
Problem. 1 Prove or Disprove the following:
If f is an entire function such that |f(|z|1/3)| ≤ 2 + 3|z|300 then f is a polynomial.

Proof. Counterexample:
We know that sin(z) is an entire function which is not a polynomial.
and |sin(|z|1/3)| ≤ 1 because |z|1/3 is real. But the RHS of the inequality is always strictly
greater than 1. Thus |sin(|z|1/3)| ≤ 2 + 3|z|300 but it is not a polynomial. �

Problem. 2 Prove(in detail) that
∫ π
−π

eit+z
eit−zφ(t)dt is a holomorphic function of z on U for any

continuous function φ on [−π, π] with φ(−π) = φ(π).

Problem. 3 Find the number of zeroes of the polynomial 1 − 2z10 + (3/4)zn in U for any
integer n > 10.

Proof. Since the given function is a polynomial it is an entire function. So it is a analytic
function on the unit circle.

1− 2z10 + (3/4)zn has no zeroes on the unit circle as then we will have 1 + (3/4)zn = 2z10

but lhs has maximum absolute value to be 7/4 which is strictly less than the absolute value
of the rhs which is 2.

Since n > 10 we have |zn| < |z10| in and thus |1+(3/4)zn| < 1+(3/4)z10 < |−2z10| = 2|z10|
Hence by Rouche’s theorem we have 1− 2z10 + (3/4)zn and −2z10 have the same number of
zeroes in U which is 10. �

Problem. 4 Show that Π∞n=1

(1− 1
n2 )−z

1−(1− 1
n2 )z

converges to a holomorphic function uniformly in com-

pact subsets of U and the set of zeroes has a limit point at 1.

Proof. We use the following Theorem 15.6 from Real and Complex Analysis , Walter Rudin,
3rd edition, which says that:

Suppose fn ∈ H(Ω) for n = 1, 2 . . . such that no fn is identically zero in any component of
Ω, and

∑∞
n=1 |1−fn(z)| converges uniformly on compact subsets of Ω.Then the product f(z) =

Π∞n=1fn(z) converges uniformly on compact subsets of Ω. Hence f ∈ H(Ω).Furthermore, we
havem(f ; z) =

∑∞
n=1m(fn; z)(z ∈ Ω) wherem(f ; z)is defined to be the multiplicity of the zero of f at z.

Let an = (1− 1
n2 ).

So, here we have 1− an−z
1−anz = (1− an−z

1−anz )an
an

= (an−a2nz−a2n+anz)
(1−anz)an = (an+anz)(1−an)

(1−anz)an
If |z| ≤ r for some 0 < r < 1 then
(an+anz)(1−an)

(1−anz)an ≤ 1+r
1−r (1− an)

Hence we get
∑∞

n=1 |1− fn(z)| ≤
∑∞

n=1
1+r
1−r (1− an) = 1+r

1−r
∑∞

n=1(
1
n2 ) <∞.

So we get that
∑∞

n=1 |1 − fn(z)| converges uniformly on compact subsets of U and hence

f(z) = Π∞n=1

(1− 1
n2 )−z

1−(1− 1
n2 )z
∈ H(U).
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And, since the zeroes of fn are {an}, the zeroes of f are also {an} which has limit point
1. �

Problem. 5 Let f be a holomorphic function on C \ {0} such that f has a pole at 0 and
z2f(z) is bounded on {z : |z| ≥ a} for some positive number a. Prove that the residue of f
at 0 is necessarily 0.

Proof. Let f has a pole at 0 of order m > 0.

Then we can write f(z) = h(z)
zm

where h(z) is analytic in C and h(0) 6= 0

Since, z2f(z) is bounded on {z : |z| ≥ a} for some positive number a, we get that
f( 1

z
)

z2
is

bounded in {z : |z| < 1/a}.

Now, g(z) =
f( 1

z
)

z2
= h(1

z
)zm−2

Since g(z) is bounded in {z : |z| < 1/a} it can only have a removable singularity at 0.
But, h(z) =

∑∞
n=1 anz

n which says h(1
z
) =

∑∞
n=1 an

1
zn

if g(z) do not have any singularity at 0 then an should be 0 ∀n > m− 2
which forces h(z) =

∑m−2
n=1 anz

n and thus f(z) =
∑m−2

n=1 anz
n−m which shows that

Res0f = a−1 = 0

Now if g(z) do have a removable singularity at 0 then limz→0 zg(z) = 0 which implies
limz→0 h(1

z
)zm−1 = 0 which again shows that an should be 0 ∀n > m− 2

and the conclusion follows as above.
�

Problem. 6 Find an entire function whose real part is 1 + 2x2 − 2y2 + 3x3 − 9xy2

Proof. Let u(x, y) = 1 + 2x2 − 2y2 + 3x3 − 9xy2

. Then, ux = 4x+ 9x2 − 9y2 and uy = −4y − 18xy
and hence, uxx = 4 + 18x and uyy = −4− 18x
Thus we can see that uxx + uyy = 0 which says that u is a harmonic function.
Then from the following theorem:

Let G be either the whole plane C or some open unit disk. If u : G → R is a harmonic
function then u has a harmonic conjugate.

We get a harmonic conjugate for the given u(x, y) by the formula:
v(x, y) =

∫ y
0
ux(x, t)dt−

∫ x
0
uy(s, 0)ds

�

Problem. 7 Find all holomorphic functions on C \ {1} such that f has a pole of order 3 at
1 and Re[(z − 1)3f(z)] ≥ 3 for all z.
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Proof. Since f has a pole of order 3 at 1 then f(z) = h(z)
(z−1)3 , where h(z) is analytic in C and

h(1) 6= 0. Now its given that Re[(z − 1)3f(z)] ≥ 3 which implies Re[h(z)] ≥ 3. But h(z)
is an entire function whose real part is bounded below, hence it is a constant.Thus the only
possibilities of f(z) is scalar multiples of 1

(z−1)3 .

�

Problem. 8 Evaluate
∫∞
0

xsin(x)
x4+1

by the method of residues.

Proof.
∫∞
0

xsin(x)
x4+1

= Im(
∫∞
0

xeix

x4+1
)

Poles of the given function are eiθ where θ = π
4
, 3π

4
, 5π

4
, 7π

4
.

Let an = exp(i[π
4

+ (n− 1)π
2
] for n = 1, 2, 3, 4.

Now to find the given integral let us consider the contour γR be the path along the positive
real axis starting from the origin upto some R > (1/2) then circling back counter-clockwise
through the upper half-plane to the origin, letting the circle get infinitely big.
So a1 is the only pole inside γR
Thus,
Im(

∫∞
0

xeix

x4+1
) = Im(2πiRes(f ; a1))

where f(x) = xeix

x4+1
Since a1 is a simple poles of f(x).

Res(f ; a1) = limx→a1(x− a1)f(x) = a1e
ia1(a1 − a2)−1(a1 − a3)−1(a1 − a4)−1 = 1

4
eia1(a1)

−2

Hence, Im(2πiRes(f ; a1)) = Im(2πi1
4
eia1(a1)

−2) = Im(2π 1
4
eia1) = π

2e
1√
2

sin( 1√
2
).

Thus,
∫∞
0

xsin(x)
x4+1

= π

2e
1√
2

sin( 1√
2
).

�


