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Programme of Lectures

January 27th:
• Lecture 1: 10-1045am IST (230pm-3:15pm AEST)

Identifying the Intrinsic Dimension of High-Dimensional Data

• Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:
• Lecture 3: 10-1045am IST (230pm-3:15pm AEST)

Describing Systems of Data

• Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of 
Challenging Data

Clair Alston, Insha Ullah, 
Edgar Santos-Fernandez, Erin Peterson,

Marcela Cespedes, Paul Wu,
Daniel Kennedy, Judith Rousseau

Lecture 2: 
Finding patterns in highly structured 

spatio-temporal data 



Case Study 1a: CAT scans of sheep



Case Study 1b: Feature detection in satellite data

• Fire ant surveillance 

program in Brisbane 

region since 2001.

• 17700 identified 

locations

• Want to focus 

eradication program 

on high risk areas.



Case Study 2a: Stream Networks –
Allowing for different spatial neighbourhoods

Santos-Fernandez et al. 2021 
(In preparation)



Case Study 2b: MRI scans of brains –
Estimating the spatial neighbourhood

https://www.radiologyinfo.org/en/info.cfm?pg=alzheimers



Case Study 3: Hidden Markov Models

Sequeira et al., PNAS, 2018

Wu et al., QUT + Queensland Academy of Sport



• Spatial mixture models (Alston et al.)

• Spatial dynamic factor models (Strickland et al.)

• Mixture PCA approaches (Ullah et al.)

• Regression trees (Holloway et al.)

Case Study 1a: Spatial analysis of images



Bayesian Mixture Models

Aim: cluster real-valued observations in 𝑌 = 𝑦1, … , 𝑦𝑛
each element is a p-dimensional realisation made independently over n objects.

𝑓 𝑦 𝜃1, … , 𝜃𝐾 = 

𝑘=1

𝐾

𝜋𝑘𝑁𝑝 𝑦 𝜃𝑘 𝜃𝑘 = 𝜇𝑘 , Σ𝑘 0 ≤ 𝜋𝑘 ≤ 1,

𝑘=1

𝐾

𝜋𝑘 = 1

Define latent indicator 𝑧𝑖 , 𝑖 = 1, … , 𝑛, s.t. prior probability of assigning a particular observation

𝑦𝑖 to a cluster k is

𝑝 𝑧𝑖 = 𝑘 𝜋 = 𝜋𝑘

Parametric or nonparametric priors on 𝜃 and 𝜋.



Examples – parametric representation



Spatial Mixture Models

𝑢𝑘 ~ 𝑁(ത𝑢~𝑘 ,
𝜎𝑢
2

𝑛𝑘
)

𝜇𝑘 = 𝑋𝛽 + 𝑢𝑘 + 𝑒𝑘

𝑒𝑘 ~ 𝑁(0,
𝜎𝑒
2

𝑛𝑘
)



Bayesian Analysis via AutoStat https://autostat.com.au/

https://autostat.com.au/








Case Study 1b: Scaling up Bayesian mixture models

• Computing approaches:

• Graphics processing units • Parallel programming

• Algorithmic approaches:

• Variational Bayes •  Approximate Bayesian computation

• Sampling based approaches:

• Huang & Gelman (2005) - partition the data at random and perform MCMC independently 
on each subset to draw samples from the posterior given the data subset, using methods 
based on normal approximation and importance re-sampling to make consensus posteriors. 

• Scott et al. (2016) - use similar approach with a different rule for combining posterior draws. 

• Manolopoulou et al. (2010) - improve inference about the parameters of the component of 
interest in the mixture model by analysing an initial sub-sample to guide selection from 
targeted components in a sequential manner using Sequential Monte Carlo sampling. (Need 
a good initial random sample.)

These sampling approaches can be problematic in a massive dataset: a low probability component 
of interest is likely to escape the initial random sample, which will lead to unreliable inference.



Stratified sampling approach

In satellite imagery, most of the data are replications. 
Eg: all water pixels should appear similar while pixels from the land covered with the 
same crop should produce similar observations. 

Thus, inference based on a stratified random sample of the data should be representative 
of the whole image. 

• Use k-means to first label the data. 

• Use these labels to obtain a stratified random sample (hence enforcing representation 
from each sub-population).

• Stratify using nonparametric mixture models.

Makes use of the strengths of two clustering methods: the computationally less 
demanding method of k-means clustering and the more sophisticated DPGMMs, which 
not only account for correlations between variables, but also learn K in a data-driven 
fashion.



Proposed approach

• Obtain multiple samples from data using stratified random sampling to enforce adequate 

representation in each sample from sub-populations that may exist in data.

• Fit the mixture model to each sample dataset independently to obtain posterior estimates. 

• Obtain label correspondence across multiple estimates:

• find multivariate component densities of a chosen reference partition

• pool multiple posterior estimates to form a consensus posterior inference. 

• Infer labels for pixels in the entire image using the conditional posterior distribution given 

pooled estimates - substantially reducing the computational time and memory requirement.



Results

Cluster analysis of satellite image in 2003

% fireants detected in each cluster



Results

Cluster analysis of satellite image in 2011



Covariance structures:

• Tail up

• Covariance depends on upstream points

𝐶𝑇𝑈 𝑠𝑖 , 𝑠𝑗 = 𝐶𝑢 𝑊𝑖𝑗 if flow-connected; 0 otherwise

𝑊𝑖𝑗 ∶ spatial weights defined by the branching structure of the network

Choice of unweighted tail-up covariance functions 𝐶𝑢, e.g., exponential, sill, spherical

• Tail down

• Covariance depends on both upstream and downstream points

• Mixture covariance

Case Study 2a. Accounting for different spatial 
neighbourhoods



Case Study 2a. Spatio-temporal models

Three main approaches:

1. Model with the full space-time covariance function: full information, computationally 
intensive

2. Separable space-time model: lose interactions, computationally easier

3. Dynamical model that evolves the spatial process: can be shown to be equivalent to (2) 
and computationally more efficient in Bayesian context



Indicative Results



Yirk : cortical thickness of region k = 1:K 

for participant i = 1:I 

who has r = 1:Ri replicates

𝑦𝑖𝑟𝑘|𝑏𝑖𝑘 , 𝛽, 𝜎
2~𝑁(𝑥𝑖𝛽 + 𝑏𝑖𝑘, 𝜎2)

𝒃𝑖|𝜎𝑠
2,𝑊~𝑀𝑉𝑁(𝟎, 𝜎𝑠

2Q)

𝑄−1 = 𝜌 𝐷𝑤 −𝑊 + 1 − 𝜌 𝐼

D : diagonal matrix with elements given by row sums (or number of neighbours) σ𝑗=1
𝐾 𝑤𝑗𝑘

W : zero-diagonal, binary symmetric matrix, 𝑤𝑗𝑘 = 1 if regions j and k are neighbours, else = 0

r : determines global level of spatial correlation

Case Study 2b. Estimating the spatial neighbourhood



Estimating the neighbourhood

Computation: MCMC







Case Study 3: Finite Space Hidden Markov Model (HMM)

HMMs:

• arise when observations from a mixture of distributions depend on an unobserved (hidden) Markov chain

• provide a framework for identifying and modelling homogeneous sub-sequences in data which display 
heterogeneity

• applications in DNA segmentation, economic analyses, conservation, sport, etc

Choo et al., 2004



HMM setup

Observed time series 𝑌𝑡 = {𝑦1, … , 𝑦𝑛} depends on a single realisation of the underlying stochastic process 

determined by the unobserved states  𝑋𝑡 = 𝑥1, … , 𝑥𝑛

∀𝑡 ≤ 𝑛: 𝑌𝑡 𝑋𝑡 = 𝑥 ~ 𝑔𝛾𝑥 , 𝛾𝜖Γ ⊂ ℝ𝑑 , 𝑋𝑡 ∈ 𝑿 = {1, … , 𝐾}

(𝑋𝑡)𝑡≥1 is a Markov chain with K states and transition matrix 𝑄 = (𝑞𝑖,𝑗)1≤𝑖,𝑗≤𝐾

The Markov chain is also associated with a stationary distribution which contains the long term state 

probabilities 𝜇𝑄 satisfying 𝜇𝑄𝑄 = 𝜇𝑄



Examples

Sim 1: 𝐾∗ = 3 states, one well separated, two overlap

Sim 2: 𝐾∗ = 3 states, different state means and transition probabilities

Sim 3: 𝐾∗ = 5 states, well separated, equally spaced means, mainly large values on the diagonal of 𝑄∗ (sticky)
All have known state specific variances equal to 1.



