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Programme of Lectures

January 27t:

e Lecture 1: 10-1045am IST (230pm-3:15pm AEST)
Identifying the Intrinsic Dimension of High-Dimensional Data

e Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:

e Lecture 3: 10-1045am IST (230pm-3:15pm AEST)
Describing Systems of Data

e Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of
Challenging Data

Lecture 2:
Finding patterns in highly structured
spatio-temporal data

Clair Alston, Insha Ullah,
Edgar Santos-Fernandez, Erin Peterson,
Marcela Cespedes, Paul Wu,
Daniel Kennedy, Judith Rousseau



Case Study 1a: CAT scans of sheep




Case Study 1b: Feature detection in satellite data

* Fire ant surveillance
program in Brisbane
region since 2001.

e 17700 identified
locations

« Want to focus
eradication program
on high risk areas.




Case Study 2a: Stream Networks —
Allowing for different spatial neighbourhoods
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Case Study 2b: MRI scans of brains —
Estimating the spatial neighbourhood

https://www.radiologyinfo.org/en/info.cfm?pg=alzheimers



Case Study 3: Hidden Markov Models
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Case Study 1a: Spatial analysis of images
« Spatial mixture models (Alston et al.)

« Spatial dynamic factor models (Strickland et al.)

« Mixture PCA approaches (Ullah et al.)

 Regression trees (Holloway et al.)



Bayesian Mixture Models

Aim: cluster real-valued observations in Y = (y4, ..., y,)
each element is a p-dimensional realisation made independently over n objects.

K

K
fl6y,....0¢) = Z 1 Np (¥16) Ok = (i, Zk) 0=m =< 1:2 m =1
k=1 k=1

Define latent indicator z;,i = 1, ...,n, S.t. prior probability of assigning a particular observation
y; to a cluster k is

p(z; = k|m) = my

Parametric or nonparametric priors on 6 and .



Examples — parametric representation
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FIGURE: 1. Some normal mixture densities for K’ = 2 (first vow), K = 5 {second
row ), W = 25 (ithird rvow ) and K = 50 [last row).



Spatial Mixture Models

U = XB + uy + e

_ ol og
Ug ~ N(u~k»n—k) e ~N(0,—)
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Bayesian Analysis via AutoStat https://autostat.com.au/
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Case Study 1b: Scaling up Bayesian mixture models

« Computing approaches:
 Graphics processing units * Parallel programming

« Algorithmic approaches:
 Variational Bayes « Approximate Bayesian computation

« Sampling based approaches:
« Huang & Gelman (2005) - partition the data at random and perform MCMC independently

on each subset to draw samples from the posterior given the data subset, using methods
based on normal approximation and importance re-sampling to make consensus posteriors.

 Scott et al. (2016) - use similar approach with a different rule for combining posterior draws.

« Manolopoulou et al. (2010) - improve inference about the parameters of the component of
Interest in the mixture model by analysing an initial sub-sample to guide selection from
targeted components in a sequential manner using Sequential Monte Carlo sampling. (Need
a good initial random sample.)

These sampling approaches can be problematic in a massive dataset: a low probability component
of interest is likely to escape the initial random sample, which will lead to unreliable inference.



Stratified sampling approach

In satellite imagery, most of the data are replications.
Eg: all water pixels should appear similar while pixels from the land covered with the
same crop should produce similar observations.

Thus, inference based on a stratified random sample of the data should be representative
of the whole image.

* Use k-means to first label the data.

 Use these labels to obtain a stratified random sample (hence enforcing representation
from each sub-population).

« Stratify using nonparametric mixture models.

v’"Makes use of the strengths of two clustering methods: the computationally less
demanding method of k-means clustering and the more sophisticated DPGMMs, which
not only account for correlations between variables, but also learn K in a data-driven
fashion.



Proposed approach

Obtain multiple samples from data using stratified random sampling to enforce adequate
representation in each sample from sub-populations that may exist in data.

Fit the mixture model to each sample dataset independently to obtain posterior estimates.

Obtain label correspondence across multiple estimates:
« find multivariate component densities of a chosen reference partition
 pool multiple posterior estimates to form a consensus posterior inference.

Infer labels for pixels in the entire image using the conditional posterior distribution given
pooled estimates - substantially reducing the computational time and memory requirement.



