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Programme of Lectures

January 27th:
• Lecture 1: 10-1045am IST (230pm-3:15pm AEST)

Identifying the Intrinsic Dimension of High-Dimensional Data

• Lecture 2: 11-11:45am IST (3:30pm-4:15pm AEST)
Finding Patterns in Highly Structured Spatio-Temporal Data

January 29th:
• Lecture 3: 10-1045am IST (230pm-3:15pm AEST)

Describing Systems of Data

• Lecture 4: 11-11:45am IST (3:30pm-4:15pm AEST)
Making New Sources of Data Trustworthy



Bayesian Modelling and Analysis of 
Challenging Data

Hongbo Xie, Insha Ullah, 
Edgar Santos-Fernandez, Antonietta Mira,

Benoit Liquet, Matthew Sutton

Lecture 1: 
Identifying the intrinsic dimension of 

high-dimensional data 



Case Study 1: Analysis of images



Case study 2: player tracking

• Individual 
player tracking 
devices

• What to 
analyse and 
compare plays

• Home vs 
away?
Winning vs 
losing teams?



Case study 3: genomic data

• Multiple disease 
outcomes

• Many potential 
predictors 
(genes)

• p >> n



Lower bound of the dimension of a dataset == measure of complexity of dataset or signal 

• Pattern recognition: the number of variables needed in a minimal representation of the data. 

• Signal processing: how many variables are needed to generate a good approximation of the signal.

• Estimation: a representation in the intrinsic dimension does only need to exist locally, i.e. different 
intrinsic dimensions in different parts of the data set.

• History:
• Term coined by Bennet (1965) in information theory

• 1960’s: Estimation of ID in multidimensional scaling

• 1970’s: ID estimation methods based on local eigenvalues, distance functions, etc

• 1980’s: ID of sets and probability measures in dynamical systems (fractal dimension)

• 2000’s: ‘curse of dimensionality’ 

Intrinsic dimension

Wikipedia



Case Study 1: Matrix Factorization

Aim: to extract low-rank and/or sparse structures (e.g., classes)

Approach: Use matrix factorization techniques 

Data: Y (𝑀 × 𝑁) matrix

Solve: Recover the actual low rank matrix X, i.e.

Y = X + E = UV𝑇 + E

Y𝜖𝑅𝑀×𝑁, U𝜖𝑅𝑀×𝑟 , V𝜖𝑅𝑁×𝑟 , E𝜖𝑅𝑀×𝑁

𝑟 ≪ min 𝑀,𝑁 for sparsity



Bayesian model: use priors to induce sparsity

Gaussian priors for columns of U and V:

𝑝 U 𝛾 = ෑ

𝑗=1

𝑟

𝑁(𝑢.𝑗|0, 𝛾𝑗
−1Ι𝑀)

𝑝 V 𝛾 = ෑ

𝑗=1

𝑟

𝑁(𝑣.𝑗|0, 𝛾𝑗
−1Ι𝑀)

𝑝 𝛾𝑗 = Gamma(𝑎,
1

𝑏
)

Couple U with a kernel matrix 𝐾𝑈 to give a latent matrix G with prior

𝑝 G U, KU, 𝜎𝑔 = ෑ

𝑗=1

𝑟

𝑁(𝑔.𝑗|KU
T ∙ 𝑢.𝑗 , 𝜎𝑔

−1I𝑀)

Similarly,

𝑝 H V, KV, 𝜎ℎ = ෑ

𝑗=1

𝑟

𝑁(ℎ.𝑗|KV
T ∙ 𝑣.𝑗 , 𝜎ℎ

−1I𝑁)

Same 𝛾𝑗

Small a,b

Jeffreys prior:

𝑝 𝜎𝑔 = 𝜎𝑔
−1

𝑝 𝜎ℎ = 𝜎ℎ
−1



Residual term

𝑝 E =ෑ

𝑖=1

𝑀

ෑ

𝑗=1

𝑁

𝑁(𝜀𝑚𝑛|0, 𝛽
−1)

𝑝 𝛽 = 𝛽−1



Graphical model



Conditional distribution for observation model:

𝑝 Y G, H, 𝛽 = 𝑁 Y GHT, 𝛽−1I𝑀𝑁

Joint distribution:

𝑝 Y, U, V, G, H, 𝜎𝑔, 𝜎ℎ , 𝛾, 𝛽 =

𝑝 Y G, H, 𝛽 𝑝 G U, 𝜎𝑔 𝑝 H V, 𝜎𝑉 𝑝 U 𝛾 𝑝 V 𝛾 𝑝 𝜎𝑔 𝑝 𝜎ℎ 𝑝 𝛾 𝑝 𝛽

Computation: Variational Bayes

Conditional and joint distributions



Many different types of kernels. For images, we want one that incorporates similarity 

information between patches into patch group matrix factorisation.