Examples - realisations



Estimation: no. states known

Estimation of 𝑸 and (𝑿𝒕)𝒕≥𝟏 is straightforward (Fruhwirth-Schnatter, 2008; Nagaraja, 2006; Scott, 2002).

In a Bayesian context, MCMC estimation is particularly straightforward with conjugate priors and a data 
augmentation approach (Chib, 1996; Taylor et al., 2012):

• Update 𝑄 𝑋𝑡, 𝑌𝑡

• Update (𝛾𝑖|𝑋𝑡, 𝑌𝑡)

• Estimate posterior allocations (( 𝑋𝑡 𝑡≥1|𝛾𝑖 , 𝑖 ≤ 𝐾, 𝑄, 𝑌𝑡 𝑡≥1)



Estimation: no. states unknown

Frequentist setting: order estimation is difficult: 

• likelihood ratio statistic is unbounded even for simple case of comparing models with 
K = 1 and K = 2 states (Gassiat & Kerribin, 2000)

• Solution based on implementing heavy penalties in a maximum likelihood setting (Gassiat & Boucheron, 
2003)

• Penalised marginal pseudo-likelihood to obtain weakly consistent estimators for K (Gassiat, 2002)

Bayesian setting:

• reversible jump Markov chain Monte Carlo (Richarson & Green, 1997; Boys & Henderson, 2004)

• variational Bayes methods (McGrory & Titterington, 2009)

• sequential inference methods (Chopin, 2001)

• Bayes factors (Han & Carlin, 2001; Friel & Pettitt, 2008)

• nonparametric methods (Beal et al., 2002; Ding & Ou, 2010; Teh et al., 2006; Fox et al., 2008)

Non-identifiability when more states are included in a HMM than are supported  by the observations



Overfitting HMMs

Some understanding for finite mixtures:

Asymptotically, the prior on the mixture weights determines the posterior behaviour of extra groups 
(Rousseau & M, 2011) and can induce posterior emptying of superfluous components (van Havre et al., 
2015).

• If max 𝛼𝑗 < 𝑑/2, where 𝑑 = dim(𝜃), then asymptotically 𝑓(𝜃|𝑌) concentrates on the subset of 

parameters for which 𝑓𝜃 = 𝑓0, so 𝐾 − 𝐾0 components have weight 0.

• If min 𝛼𝑗 > 𝑑/2, then 2 or more components will tend to merge with non-neglectable weights each. 

This will lead to less stable behaviour.

• If min 𝛼𝑗 ≤ 𝑑/2 ≤ max 𝛼𝑗 , then the situation varies depending on the 𝛼’s and on the difference 

between 𝐾 and 𝐾0



Overfitting HMMs

Very limited understanding of asymptotic posterior convergence for overfitted HMMs 

• Gassiat & Rousseau (2012): for parametric, finite space HMMs, the dependence between 
the states leads the neighbourhoods of the true parameter values to contain transition 
matrices that lead to non-ergodic Markov chains, corresponding to areas of poor Markov 
behaviour

• no theoretical results for posterior emptying.