Results

Cluster analysis of satellite image in 2003

3
i
38 % fireants detected in each cluster
%g C.No|C.Size  [2001 20022008 2004 2C
3 T [17.48 13.0 112 16.2 16.7 2
31 2 |orT 1.1 19 33 107
i 3 875 53.1 47.7 50.8 23.4 5.
1 |8.06 1.0 1.9 1.1 1.0 |
18 5 16.02 1.7 13 14 57
13 6 |5.58 0.0 0.0 00 00 |
13 7 |5.49 1.3 21 2.9 271 |
14 8 |54t 0.0 03 05 00 |
g 9 |4.65 0.1 0.0 03 03 |
7 10 |4.16 00 00 00 08 |
g 11 |4.04 0.3 06 1.0 27 |
% 192|378 0.0 0.0 00 00 |




Results

Cluster analysis of satellite image in 2011

BT SN R S S A

C.No|C.Size 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013
1 12,056 25 39 60 148 69 89 36 38 24 147 32 18 45
2 9.59 1.4 16 24 45 31 14 00 02 00 01 01 03 05
3 7.93 9.0 10.2 9.0 30.1 21.3 7.4 279 24.2 40.1 24.2 49.2 29.8 30.9
4 7.40 02 04 01 38 00 00 47 05 41 277 113 09 39
5 6.01 01 03 08 08 00 00 00 00 00 00 00 01 08
6 5.28 10.3 98 11.0 48 77 79 19 56 70 23 20 12 25
7 5.27 276 274 281 127 139 234 136 16.6 142 5.0 101 23.6 20.5
8 4.85 02 03 01 08 00 21 16 04 02 05 05 0.6 0.7
9 4.79 6.7 74 93 7.2 153 231 32 43 135 53 51 63 63
10 [4.72 0.0 00 01 00 00 00 00 00 00 00 00 00 0.0
11 [4.36 g1 01 01 03 00 00 02 02 00 00 00 01 01
12 |4.10 0.0 00 00 00 00 00 00 00 00 00 00 00 00
13 [3.65 0.0 00 02 00 00 00 00 00 00 0.0 0.0 0.0 0.0
14 |3.51 0.0 00 00 00 00 00 00 00 00 00 00 00 00
15 [3.38 31.6 296 21.0 105 143 187 27.2 315 62 31 65 92 094
16 (312 02 00 04 1.3 15 00 07 00 02 1.6 09 0.1 06
17 |2.81 01 11 02 45 00 00 45 1.5 38 111 22 34 1.5
18 |1.66 0.0 00 00 00 00 00 00 00 00 00 00 00 0.0
19 |1.43 87 59 96 18 7.7 57 19 14 32 095 22 22 1.7
200 ]1.25 01 01 02 00 08 08 04 06 1.5 23 09 02 06
21 |0.99 03 04 01 08 00 00 00 07 05 01 05 0.7 09
22 1048 02 00 01 00 00 00 00 1.0 00 01 00 00 00
23 044 0.0 00 00 00 00 00 00 00 00 00 00 00 00
24 10.27 02 06 04 1.0 38 00 66 24 24 04 35 109 9.9
25 10.24 0.0 00 00 00 00 00 00 00 00 00 00 00 00
26 |0.24 02 06 03 00 37 05 22 48 09 0.2 16 B85 46
27 1012 01 00 00 00 00 00 00 00 00 00 00 00 0.0
28 10.04 05 04 03 03 00 00 00 00 00 00 01 00 00
29 |0.01 0.0 00 00 00 00 00 0O 03 00 02 01 00 01
30 |0.01 0.0 00 00 00 00 00 00 00 00 0.0 0.0 0.0 0.0
31 |0.00 0.0 00 00 00 00 00 00 00 00 0.0 00 0.0 0.0
32 |0.00 0.0 00 00 00 00 00 00 00 00 0.0 0.0 0.1 0.0
33 |0.00 0.0 00 00 00 00 00 00 00 00 00 00 00 00
34 |0.00 0.0 00 00 00 00 00 00 00 00 00 00 00 0.0
Total incursions(1788 701 928 387 130 365 547 965 664 5690 2866 1272 1414




Case Study 2a. Accounting for different spatial
neighbourhoods

Covariance structures:

Tail up
« Covariance depends on upstream points
Cry(sisj) = C, Wy if flow-connected; O otherwise

Tail down
« Covariance depends on both upstream and downstream points

Mixture covariance

Latitude

2 4 6
Longitude




Case Study 2a. Spatio-temporal models

Three main approaches:

1. Model with the full space-time covariance function: full information, computationally
Intensive

Separable space-time model: lose interactions, computationally easier

Dynamical model that evolves the spatial process: can be shown to be equivalent to (2)
and computationally more efficient in Bayesian context

T
Yot = [1Y oY)
t=1

[Yie)| Yis-1y] = N (pi(s, -1y, B(s) + 1)

et = X+ B1(Viwity - X))



Indicative Results
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Case Study 2b. Estimating the spatial neighbourhood

Y, : cortical thickness of region k = 1:K
for participant 1 = 1:1
who has r = 1:R; replicates

Yirk|bir, B, 0°~N(x;B + by, 0%)

b;|oi, W~MVN (0,05 Q)

Q' =pDy, —W)+(1—-p)

D : diagonal matrix with elements given by row sums (or number of neighbours) Zle Wi
W : zero-diagonal, binary symmetric matrix, w;, = 1 if regions j and k are neighbours, else = 0
o : determines global level of spatial correlation



Estimating the neighbourhood

K

R, I
p(W, 02,02, Bly, X) o [HH p(irk|bir, o2 B, xi}] [Hﬂbﬂa&lﬂ] p(B)p(a®)p(a?)p(W)
i=1

i=1r=1k=1
p(W|o?,b) [pra W )] p(W)

Computation: MCMC
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Case Study 3: Finite Space Hidden Markov Model (HMM)

HMMs:
« arise when observations from a mixture of distributions depend on an unobserved (hidden) Markov chain

« provide a framework for identifying and modelling homogeneous sub-sequences in data which display
heterogeneity

« applications in DNA segmentation, economic analyses, conservation, sport, etc
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HMM setup

Observed time series Y; = {y;, ..., ¥} depends on a single realisation of the underlying stochastic process
determined by the unobserved states X; = {x, ..., x,,}

vt < n:[Yi|X, = x] ~ gy, vel' € R4, X, €EX={1,..,K}
(X¢)e=1 1s @ Markov chain with K states and transition matrix Q = (q; j)lsi, <K

The Markov chain is also associated with a stationary distribution which contains the long term state
probabilities u satisfying poQ = g



Examples

Sim 1. K* = 3 states, one well separated, two overlap
Sim 2: K* = 3 states, different state means and transition probabilities

Sim 3: K* = 5 states, well separated, equally spaced means, mainly large values on the diagonal of Q* (sticky)
All have known state specific variances equal to 1.

02 03 05
Sim 1 ~%, = (1,3,6), pu%, = (0.33,0.38,0.29), and Q%, = | 0.5 0.25 0.25
0.25 0.65 0.1

0.8 0.1 0.1
Sim 2 ~%, = (=5,5,9), u%, = (0.56,0.18,0.26), and Q%, = | 0.2 0.4 0.4
0.3 0.2 0.5

Sim 3 7%, = (—10,—5,0,5,10), p%, = (0.11,0.24,0.20,0.22,0.22),
" 02 03 01 02 027
0.1 0.6 0.1 01 0.1
and Q5. = | 0.1 0.1 06 01 0.1
0.1 0.1 0.1 06 0.1
01 01 01 01 06




Examples - realisations

Sim 1, n=100

10

Sim 2, n=100

Sim 3, n=100




Estimation: no. states known

Estimation of Q and (X;);=1 Is straightforward (Fruhwirth-Schnatter, 2008; Nagaraja, 2006; Scott, 2002).