Let 𝑑𝐸
𝑖,𝑗

be the Euclidean distance between a pair of patches (i,j).

Define the similarity between them, i.e., an entry of Ku or Kv as

𝑘𝑖𝑗 =
4 1

1 + 𝑑𝐸
𝑖,𝑗
/𝑀

• A pixel and its nearest neighbours in a 𝑀 × 𝑀 window are modelled as a column vector.

• Construct the 𝑀 ×𝑁 patch group matrix Y by grouping other 𝑁 − 1 patches with similar local 

spatial structures to the underlying one in the local window.

• Since each column shares similar underlying image structures, the noise-free patch group matrix Y 

has the low-rank property.

Choice of kernel

M is the total number of pixels 

in the patch



1. Cluster patches with similar spatial structure to form a patch matrix.

2. Apply KSBMF in succession on each patch matrix.

3. Aggregate the patches to reconstruct the whole image.

Overall algorithm



12 test images:

First 10 images 256 × 256; last 2 images 512 × 512.

Add 𝑁 0, 𝜎2 noise, 𝜎 = 20, 50, 70, 100.

Patch sizes set to 6 × 6, … , 9 × 9; 70, 90, 120, 140.

No side information about similarity between patches, so set K𝑈 to be the Identity matrix.

Case study: image restoration



Case study: results
Original Noisy

Reconstructed

Original Noisy

Reconstructed



Case study: results
Original Noisy

Reconstructed

Original Noisy

Reconstructed



Summary

• New (KSBMF) model allows integration of side information. 

• KSBMF automatically infers the parameters and latent variables including the 
reduced rank using variational Bayesian inference. 

• The model simultaneously achieves low rank through sparsity induced by an 
enforced constraint on latent factor matrices. 

• Experimental results demonstrate that KSBMF outperforms state-of-the-art 
approaches for image restoration tasks under various types and levels of 
corruption.



• A small number of dimensions/variables is often sufficient to effectively describe high-
dimensional data – “intrinsic dimension” (ID)

• ID can vary within the same dataset.

Examples:

• folded vs unfolded configurations in a protein molecular dynamics trajectory

• active vs inactive regions in brain imaging data

• organisations with different service delivery profiles

• sports teams with different strategies for attack/defence, home/away

• Aim is to cluster regions with the same local ID in a given data landscape.

Case Study 2. Dimension reduction of tracking data via ID



• Data 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑁) sampled from a density 𝜌 𝑥 defined on a manifold with 
unknown ID, d, s.t. r is approximately constant in the region defined by the second 
neighbour of each point.

• Let 𝑟𝑖1and 𝑟𝑖2 be the distances of the first and second neighbour of 𝑥𝑖.

• Then 𝜇𝑖 = 𝑟𝑖2/𝑟𝑖1 follows the Pareto distribution 𝑓 𝜇𝑖 𝑑 = 𝑑𝜇𝑖
−(𝑑+1).

• Assuming 𝜇 = (𝜇1, 𝜇2, … 𝜇𝑁) are independent, then

𝑃 𝜇 𝑑 = 𝑑𝑁ෑ

𝑖=1

𝑁

𝜇1
−(𝑑+1) = 𝑑𝑁𝑒− 𝑑+1 𝑉

where 𝑉 = σ𝑖=1
𝑁 log(𝜇𝑖)

Place a suitable prior on d and estimate d.

Proposed approach: homogeneous model



Proposed approach: heterogeneous model
• Let 𝑥 be sampled from a density 𝜌 𝑥 with support on the union of K manifolds with varying 

dimensions. Then 

𝜌 𝑥 = σ𝑘=1
𝐾 𝜌𝑘(𝑥)

– each 𝜌𝑘(𝑥) has support on a manifold of dimension 𝑑𝑘
– 𝑝=(𝑝1, 𝑝2,…, 𝑝𝐾) are the a priori probabilities that a point belongs to the manifolds 1,…,K.