Indications of posterior emptying of overfitted HMMs

• Variational Bayes methods: depend on this through ‘state-removal’ phenomena, but no underlying theory 
(McGrory & Titterington, 2009)

• Particle filter model: considers only states which appear in the posterior sequence of hidden states, like 
ignoring emptying groups (Chopin et al., 2001)

Example: DNA segmentation (Boys & Henderson, 2000, 2004; Nur et al., 2009) 

• Use common prior for ith row of 𝑄 ~𝐷(𝛼𝑖1, … , 𝛼𝑖𝐾)

• Assume we are unlikely to detect short segments, except if searching for a state with known parameters or if 
many short segments from a particular state

• Instead of the standard choice 𝛼𝑖𝑗 = 𝛼 ∀𝑖, 𝑗 ≤ 𝐾 , consider alternative prior: 𝑄𝑖.~𝐷(𝛼, 𝛼, … , 𝑑, 𝛼, … , 𝛼), s.t. 𝑑
is the 𝑖th element and is larger than the exchangeable off-diagonal elements, so E(𝑄𝑘,𝑘) → 1

• Effective, but little supporting theory



True model: standard normal distribution, 

equivalent to a HMM with single state K = 1. 

For t = 1,…,1000:

Overfitting model: a HMM with K = 2 states 

and normal emission distributions:

Priors:

Simple example



Scenario 1



n
1
: Number of observations in state 1.

MCMC chain shows very slow mixing in 

transition matrix parameters.

“Sparks” in emission mean parameters occur 

when the state empties. i.e. a draw from the 

prior.

Similar behaviour seen in q
1,1

and q
2,2

.

Scenario 1



Scenario 2



n
1
: Number of observations in state 1.

MCMC chain shows better mixing than Scenario 1.

Data are mostly emptied from state 2.

Posterior densities show approximate normality for 

μ
1

but not μ
2.

Scenario 2



General problem setup

• Set 𝜇 as a prior initial distribution for the hidden Markov chain 𝑋𝑡 = 𝑥1, … , 𝑥𝑛

• Conditional distribution 𝑦𝑡 𝑥𝑡 = 𝑗 ~ 𝐺𝛾𝑗 , absolutely continuous w.r.t. fixed measure 𝛾 with density 𝑔𝛾𝑗

• Set 𝜃 = 𝑄, 𝛾1, … , 𝛾𝑘 ∈ 𝒬𝐾 × Γ𝐾 = Θ𝐾 where

𝒬𝐾 = 𝑄 = 𝑞𝑖,𝑗 𝑖,𝑗≤𝐾
; 

𝑖=1

𝐾

𝑞𝑖,𝑗 = 1, 𝑞𝑖,𝑗 ≥ 0 ∀𝑖, 𝑗

• Denote by 𝜇𝑄 the stationary distribution associated to 𝑄, i.e. the probability distribution on {1, … . , 𝐾}
satisfying 𝜇𝑄 = 𝜇𝑄𝑄.



General problem setup

• Recall for any Markov chain on a finite state-space with transition probability 𝑄 and stationary distribution 
𝜇𝑄 (one of them if 𝑄 admits more than one stationary distribution), it is possible to define 𝜌𝑄 ≥ 1 s.t., for any 

m and any 𝑖 ≤ 𝐾

• The complete likelihood conditional on 𝑋1 = 𝑥1 is

• The likelihood of 𝑌𝑡 conditional on 𝑋1 = 𝑥1, defining 𝑥2:𝑛 = 𝑥2,… , 𝑥𝑛 , is

• We also write 

and 



Priors

Study the behaviour of posterior distributions associated with priors belonging to the following family:

(C1) Prior on 𝑄: the rows 𝑄𝑖 are iid Dirichlet 𝐷 𝛼1, … , 𝛼𝐾 , 𝛼𝑗 > 0, 𝑗 ≤ 𝐾

(C2) Independent prior on the 𝛾′s: 𝛾𝑗
iid

~ 𝜋𝛾 with positive and continuous density on Γ.

Denote by 𝜋 the relevant prior and 𝜋(. |𝑌) the corresponding posterior distribution, so that

Denote by 𝐹 ℎ = ℎ 𝑥 𝑑𝐹(𝑥) for every probability measure F and integrable function h.



Asymptotic analysis

What is the asymptotic behaviour of 𝜋(. |𝑌) under the different priors, when the true parameter corresponds to a 
HMM with 𝐾0 < 𝐾 hidden states?

• In the 𝐾0- parameter space Θ𝐾0 , 𝜃
∗ = 𝑄∗, 𝛾1

∗, … 𝛾𝐾0
∗

• The true model can be parametrized by infinitely many parameters in the K-parameter space Θ𝐾.

• In particular, any parameter of the form 𝛾1
∗, … 𝛾𝐾0

∗ , … , 𝛾𝐾0
∗ and Q with 𝑞𝑖,𝑗 = 𝑞𝑖,𝑗

∗ if 𝑖 ≤ 𝑘∗, 𝑗 ≤ 𝑘∗ − 1,
σ𝑗=𝐾0
𝐾 𝑞𝑖,𝑗 = 𝑞𝑖,𝐾0 and 𝑞𝑖,. = 𝑞𝐾0∀𝑖 ≥ 𝐾0 + 1 leads to the same likelihood function 𝑓𝑛(𝑌|𝜃

∗, 𝜇), for all 𝜇. 

• The parameters 𝜃 𝜖 Θ𝐾 defined by 𝑄 =
𝑄∗ 0 … 0
𝑅 0 … 0

where for all 𝑖 = 𝐾0 + 1,… , 𝐾, 𝑅𝑖,1 = 1 and 𝑅𝑖,𝑗 = 0

if 𝑗 ≥ 2 and 𝛾𝑗 = 𝛾𝑗
∗for all 𝑗 ≤ 𝑘 lead to the same likelihood function for all 𝜇 having support in {1, … , 𝐾0}.

• Denote by Θ∗ ⊂ Θ𝐾 the set of all 𝜃 s.t. either 𝑓𝑛 𝑌 𝜃, 𝜇𝑄 = 𝑓𝑛(𝑌|𝜃
∗, 𝜇𝑄∗) or 𝑓𝑛 𝑌 𝜃, 𝜇 = 𝑓𝑛 𝑌 𝜃∗, 𝜇 for all 

n.



Asymptotic behaviour of the posterior distribution - Theorem

We want to find some sufficient conditions on the prior to ensure that the posterior distribution concentrates on 
the configuration where the extra states are emptied out when the number of observations goes to infinity.

Assume that the true model is a HMM on 𝐾0 < 𝐾 hidden states with true parameter 𝜃∗ ∈ Θ𝐾0.

Under some regularity assumptions on 𝑔𝛾 , if there exists 1 ≤ 𝑝 ≤ 𝐾0 such that 

𝛼1 = ⋯ = 𝛼𝑝 = 𝛼 and 𝛼𝑝+1 = ⋯ = 𝛼𝐾 = 𝛼 satisfying

then setting 𝐴1 = 𝐾 𝐾 − 𝐾0 𝛼 + 𝐾0(𝐾0 − 1 + 𝑑) and 𝐴 = 𝐴1/(𝑝𝛼 + (𝐾 − 𝑝)𝛼, for any 𝑀𝑛 → ∞



Discussion of Theorem

1. Since 𝐾0 is unknown, 𝛼 and 𝛼 have to be chosen conservatively, eg:
𝐾0 = 𝐾 − 1 for the lower bound on 𝛼 ; 𝐾0 = 1 for the upper bound on 𝛼 , so

2. Hence we can achieve posterior emptying of extra states in HMMs by binding the posterior distribution of 
the 𝜇 associated with extra states to be small yet remain non-zero, thereby retaining the ergodicity of the 
estimated Markov chain.

3. This behaviour is possible due to the structure of the prior, which is asymmetric with respect to the 
hyperparameter values (containing large values 𝛼 and smaller values 𝛼).

4. The prior constraints depend on d, the number of free parameters in each state, and the total number of 
states in the model K, but also on p, which defines the number of 𝛼 values included in the prior.

5. As 𝑝 > 𝐾 must hold, p must be set to the smallest reasonable value 
(eg p = 1 corresponds to a noninformative setup on the number of components). 



Large simulation example - setup

• HMM with Normally distributed state-specific distributions:

• Prior on the emission means: 𝜋 𝛾 ~𝑁 𝛾0 = ത𝑌, 𝜏0 = 100 .

• Prior on each row of Q: 𝐷(𝛼, 𝛼, … , 𝛼).

• Posterior:

• Gibbs sampler run for M = 20,000 iterations; first 10,000 discarded.