In a Bayesian context, MCMC estimation is particularly straightforward with conjugate priors and a data
augmentation approach (Chib, 1996; Taylor et al., 2012):

* Update (Q|X¢, Y2)
* Update (y;|X¢, Y;)
« Estimate posterior allocations (((X;) 1175, i < K, Q, (Y)¢>1)



Estimation: no. states unknown
Non-identifiability when more states are included in a HMM than are supported by the observations

Frequentist setting: order estimation is difficult:

« likelihood ratio statistic is unbounded even for simple case of comparing models with
K =1and K = 2 states (Gassiat & Kerribin, 2000)

 Solution based on implementing heavy penalties in a maximum likelihood setting (Gassiat & Boucheron,
2003)

 Penalised marginal pseudo-likelihood to obtain weakly consistent estimators for K (Gassiat, 2002)

Bayesian setting:
reversible jump Markov chain Monte Carlo (Richarson & Green, 1997; Boys & Henderson, 2004)
variational Bayes methods (McGrory & Titterington, 2009)

sequential inference methods (Chopin, 2001)
Bayes factors (Han & Carlin, 2001; Friel & Pettitt, 2008)
nonparametric methods (Beal et al., 2002; Ding & Ou, 2010; Teh et al., 2006; Fox et al., 2008)



Overfitting HMMs

Asymptotically, the prior on the mixture weights determines the posterior behaviour of extra groups
(Rousseau & M, 2011) and can induce posterior emptying of superfluous components (van Havre et al.,
2015).
* If max(a;) < d/2, where d = dim(6), then asymptotically f(8|Y) concentrates on the subset of
parameters for which fg = f,, S0 K — K, components have weight 0.
o |If min(aj) > d /2, then 2 or more components will tend to merge with non-neglectable weights each.
This will lead to less stable behaviour.
» If min(a;) < d/2 < max(a;), then the situation varies depending on the a’s and on the difference
between K and K,



Overfitting HMMs

Very limited understanding of asymptotic posterior convergence for overfitted HMMs

 Gassiat & Rousseau (2012): for parametric, finite space HMMs, the dependence between
the states leads the neighbourhoods of the true parameter values to contain transition
matrices that lead to non-ergodic Markov chains, corresponding to areas of poor Markov
behaviour

* no theoretical results for posterior emptying.



Indications of posterior emptying of overfitted HMMs

Variational Bayes methods: depend on this through ‘state-removal’ phenomena, but no underlying theory
(McGrory & Titterington, 2009)

Particle filter model: considers only states which appear in the posterior sequence of hidden states, like
ignoring emptying groups (Chopin et al., 2001)

Example: DNA segmentation (Boys & Henderson, 2000, 2004; Nur et al., 2009)

Use common prior for ith row of Q ~D(a;4, ..., ajk)

Assume we are unlikely to detect short segments, except if searching for a state with known parameters or if
many short segments from a particular state

Instead of the standard choice a;; = a Vi,j < K, consider alternative prior: Q; ~D(a, a, ..., d, a, ..., @), s.t. d
Is the ith element and is larger than the exchangeable off-diagonal elements, so E(Qy ) — 1

Effective, but little supporting theory



Simple example

. i Scenario 1: g; 4 ~ Beta(1/2,1/2)
True model: standard normal distribution,

equivalent to a HMM with single state K = 1. a
Fort=1,...,1000: g
A 27
y; ~ Normal(0, 1) 5
Overfitting model: a HMM with K = 2 states 0ho 055 0k 055 o
and normal emission distributions: i
' Scenario 2: gj 4 ~ Beta(10,1/2)
y|Xs = j ~ Normal(pu;,1)
z
Priors: 5"
= 102 s .
L1, by ~ Normal(y, 10 ) 5
d1,1,42,1 ~~ Beta(aln QZ) D-D.:':u:u 0.25 0.50 0.75 1.00

.1




Scenario 1

Emission Means
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Scenario 1

n,: Number of observations in state 1.

MCMC chain shows very slow mixing in
transition matrix parameters.

“Sparks” in emission mean parameters occur
when the state empties. i.e. a draw from the
prior.

Similar behaviour seenin ¢, , and g, ,..
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Scenario 2

Emission Means

40
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Scenario 2

n,: Number of observations in state 1.
MCMC chain shows better mixing than Scenario 1.
Data are mostly emptied from state 2.

Posterior densities show approximate normality for
uq but not g,

12 0.20
94 M4 0154 Mo
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34 0.05 A1 i
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General problem setup

Set u as a prior initial distribution for the hidden Markov chain X; = {x4, ..., x,;}

Conditional distribution [y, |x; = j] ~ Gy, | absolutely continuous w.r.t. fixed measure y  with density Gy;
Set8 = (Q,v, ..., Yx) € Qx X T = 0, where

K
Qg =40 = (ql',j)l-,jSKi ZCIi,j =1,q;; 2 0Vi,j
i=1

Denote by 1, the stationary distribution associated to @, i.e. the probability distribution on {1, ...., K}
satisfying uy = poQ.



