11.1 Packing boxes are manufactured
to a high standard with ventilation
holes are covered in mesh to prevent
insects entering.

11.2 Quarantine Inspection (before
signing phyosanitary certificate)

Very high

Very easy

v

12.1 Consignments transported only in
sealed, refrigerated vehicles.

Ll




Case Study 3: Seagrass Case Study

» Seagrass ecosystems

* Habitat, $1.9 trillion in ecosystem
services, carbon, declining at a
rate of ~110km? since 1980
(Waycott et al, 2009)

* Need to manage threats to marine
ecosystems

* Urban and agricultural runoff
* Infrastructure development
* Dredging

Courtesy of: Gary Kendrick



Recovery Time (RT) -
0

20 40 60

Relative P(Extinction) (RPE) -
1

2 3 4

World distribution of seagrasses (green) & ports (blue dots).

Heat maps show average recovery time (bottom panel) & average ratio of
extinction risk to baseline risk (top panel).

Bars correspond to dredging periods: 1, 2, 3,6, 9, 12 mths

Labels coloured by genera — Halophila, Zostera, Amphibolis.




Key outcome is resilience

Resilience (Levin, 2008; Holling, 1973)
 Resistance, loss of individuals and/or species as the result of stress
* Recovery, expected recovery time

 Persistence, risk of local extinction (probability of zero population of species)



Dynamic Bayesian Networks

* Generalised form of Hidden
@ B(t) Markov Models (HMMs) and
e Kalman filter models
[ oc)
/A * Allows state space representation

" in factored form rather than single
discrete random variable,

arbitrary probability distributions

A(2) (Murphy, 2002)




Conditional probabilities

P (ShootDensity(t)|{genera, location, light,...})

Meadow Type
Recovery Genera
Tropical-Temperate Presence

+

Location Type

Habitat

Shoot Density

Environment

[ Resistance ]




Seagrass Model

Temperature

{ Above to Below
Physiological Status of Ground Biomass Ratio
Plants »

\
Ability to Resist
Hazard

Accumulated
Light

Accumulated

Burial

Sediment
Quality

Loss in Shoot Density



Forwards and backwards inference

Forwards .
m(s¢lye) = By, s, Z Aj,stn(st—l = jlye-1)
Jg1
m(Se1lye) = z Aj,stﬂﬂ(st = Jjlye)
j=1
Backwards

T (Selye)
Sttt T(Se+1lYe)

T(StlSt41, Yerr) =4



Link Node Based Non-Homogeneous DBN Inference

* Complex systems characterised by “small world networks” (Watts, 1998)
 Use link nodes (small number of nodes connecting between time slices)
« Use dynamic forward-backward algorithm

/

?/C(l) \< S —" C(Z) "r/’(-_:_(3;\<
‘ /_.// -
|
|
1

A(l) B(1) QLZD > B(2) @ > B(3)
Ne—

M
w
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Resilience Criteria

* Resilience criteria using baselines (evin, 2008, Halpern, 2007)
* Resistance, loss of individuals and/or species as the result of stress
* 80% of baseline population in that month
* Recovery, expected recovery time
* Within 6 months

 Persistence, risk of local extinction (probability of zero population of species)
* Within 2.5% of baseline risk of zero



Ecological Windows

Recovery time (months)
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Ecological Windows

Ratio of extinction risk
1
Resilience score @ All criteria @ No criteria

2
Recovery
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So What?

Resilience is dynamic in space and time
« Windows emerge from interactions of life histories, local conditions and growth patterns

Ecological windows can enable up to four-fold reduction in recovery time, 35% reduction in
extinction risk

Consistent windows for greater robustness
« Tend towards Autumn and Winter

We can manage resilience much more effectively with planned scheduling of dredging

80



Case Study 4: Wayfinding
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Probabilistically quantify the
BN using ‘evidence’:

e data

* literature

* model outputs

e expert judgement

etc

_..-Parent of G

ild of Eand F

low 0.4 0.6
yes | medium 0.2 0.8
high 0.1 0.9
low 0.5 0.5
no medium 0.6 0.4
high 0.4 0.6




__.-Parentof G

But what about multiple experts?