• Sample of 10,000 observations simulated from a univariate Gaussian HMM with 𝐾∗ = 2 states, transition matrix 

𝑄∗ =
0.6 0.4
0.7 0.3

, leading to stationary distribution 𝜇∗ = 0.64,0.36 .

• The individual states are distributed N(𝛾∗ = −1,3 , 1) [variance assumed known].

• Model with 𝐾 = 4 states and 9 combinations of hyperparameters:  𝑎 = Theory, K, 1 ;  𝑎 = 𝑎, 0.01, 1/n.



Large simulation example - results

The structure of the prior on Q resulted in both merging and emptying of extra states depending on the 
choice of 𝛼.

• Choice of 𝛼 = 𝛼 caused all states to be occupied regardless of the value of 𝛼, and estimation of 4 states in all cases.

• An asymmetric prior with 𝛼 > 𝛼 caused extra states to be assigned small stationary distributions with few or no 
observations. This was most clearly observed under the theoretically given constraints.

Distribution of number of occupied states 𝑃 𝐾𝐴



Large simulation example - results

Estimated bivariate density of posterior means (x-axis) and posterior stationary distribution (y-axis)

• For 𝑎 = 1, extra states merged to some degree with the true states (2); similarly for 𝑎 = 4.

• For the largest value of  𝑎, three modes were created; the extra states merged to create a spurious mode.

• For all values of 𝑎, a similar posterior space was created when 𝑎 =
1

𝑛
: two modes at the true parameter values, atop 

a ‘pool’ of samples representing MCMC draws from empty states (𝛾𝑘 drawn directly from the prior).

Fitting HMM with K=4 states

to HMM with 𝐾∗ = 2 states;

𝑞𝑖,.~𝐷(𝛼1, 𝛼2, 𝛼3,𝛼4).

Columns: different values of 𝛼
Rows: different prior configs

1: overfitted posterior, 𝛼 = 𝛼

2: 𝛼 =
1

𝑛
= 0.0001

Probability

== Low

==

---

==

==

==     High



Applicability of asymptotic theory for smaller sample sizes

The influence of the hyperparameters can be unexpected and non-trivial, due in part to the intrinsic relationship 
between 𝛼𝑖,𝑗 and n. 

• 𝛼𝑖,𝑗 can be interpreted as the prior number of transitions from state i to state j.

• Let 𝑛𝑖,𝑗 be the number of transitions observed from state i to state j.

The posterior distribution of the transition matrix, given a Dirichlet prior on each row of Q, is

• A choice of 𝛼 = 0.001 and K=2 according to the Theorem leads by theory to 𝛼 > 3.02.

• K=3 ⇒ 𝛼 > 36.32  ;  K=5 ⇒ 𝛼 > 543.38 ;  K=10 ⇒ 𝛼 > 15,498.38 (not sharp)

• Hence an increasingly large sample size is required to overcome the given 𝛼. 



Example – small sample case

HMM with 𝐾∗ = 2 states, and true transition probabilities 𝑞1,1
∗ = 0.6, 𝑞1,2

∗ = 0.4, 𝑞2,1
∗ = 0.7, 𝑞2,2

∗ = 0.3

For an arbitrary sample size n, assuming the allocations are known, the transition frequencies are expected to 
be (approximately) 𝑛𝑖,𝑗 = 𝑛 × 𝑞𝑖,𝑗 for i,j = (1,2) and 0 otherwise.

Explore the influence of the hyperparameter 𝑎 on the posterior transition probability 𝑞1,1:
- Draw 10,000 samples from 

- Choosing 𝛼 according to the asymptotic bound had a very strong influence on the estimated distribution of 𝑞1,1

- When K=3, needed ~1,000 observations for the true value of 0.5 to be within the 25th and 75th quantiles of the posterior 
distribution of 𝑞𝑖,𝑗.

- For a model overfitted with K=10 states, needed ~1,000,000 observations.



Example – small sample case

𝑎



Alternative prior configurations

There are many ways a transition matrix can be written.