General problem setup

Recall for any Markov chain on a finite state-space with transition probability Q and stationary distribution
1o (one of them if Q admits more than one stationary distribution), it is possible to define p, = 1 s.t., for any

mandanyi < K

—1
k
o . _:.: —m 1 —
2 @™ — 1ol < Q™ ( Zlgaﬁﬁw)

j=1

The complete likelihood conditional on X; = x; is

n—1

fn(Ye, X410) = gvx, (1) || Qa; wip1 Gve,y, (Yit1)

i=1

The likelihood of Y, conditional on X; = x;, defining x,., = (x5 ..., %), is
fu(Yel0, X1) =) fu(Ye, X410).

We also write K
Fa(Yal0o ) = ) fu(Yel0, X1)p(X1)

r1=1

(n(0,X1) =log fr(Y:|0,X1) and £,(0, 1) = log fn(Y:|0, 1)

and



Priors

Study the behaviour of posterior distributions associated with priors belonging to the following family:

(C1) Prior on Q: the rows Q! are iid Dirichlet D(ay, ..., ax), a;j>0,j <K

iid
(C2) Independent prior on the y's: y; — ~ m,, with positive and continuous density on T

Denote by m the relevant prior and (. |Y) the corresponding posterior distribution, so that
fu(Y0, p)m(d6)

m(dfY ) =
) Jo fn (Y0, p)m(d0)

Denote by F(h) = [ h(x)dF (x) for every probability measure F and integrable function h.



Asymptotic analysis

What is the asymptotic behaviour of (. |Y) under the different priors, when the true parameter corresponds to a
HMM with K, < K hidden states?

* In the K,- parameter space O, 0" = (Q*,v5, .. vk,)

« The true model can be parametrized by infinitely many parameters in the K-parameter space Q.

* In particular, any parameter of the form (yf, VK '---'ﬁ(o) and Qwithq; ; =q;; ifi <k*,j<k™ -1,
jfz,{o qi,j = Qik, and q; = qg,Vi = Ko + 1 leads to the same likelihood function fn(Y|6%, 1), for all u.

- The parameters 6 e O defined by Q = (Q 0 O whereforall i = Ko +1,..., K, Ry = 1and By = 0
if j = 2andy; = y;forall j < k lead to flfe same"likeqmood function for all u having supportin {1, ..., K,}.

- Denote by ©* C O the set of all 8 s.t. either £, (Y6, ng) = fn(Y10*, o) of £, (Y16, 1) = f,(Y]6*, ) for all
n.



Asymptotic behaviour of the posterior distribution - Theorem

We want to find some sufficient conditions on the prior to ensure that the posterior distribution concentrates on
the configuration where the extra states are emptied out when the number of observations goes to infinity.

Assume that the true model is a HMM on K, < K hidden states with true parameter 6" € O, .
Under some regularity assumptions on g,,, if there exists 1 < p < K, such that

a;=-=ap,=a and apyq == ag = a satisfying

(Ko(Kop —1+4+d)+aK(K —Ko))(Kold+ Ko —1)+a(Ko+ 1) (K —Kog—1)+d/2)

pa+ (K —pla > d/2 — a|(K — Kp)? — (K — 2Kp — 1)]

d/2 > a((K — Ko)* — (K — 2Ky — 1))

then setting A; = K(K — K~ + KalKo —1+dYand A = A./(va + (K — p)a. for any M, — oo
( min Z Po(j) > My, |Y) = 0,(1), and

JESK
j=Ko+1

—1K2[{1—-43'3—-‘11]f’{d;“ﬂ—kg{ff—?ffu—1}}(

Up = 11

log n) B/(d+2a(K—-2Kp—1))

with B = Ko(d + Ko — 1) + a(Ko + 1)(K — Ko — 1) + d/2.



Discussion of Theorem

Since K, is unknown, a and a have to be chosen conservatively, eg:
K, = K — 1 for the lower bound on « ; K, = 1 for the upper bound on « , so

d/2 > a(K? — 3K +4)
(K-1)(K-2+d) +aK)(K-1)(d+K —2)+d/2)
d/2 —alK? — 3K + 4]
Hence we can achieve posterior emptying of extra states in HMMs by binding the posterior distribution of

the u associated with extra states to be small yet remain non-zero, thereby retaining the ergodicity of the
estimated Markov chain.