• Now the distribution of  𝜇𝑖 is a mixture of Pareto distributions:

𝑃 𝜇 𝑑 = ෍

𝑘=1

𝐾

𝑝𝑘𝑑𝑘 𝜇𝑖
− 𝑑+1 𝑉

• Introduce latent variables 𝑧 = 𝑧1, 𝑧2, … , 𝑧𝐾 where 𝑧1 = 𝑘 indicates that point i belongs to 

manifold k. Hence

𝑃𝑝𝑜𝑠𝑡 𝑧, 𝑑, 𝑝 𝜇 ∝ 𝑃 𝜇 𝑧, 𝑑 𝑃 𝑧 𝑝 𝑃 𝑑 𝑃(𝑝)

• Priors 𝑑𝑘~Gamma(𝑎𝑘, 𝑏𝑘), 𝑝 ~ 𝐷𝑖𝑟 𝑐1, … , 𝑐𝐾 ; 𝑎𝑘, 𝑏𝑘, 𝑐𝑘 = 1



N=1000 points drawn from five Gaussians in dimensions 
d1 = 1, d2 = 2, d3 = 4, d4 = 5, d5 = 9

Simulation study



• SportVU NBA player tracking technology: 
player movement measurement 25 frames/sec.

• How is the placement of the players in attack and 
defence related to the success of a play?

• Do teams that have greater offensive ability produce successful shots from more unique 
locations in the court and do they create more shoot opportunities by passing the ball 
more effectively?

• What could ID tell us about the plays and teams?

Case Study: ID in basketball



• High-resolution player tracking raw data from the NBA season 2015-16. 

• Play-by-play events description and other statistics (https://stats.nba.com/).

• Verified via manual video annotation of the game (https://www.youtube.com/).

• From each play, we inferred the locations of the players at the moment of the shoot, and 
selected the events = {ShotMissed, ShotMadeg}.

• 15 games were included in the analysis.

Consider the game Cleveland Cavaliers (CLE) 
and the Golden State Warriors (GSW)

from the 25th of December 2015. 

Example

https://stats.nba.com/
https://www.youtube.com/


• Aim: compute the intrinsic dimension using the shot chart data from the home and away 
teams. 

• Split the data into two sets: (1) field goals shots taken when the home team (GSW) is 
attacking, and (2) … when CLE is attacking.

• No. rows on each dataset = no. attempted field shots.
No. columns = D = 20 (2 players' coordinates (x and y)  5 players  2 teams). 

• The intrinsic dimension for the set of players (5 vs 5) corresponds to the number of 
independent directions in which the 20-dimensional points are embedded.

Example



Results



Posterior means of

The ID over the course

of play for the first 

3-point field goal.

Results



CRICOS No.00213JCRICOS No.00213J

Challenge 1: wide, high-dimensional data

Case Study 3: High-dimensional variable selection



CRICOS No.00213JCRICOS No.00213J

Challenge 2: grouped data



CRICOS No.00213JCRICOS No.00213J

Challenge 3: multivariate data



CRICOS No.00213JCRICOS No.00213J

Solution?

Fully Bayesian sparse regression analysis for:

• Number of predictors (p) >> number observations (n)

• Multivariate response

• Covariates grouped by blocks

• Sparsity for blocks and within blocks

• Select group variables taking into account the data structures; all the variables 
within a group are selected, otherwise none of them are selected

• Combine both sparsity of groups and within each group; only relevant variables 
within a group are selected



CRICOS No.00213JCRICOS No.00213J

Frequentist approaches: Partial Least Squares (PLS)



CRICOS No.00213JCRICOS No.00213J

Multivariate Bayesian solution

Bayesian group lasso model with spike and slab priors

Liquet, Mengersen, Pettitt, Sutton (2017) Bayesian Analysis.