Consider the structure of the prior in terms of the position of the large 𝛼 w.r.t. the smaller values 𝛼

• Column prior 𝜋𝑐(𝑄) [used for the asymptotic results]: 

• the prior on each row of Q is of the same form, with 𝛼 in the first position, thus favouring the 
configuration which empties a priori the last K-p states. 

• Diagonal prior 𝜋𝑑(𝑄) [used in a nonparametric setting by Nur et al. 2009; Boys & Henderson, 2004]: 

• place 𝛼 on the diagonal of the prior on Q, since the Markov chain is expected to be more likely to 
remain in the same state than transition to another state a priori. 

• Mixture prior 𝜋𝑚(𝑄) [leverage the benefits of both approaches]:  

• 0.5𝜋𝑐 𝑄 + 0.5𝜋𝑑(𝑄)



Inducing mixing via prior parallel tempering

Asymmetrical hyperparameters can induce poor MCMC mixing algorithm: 
multimodal posteriors, empty states, large areas of low probability separating supported nodes.

Prior Parallel Tempering (van Havre et al., 2015): 

• Set up J parallel samplers with slightly different hyperparameters on Q

• Allow 𝛼𝑗 to increase slowly until it matches 𝛼 in the parallel samplers

• Allow the samplers to share information by swapping posterior samples when samples are close, via a 
Metropolis Hastings acceptance step

• Track the acceptance ratio to ensure acceptable mixing between samplers



Small sample size simulation – setup

Sim 1: 𝐾∗ = 3 states, one well separated, two overlap

Sim 2: 𝐾∗ = 3 states, different state means and transition probabilities

Sim 3: 𝐾∗ = 5 states, well separated, equally spaced means, mainly large values on the diagonal of 𝑄∗ (sticky)
All have known state specific variances equal to 1.



Small sample size simulation - realisations



Small sample size simulation – results

Evaluation:

n = 100, 500
K = 10 states fitted under the three prior configurations

hyperparameters: 𝛼 = 𝑛,𝐾, 1 , 𝛼 =
1

𝑛
,
1

10𝑛

Gibbs sampler with 20 PPT chains for 20,000 iterations, 10000 burn-in 

Results for Sim 1 (𝐾∗ = 3): proportion of replicates which contains 2,3,4 occupied states



Small sample size simulation – results

Results for Sim 2 and Sim 3: column prior only



True model: standard normal distribution, 

which is equivalent to a HMM with single 

state K = 1. For t = 1,…,1000:

Overfitted model: HMM with K = 2 states 

and normal emission distributions:

Priors:

Back to the simple study



Scenario 1



n
1
: Number of observations in state 1.

MCMC chain shows very slow mixing in 

transition matrix parameters.

“Sparks” in emission mean parameters occur 

when the state empties. i.e. a draw from the 

prior.

Similar behaviour seen in q
1,1

and q
2,2

.

Scenario 1



Scenario 2



n
1
: Number of observations in state 1.

MCMC chain shows better mixing than Scenario 1.

Data are mostly emptied from state 2.

Posterior densities show approximate normality for μ
1

but not μ
2.

Scenario 2



Current application



Overall conclusions

1. Overfitting HMMs in such a way as to empty out the stationary distribution of extra states is 
theoretically and practically possible.

2. While the number of occupied states was not proven to be a consistent estimator of the true number, 
careful choice of hyperparameters can encourage extra states to be rarely allocated observations in 
practice.

3. We suggest the choice of 𝑎 =
𝑎0

𝑛
for some 𝑎0: then possibly 𝐾𝐴 becomes consistent; simulations 

pointed to this, but it is still only conjecture.  

4. In practice, check the posterior samples and distribution of the number of components for evidence that 
𝑎 is sufficiently small (i.e. concentrated distribution for 𝐾𝐴).

5. The value of 𝑎 dictated by the asymptotic constraints is concerning in practice due to the relationship 
between this parameter and sample size. Use PPT or similar to allow mixing while emptying out extra 
states, especially for small n.

6. The column prior is theoretically justified and leads to better MCMC behaviour. Second choice is a 
mixture prior. The diagonal prior allowed escape from merged configuration but was observed to be 
inconsistent.  
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