This behaviour is possible due to the structure of the prior, which is asymmetric with respect to the
hyperparameter values (containing large values a and smaller values «).

The prior constraints depend on d, the number of free parameters in each state, and the total number of
states in the model K, but also on p, which defines the number of « values included in the prior.

As p > K must hold, p must be set to the smallest reasonable value
(eg p =1 corresponds to a noninformative setup on the number of components).

pa+ (K —p)a >



Large simulation example - setup

HMM with Normally distributed state-specific distributions:
[}/:E|Xt :J] W'A"r(?j:l) Xﬁ €X = {111{}

Prior on the emission means: w(y)~N(y, = Y, 1, = 100).
Prior on each row of Q: D(«, , ..., @).

Posterior:
p(Xe. v, QlY:) o< p(Yi| Xy, v, Q)p(Xe|y. Q) (y)7(Q)

Gibbs sampler run for M = 20,000 iterations; first 10,000 discarded.

Sample of 10,000 observations simulated from a univariate Gaussian HMM with K* = 2 states, transition matrix

Q* = {8? 8;}} leading to stationary distribution u* = {0.64,0.36}.

The individual states are distributed N(y* = {—1,3}, 1) [variance assumed known].

Model with K = 4 states and 9 combinations of hyperparameters: a = Theory, K, 1; a = a, 0.01, 1/n.



Large simulation example - results

The structure of the prior on Q resulted in both merging and emptying of extra states depending on the
choice of a.

» Choice of @ = a caused all states to be occupied regardless of the value of «a, and estimation of 4 states in all cases.

« An asymmetric prior with @ > a caused extra states to be assigned small stationary distributions with few or no
observations. This was most clearly observed under the theoretically given constraints.

Distribution of number of occupied states P(Kj,)

a| al|PEs=2) PKs=3) PK,=4)

172 (Theory) | & 0.0000 0.0000 1.0000
0.01 0.9651 0.0348 0.0000

1/n 1.0000 0.0000 0.0000

1K) | a 0.0000 0.0000 £.0000

0.01 0.8539 0.1446 0.0015

1/n 1.0000 0.0000 0.0000

1| a 0.0000 0.0000 1.0000

0.01 0.8782 0.1130 0.0088

1/n 1.0000 0.0000 0.0000




Large simulation example - results

Estimated bivariate density of posterior means (x-axis) and posterior stationary distribution (y-axis)
» For a = 1, extra states merged to some degree with the true states (2); similarly for a = 4.
 For the largest value of a, three modes were created; the extra states merged to create a spurious mode.

* For all values of a, a similar posterior space was created when a = - L: two modes at the true parameter values, atop
a ‘pool’ of samples representing MCMC draws from empty states (yk drawn directly from the prior).

Posterior density Posterior density Posterior density

a2 ox

Fitting HMM with K=4 states
to HMM with K* = 2 states;
q; ~D (ay, ay, az,ay).

Stationary dasibuson
a

Staflonary dsiibuson

Sastionary desibusion

Probability
== Low

a

&
2]
=
-1 o z 1 2

Stale means Siate means Stale means

Columns: different values of @ | (@ @ ~DP072,172,172,172)  (b) gi. ~ D(4.4,4,4) (e) @i ~D(1,1,1,1)
Rows: different prior configs Posrir deniy posteo ety Poserr ety
1: overfitted posterior, @« = « .

2:a =+ =0.0001
- n

Suationary daribuson
Sasonary derbuion

Siafonary dsirbuion
001 02 Q3 04 05 08

(d) ¢:,. ~D(172, L, 1 1)

T



Applicability of asymptotic theory for smaller sample sizes

The influence of the hyperparameters can be unexpected and non-trivial, due in part to the intrinsic relationship
between «; ; and n.

* a;; can be interpreted as the prior number of transitions from state I to state |.
* Letn;; be the number of transitions observed from state I to state |.