Linear Pooling

Information about node X provided by n experts Ey, ..., E,

Joint model:
P(P(X|E7) ... P(X|ER))

Pooled approximation:

P(X) = Zn:/lipi(x) ;zn:ﬂizl <D
i=1 i=1

If all experts are equally weighted:
Ai = 1/7’1

PO = ) POO/
=1



Linear Pooling - Options

* Prior linear pooling:
* probabilities pooled within each node (apply  at this stagg)

* resultant CPTs are then propagated through network to find marginal
probabilities for nodes of interest

e Posterior linear pooling
* quantify and compute BN for each expert separately

* pool the marginal probability distributions for the final nodes in the n BNs
(apply at this stage)



Drawbacks of Linear Pooling

* Point estimate for the consensus; variation in expert opinions is lost.

* Does not follow from a coherent probability model (de Finetti, 1964: can only be
considered an estimator if each observation is indept & Gaussian)

e The different methods can result in different outcomes for the nodes of interest.

* The conditional independence structure of the BN is not reflected in the way in which
the expert opinions are combined particularly for prior linear pooling.



Measurement Error Approach - Univariate
Consider a single node of interest.

Model the marginal probability for expert E;,i = 1, ...,n as
p; ~ Beta(a;, b;)

Allow for variation between experts:

logit [ —— ) = logit (2| + u +
ogi el ogi b, U+ €

u~N(, 13", ~N(0,71)

Since E(logit...) = 0, this implies a; = b;, so an alternative is to model:
a; + b; ~ Gamma(ag, fy)



Measurement Error Approach - Multivariate

* Form consensus for multiple nodesj = 1, ..., m in the BN.

* Then
pij ~ Beta(a;j, b;j)

* MVN random effect for each expert + extra between-expert variation:

aij

logit = Ui+ €
& <aij+bij> AR

ui~N(0,7;1), €~ N(0p, Q71), i=1,..,1 €=/(1 . €Em)

a;; + b;; ~ Gamma(a, B;)




Multivariate Measurement Error Approach - Comments

Structure of random effect term:
€ = Rs

R: Cholesky decomposition of precision matrix Q

s: vector of i.i.d. standard normals, i.e. s = N(0, 1)

Hence by definition, € has a precision matrix s.t. Q = (RRT)™1.

Implication: if R has the correct sparsity required, then Q will also have the correct
sparsity structure.

Hence € ~ N(0,,, RRT)
Similarly, by finding R, we can give Q the right structure to reflect the conditional
independence of a BN.

Improvement on usual approach (linear pooling)



Example

99 experts: P(good), P(good), P(effective) for H,E,W

Model allows for combination of all opinions.

e Coherence is maintained under reordering of the
independent expert opinions.

Q allows the model to ‘borrow strength’ from other parts of
the model: information can travel up and down the levels of
the hierarchy.

* Q also ensures that the conditional independence structure
of the BN is reflected when combining opinions:
Q;; # 0iff node i depends on node j in the BN.



Need to construct R, Cholesky decomposition of Q : use expert priors on Q. Write:

logit(uy) = uy + Préw + €y
logit(ug) = pg + Bréw + €g
logit(uw) = uw + Bs€y + Bacp + €w
Uy, Ug, Uy : mean opinions for nodes H, E, W.
f terms indicate how much of the random effects comes from the other nodes.

Hence
logit(uy) = ux +Rs

~1/2 ~-1/2

Ty 0 Bty Ty 0 B1TH
R=| 0o % B/’ Q=| o T Bt
~1/2 . _ 2 .2 2 2
0 0 Ty P17y BT PiTuTw + BiTuTw + Tw

Ty ~ Gamma(1,5 x 107°), 8y ~ N(0,5 X 107°)



Priors:

e Gamma(1,0.1)fora + b
[2.5% & 97.5% interval for anticipated values for p implied by this prioris (0.53,1)]

* Proper but relatively uninformative priors for p so ~ uniform distribution on p;: Tﬁl = 10*
* (a,;, b;) = (1,5 X 10°) : small contribution of measurement error to overall value of p;

Analysis:
* In RINLA

* Utilises deterministic Laplace approximations by fitting Gaussian conditional posteriors via an
optimisation step for latent Gaussian models.

* Faster, more accurate alternative to simulation-based MCMC schemes in many cases.
* Applicable here because of the sparsity of Q
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summary

* New measurement error approach for combining opinions in Bayesian networks

e Results indicate improved performance and increased inferential capability compared with
current approaches such as linear pooling

e Can extend model to include bias and additional covariates.

e.g. to investigate effect of experienced (E) and inexperienced (l) travellers, modify u; (overall mean
for node ) as

u~N(uj —6;,0f); ug~N(y; +ny,08)
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