CRICOS No.00213JCRICOS No.00213J

Model formulation

𝑑 : d.f.
𝑄 = 𝑘𝕀𝑞 : positive finite scale matrix

𝑘 ≈ 𝑉𝑎𝑟(𝕐|𝕏)
E Σ = 𝑄/(𝑑 − 2)
𝑑 = 3 : smallest integer ensuring existence of E Σ

𝛿0 𝑉𝑒𝑐 𝔹𝑔
𝑇 : point mass at 𝟎 ∈ ℝ𝑚𝑔𝑞

𝔹𝒈 : 𝑚𝑔 × 𝑞 regression coefficient matrix for group g

𝑎, 𝑏 : prior information

𝜏𝑔
2~ Gamma

𝑚𝑔 + 1

2
,
𝜆𝑔
2

2
, 𝑔 = 1,… , 𝐺

Σ ~ IW 𝑑, 𝑄

𝜋0 ~ Beta(𝑎, 𝑏)

𝜆𝑔 = 𝑚𝑔𝜆: shrinkage for 𝑔th group

𝜆 : global shrinkage parameter, estimated using Empirical Bayes
𝑚𝑔 : size of the group

𝜆𝑔 is ‘adaptive shrinkage’, estimated using Monte Carlo EM



CRICOS No.00213JCRICOS No.00213J

Spike and slab prior

Bivariate Dirac spike prior: 

5000 samples at zero (spike) 
and 
5000 N(0,1) samples (slab)



CRICOS No.00213JCRICOS No.00213J

Spike and slab prior

Bivariate Dirac spike prior: 

5000 N(0,10-2) samples (spike) 
and 
5000 N(0,1) samples (slab)



CRICOS No.00213JCRICOS No.00213J

Posterior median estimator

Use the posterior median estimator for both selection and estimation at the same time.

Benefits: 

• Enables group variable selection by obtaining a zero coefficient for some groups 

• Can be expressed as a soft thresholding estimator 

• Consistent in model selection and has optimal asymptotic estimation rate.



CRICOS No.00213JCRICOS No.00213J

Analysis via Gibbs sampler

𝛼𝑔
2 = 1/𝜏𝑔

2



CRICOS No.00213JCRICOS No.00213J

Sparsity of groups and within each group

1. Reparametrise the coefficient matrices to tackle the two kinds of sparsity separately

2. Assume a multivariate spike and slab prior:

• for each group-specific vector 𝔹𝑔 to choose groups

• for each 𝜏𝑔𝑗 to choose variables within a group



CRICOS No.00213JCRICOS No.00213J

Case study

Expression Quantitative Trait Loci (eQTL): 

• Discover the genetic causes of variation in the expression (i.e. transcription) of genes

• gene expression data are treated as a quantitative phenotype

• genotype data (SNPs) are used as predictors

Example:

• Hopx genes, part of a larger study (Heinig et al., 2010; Liquet et al., 2016)

• Identify a parsimonious set of predictors that explains the joint variability of gene expression in 
four tissues (adrenal gland, fat, heart, and kidney).



CRICOS No.00213JCRICOS No.00213J

Case study - data

Repartition of the SNPs along the chromosomes, defines the group structure

• Predictor matrix: 770 SNPs in 29 inbred rats (n = 29, p = 770)

• Outcome: the 29 measured expression levels in the 4 tissues (q = 4)



CRICOS No.00213JCRICOS No.00213J

Results

• 32 SNPs which belong to 6 groups/chromosomes

• Empirical estimates of the probability of inclusion of 
each chromosome

• Posterior median estimates



CRICOS No.00213JCRICOS No.00213J

Overall:

New Bayesian methods for group-sparse modelling of a multivariate correlated response variable. 

Highlights:

• Spike and slab type priors can facilitate both group and variable selection

• Posterior median estimator can both select and estimate the regression coefficients, and produce 

sparsity

• Simulation results showed excellent performance of the model and superior performance 

compared to other approaches

• Computation time is quite reasonable (minutes for case study)



Concern: (Not) Aggregating Data



Options

Single Database Distributed Computing
A Thorough Introduction 
to Distributed Systems 
(freecodecamp.org)

Distributed Computing: 
Horizontal scaling
Fault tolerance
Low latency
Sharding

MapReduce, Apache Spark, 
Hadoop, etc

https://www.freecodecamp.org/news/a-thorough-introduction-to-distributed-systems-3b91562c9b3c/


Options

Decentralised Computing Edge Computing
• Information processed in the cloud
• Not owned by one actor
• Dapps
• Edge Computing

8bitmen.com

• Information not processed on the cloud filtered 
through remote data centres; instead, the cloud comes 
to the centres
• Federated learning, Federated analysis



Federated Learning: Overview

• Groups: 

• the parties (e.g., clients)

• the manager (e.g., server)

• the communication-computation 
framework

• Components:

• Data partitioning

• Model

• Privacy mechanism

• Communication architecture

• Modelling approaches: 

• deep neural networks, gradient boosted 
decision trees, linear and logistic regression, 
support vector machines.