The posterior distribution of the transition matrix, given a Dirichlet prior on each row of Q, Is
p(qi, | X¢) ~D(a 1 +ni 1,0, 5 +nia, -0 e + 14 )
* Achoice of ¢ = 0.001 and K=2 according to the Theorem leads by theory to a > 3.02.

e K=3=a >36.32 ; K== a >543.38 ; K=10 = a > 15,498.38 (not sharp)
* Hence an increasingly large sample size is required to overcome the given a.



Example —small sample case

HMM with K* = 2 states, and true transition probabilities g; ; = 0.6, g1, = 0.4, g1 = 0.7, g3, = 0.3

For an arbitrary sample size n, assuming the allocations are known, the transition frequencies are expected to
be (approximately) n; ; = n x q; ; for 1,] = (1,2) and O otherwise.

Explore the influence of the hyperparameter a on the posterior transition probability g, ;:
- Draw 10,000 samples from

p(a,|X;) ~ D(& + ngj oy +ngly, g, -+ oy ), Where ay = -+ = ay = 0.001

- Choosing a according to the asymptotic bound had a very strong influence on the estimated distribution of g, ;

- When K=3, needed ~1,000 observations for the true value of 0.5 to be within the 25" and 75™ quantiles of the posterior
distribution of g; ;.

- For a model overfitted with K=10 states, needed ~1,000,000 observations.



Example —small sample case

Disfribution of q44 (True value = 0.6)
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Alternative prior configurations

There are many ways a transition matrix can be written.
Consider the structure of the prior in terms of the position of the large a w.r.t. the smaller values a

« Column prior .(Q) [used for the asymptotic results]:
« the prior on each row of Q is of the same form, with « in the first position, thus favouring the
configuration which empties a priori the last K-p states.
 Diagonal prior 4 (Q) [used in a nonparametric setting by Nur et al. 2009; Boys & Henderson, 2004]:

 place a on the diagonal of the prior on Q, since the Markov chain is expected to be more likely to
remain in the same state than transition to another state a priori.

« Mixture prior m,,,(Q) [leverage the benefits of both approaches]:
* 0.5m,.(Q) + 0.5m,4(Q)



Inducing mixing via prior parallel tempering

Asymmetrical hyperparameters can induce poor MCMC mixing algorithm:
multimodal posteriors, empty states, large areas of low probability separating supported nodes.

Prior Parallel Tempering (van Havre et al., 2015):
 Set up J parallel samplers with slightly different hyperparameters on Q
« Allow a to increase slowly until it matches @ in the parallel samplers

 Allow the samplers to share information by swapping posterior samples when samples are close, via a
Metropolis Hastings acceptance step

 Track the acceptance ratio to ensure acceptable mixing between samplers



Small sample size simulation — setup

Sim 1. K* = 3 states, one well separated, two overlap
Sim 2: K* = 3 states, different state means and transition probabilities

Sim 3: K* = 5 states, well separated, equally spaced means, mainly large values on the diagonal of Q* (sticky)
All have known state specific variances equal to 1.

02 03 05
Sim 1 ~%, = (1,3,6), pu%, = (0.33,0.38,0.29), and Q%, = | 0.5 0.25 0.25
0.25 0.65 0.1

0.8 0.1 0.1
Sim 2 ~%, = (=5,5,9), u%, = (0.56,0.18,0.26), and Q%, = | 0.2 0.4 0.4
0.3 0.2 0.5

Sim 3 7%, = (—10,—5,0,5,10), p%, = (0.11,0.24,0.20,0.22,0.22),
" 02 03 01 02 027
0.1 0.6 0.1 01 0.1
and Q5. = | 0.1 0.1 06 01 0.1
0.1 0.1 0.1 06 0.1
01 01 01 01 06




Small sample size simulation - realisations

Sim 1, n=100 Sim 2, n=100 Sim 3, n=100

10

Time



Small sample size simulation — results

Evaluation:
n =100, 500
K =10 states fitted under the three prior configurations
hyperparameters: @ = (n,K,1), a = (l L)

n’10n
Gibbs sampler with 20 PPT chains for 20,000 iterations, 10000 burn-in
Results for Sim 1 (K™ = 3): proportion of replicates which contains 2,3,4 occupied states

Prior type: m. Td T
Il a o P(Ki=2) PKa=3)| P(Ka=2) PKai=3) PKai=4) | PIKa=2) PKai=3)
100 n 1/n 0.921 0.07 1.000 - - 1.000 -
100 1/10n 0.941 0.059 1.000 - - 1.000 -
100 10 1/m 0.842 (0.158 1.000 - - 0.969 0.031
100 1/10n 0.947 0.053 1.000 - - 1.000 -
100 1 1/n 0.686 0.286 0.921 0.079 - 0.767 0.233
100 1/10n 1.000 - 1.000 - - 1.000 -
500 n 1/n 0.889 0.111 1.000 - - 1.000 -
500 1/10n 0.880 0.111 1.000 - - 1.000 -
500 10 1/m 0.333 0.667 (0.889 0.111 - 0.667 0.333
500 1/10n 0.714 0.286 1.000 - - 0.667 0.333
500 1 1/n - 1.000 0.500 0.500 - - 1.000
500 1/10n - 1.000 0.500 0.333 0.167 - 1.000




Small sample size simulation — results

Results for Sim 2 and Sim 3: column prior only

Sim Ky P(Ka) %
2 (n=100) 3 0.83 0.96
2 (n=100) 4 0.15 0.53
3 (n=100) 5 0.39 0.99
3 (n=100) 6 0.45 0.77
3 (n=100) 7 0.14 0.17
3 (n=200) 5 0.86 0.99
3 (n=200) 6 0.13 0.76
3 (n=500) 5 0.92 0.98
3 (n=500) 6 0.08 0.29

p(K=3)=0.83 Results for K=3 Allocation Probabilities
Stationary distribution Means I
T 0= 37
08- I i3
o .00
B : 5~ | lu.?s
%D'E . E 'ﬂb‘ =27 0.50
E 0.4 - i = 0- gg
:% 0.2- 1 % 14
' 5= ohy |
1 2 3 : 2 3 0 25 50 75 100
State Stata indax of ordered y
(a) Sim 2, n=100.
p{K=5)=092 Results for K=5 Allocation Probabilities
Stationary dstribution Maans 5-
0.5- . 104
o I T 00
504~ | 5 e ln'?s
Bl | g < | o
el | L 0- 0Tmo 0.25
EQ.E 4 | 2+ 0.00
i 5 5t
0.1 ~D%H | 10~y 14
]

|
2 3 4 5 0 100200300400500
State State index of ardered y

(d) Sim 3, n=500



Back to the simple study

True model: standard normal distribution,

which is equivalent to a HMM with single
state K=1.Fort=1,...,7000:

y¢ ~ Normal(0, 1)
Overfitted model: HMM with K = 2 states
and normal emission distributions:
vt | Xy =j ~ Normal(p,, 1)
Priors:
L1, o ~ Normal(y, 102)

q1,1,92,1 ~ Beta(aq, as)

Prior Density

Prior Density
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Scenario 1

n,: Number of observations in state 1.

MCMC chain shows very slow mixing in
transition matrix parameters.

“Sparks” in emission mean parameters occur
when the state empties. i.e. a draw from the
prior.

Similar behaviour seen in g, ; and g, ,.
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Scenario 2

Emission Means
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Scenario 2

n,: Number of observations in state 1.
MCMC chain shows better mixing than Scenario 1.
Data are mostly emptied from state 2.

Posterior densities show approximate normality for x,
but not x,
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Current application

Elevation over Time Coloured by Power State Race 1

Power State Distribution on the Course Race 1
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Overall conclusions

Overfitting HMMs in such a way as to empty out the stationary distribution of extra states is
theoretically and practically possible.

While the number of occupied states was not proven to be a consistent estimator of the true number,
careful choice of hyperparameters can encourage extra states to be rarely allocated observations in
practice.

We suggest the choice of a = =% for some a,: then possibly K, becomes consistent; simulations
pointed to this, but it is still only conjecture.

In practice, check the posterior samples and distribution of the number of components for evidence that
a is sufficiently small (i.e. concentrated distribution for K).

The value of a dictated by the asymptotic constraints is concerning in practice due to the relationship
between this parameter and sample size. Use PPT or similar to allow mixing while emptying out extra
states, especially for small n.

The column prior is theoretically justified and leads to better MCMC behaviour. Second choice is a
mixture prior. The diagonal prior allowed escape from merged configuration but was observed to be
Inconsistent.
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