Li et al. (2020)

Cmu ML blog Vantage6



Federated Learning Approaches

• Commentary:

• Kairous et al. (2019) Advances and open problems in Federated Learning. Arxiv.

• Li et al. (2020) A survey on federated learning systems: vision, hope and reality for data privacy and protection. 
Arxiv

• Repository with data-sharing agreements:

• Canakoglu, A., et al. (2020) Federated sharing and processing of genomic datasets for tertiary data analysis. 
Briefings in Bioinformatics

• Bayesian Networks:

• Jochems (2017) Survival prediction model through distributed learning across 3 countries. Radiotherapy and 
Oncology.

• Neural Networks:

• Yurochkin (2019) Bayesian nonparametric federated learning of neural networks. ICML.

• Sequential and Hierarchical Bayesian models for time series data:

• Fang et al. (2020) Bayesian Inference Federated Learning for Heart Rate Prediction. International Conference on 
Intelligent Computing.

• Communication-efficient surrogate likelihood (CSL):

• Jordan, Lee, Yang (2018) Communication-efficient distributed statistical inference. JASA. 



Case Study 1: Federated Matrix Factorisation

Xie et al. (2021)

• Observation matrix 𝒀 𝜖 𝑅𝑖×𝑗

• MF: decompose into two latent matrices 𝑼 𝜖 𝑅𝑖×𝑟 and 𝑽 𝜖 𝑅𝑗×𝑟

• Solve 𝒀 = 𝑼𝑽𝑇 + 𝑬

• SGD algorithm: 

• Formulate the regularised sum error (RSE) between ෡𝒀 and 𝒀 as

• Update parameters by moving in the opposite direction of the gradient for each entry.

• Represent error at step t-1 as

• Obtain the gradient of the RSE over 𝑢𝑖
𝑡−1and 𝑣𝑗

𝑡−1

• Update rule:

𝜆 : regularisation coefficient

 1 1 1

, , ( ) ,t t t T

i j i j i je y u v   

 222

,

,

[( ) ( )],T

i j i j i j

i j

RSE y u v u v   

 1 1

1 1

,

,

t t t

i i i

t t t

j j j

u u g

v v g





 

 

 

 
𝛽 : learning rate



Adaptive learning rate

• Use the cosine of the angle between the learning directions of two consecutive epochs as 

an index to adaptively adjust the learning rate.

• For 𝑢𝑖 (similarly for 𝑣𝑗):

 
,

1 1

( ) ,

1
,

2i j i

t t t t

i y u i j j ig e v u     

  , , , , ,

1 1
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i j i j i j i j i j

t t t t t
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1
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i j i j i j

t t t

i y i y i y  r  

 
, ,

1 1

( ) ( ) ,i j i j

t t t t

i i i y i yu u g  

𝜌 : adjusts the fluctuation of the learning rate



Federated Matrix Factorization

1. Node update: update 𝑢𝑖 and gradient 𝑔𝑗(𝑦𝑖𝑗)
′ on each node i.

2. Upload information: upload encrypted  𝑔𝑗(𝑦𝑖𝑗)
′ to update 𝑣𝑗 (two steps).

3. Server update: update V (encrypted). 

4. Download information: each node downloads encrypted V from server and decrypts it to 

perform a new node update.

5. Stop when converged (small RSE).



Results

RMSE vs learning rate Convergence epochs vs learning rate

𝛽

R
M

SE

𝛽

N
o

. e
p

o
ch

s 
to

 c
o

n
ve

rg
en

ce



Case Study 3: Federated sharing of genomic datasets

Canakoglu et al. (2020)

• Federated GMQL:  web-based system for querying 
distributed genomics datasets across many instances 
connected through the Web.

• Automatically distribute the computation while 
preserving privacy constraints.

• Huge growth of genomics data over last decade

• Many independent consortia and institutes

• Data sharing agreements across the Repository
• Facilitated by GMQL groups, each controlled by an 

administrator, who can dynamically add (or drop) 
GMQL instances to (from) the group and make 
agreements about the group



Summary

• Data are changing! Size, privacy, provenance, quality, diversity, …

• Federated analysis / federated learning offers some solutions.

• Current interest is in federated estimation of intrinsic dimension

• Statistical methods and their implementation are required! 
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