Problem. 1 Prove or Disprove the following:
If f is an entire function such that $\left|f\left(|z|^{1 / 3}\right)\right| \leq 2+3|z|^{300}$ then f is a polynomial.

Proof. Counterexample:
We know that $\sin (\mathrm{z})$ is an entire function which is not a polynomial.
and $\left|\sin \left(|z|^{1 / 3}\right)\right| \leq 1$ because $|z|^{1 / 3}$ is real. But the RHS of the inequality is always strictly greater than 1. Thus $\left|\sin \left(|z|^{1 / 3}\right)\right| \leq 2+3|z|^{300}$ but it is not a polynomial.
Problem. 2 Prove(in detail) that $\int_{-\pi}^{\pi} \frac{e^{i t}+z}{e^{i t}-z} \phi(t) d t$ is a holomorphic function of z on U for any continuous function ϕ on $[-\pi, \pi]$ with $\phi(-\pi)=\phi(\pi)$.
Problem. 3 Find the number of zeroes of the polynomial $1-2 z^{10}+(3 / 4) z^{n}$ in U for any integer $n>10$.

Proof. Since the given function is a polynomial it is an entire function. So it is a analytic function on the unit circle.
$1-2 z^{10}+(3 / 4) z^{n}$ has no zeroes on the unit circle as then we will have $1+(3 / 4) z^{n}=2 z^{10}$ but lhs has maximum absolute value to be $7 / 4$ which is strictly less than the absolute value of the rhs which is 2 .

Since $n>10$ we have $\left|z^{n}\right|<\left|z^{10}\right|$ in and thus $\left|1+(3 / 4) z^{n}\right|<1+(3 / 4) z^{10}<\left|-2 z^{10}\right|=2\left|z^{10}\right|$ Hence by Rouche's theorem we have $1-2 z^{10}+(3 / 4) z^{n}$ and $-2 z^{10}$ have the same number of zeroes in U which is 10 .
Problem. 4 Show that $\Pi_{n=1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)-z}{1-\left(1-\frac{1}{n^{2}}\right) z}$ converges to a holomorphic function uniformly in compact subsets of U and the set of zeroes has a limit point at 1 .
Proof. We use the following Theorem 15.6 from Real and Complex Analysis, Walter Rudin, 3rd edition, which says that:

Suppose $f_{n} \in H(\Omega)$ for $n=1,2 \ldots$ such that no f_{n} is identically zero in any component of Ω, and $\sum_{n=1}^{\infty}\left|1-f_{n}(z)\right|$ converges uniformly on compact subsets of Ω. Then the product $f(z)=$ $\Pi_{n=1}^{\infty} f_{n}(z)$ converges uniformly on compact subsets of Ω. Hence $f \in H(\Omega)$.Furthermore, we have $m(f ; z)=\sum_{n=1}^{\infty} m\left(f_{n} ; z\right)(z \in \Omega)$ where $m(f ; z)$ is defined to be the multiplicity of the zero of f at z.

Let $a_{n}=\left(1-\frac{1}{n^{2}}\right)$.
So, here we have $1-\frac{a_{n}-z}{1-a_{n} z}=\left(1-\frac{a_{n}-z}{1-a_{n} z}\right) \frac{a_{n}}{a_{n}}=\frac{\left(a_{n}-a_{n}^{2} z-a_{n}^{2}+a_{n} z\right)}{\left(1-a_{n} z\right) a_{n}}=\frac{\left(a_{n}+a_{n} z\right)\left(1-a_{n}\right)}{\left(1-a_{n} z\right) a_{n}}$
If $|z| \leq r$ for some $0<r<1$ then
$\frac{\left(a_{n}+a_{n} z\right)\left(1-a_{n}\right)}{\left(1-a_{n} z\right) a_{n}} \leq \frac{1+r}{1-r}\left(1-a_{n}\right)$
Hence we get $\sum_{n=1}^{\infty}\left|1-f_{n}(z)\right| \leq \sum_{n=1}^{\infty} \frac{1+r}{1-r}\left(1-a_{n}\right)=\frac{1+r}{1-r} \sum_{n=1}^{\infty}\left(\frac{1}{n^{2}}\right)<\infty$.
So we get that $\sum_{n=1}^{\infty}\left|1-f_{n}(z)\right|$ converges uniformly on compact subsets of U and hence $f(z)=\Pi_{n=1}^{\infty} \frac{\left(1-\frac{1}{n^{2}}\right)-z}{1-\left(1-\frac{1}{n^{2}}\right) z} \in H(U)$.

And, since the zeroes of f_{n} are $\left\{a_{n}\right\}$, the zeroes of f are also $\left\{a_{n}\right\}$ which has limit point 1.

Problem. 5 Let f be a holomorphic function on $\mathbb{C} \backslash\{0\}$ such that f has a pole at 0 and $z^{2} f(z)$ is bounded on $\{z:|z| \geq a\}$ for some positive number a. Prove that the residue of f at 0 is necessarily 0 .

Proof. Let f has a pole at 0 of order $m>0$.
Then we can write $f(z)=\frac{h(z)}{z^{m}}$ where $h(z)$ is analytic in \mathbb{C} and $h(0) \neq 0$
Since, $z^{2} f(z)$ is bounded on $\{z:|z| \geq a\}$ for some positive number a, we get that $\frac{f\left(\frac{1}{z}\right)}{z^{2}}$ is bounded in $\{z:|z|<1 / a\}$.

Now, $g(z)=\frac{f\left(\frac{1}{z}\right)}{z^{2}}=h\left(\frac{1}{z}\right) z^{m-2}$
Since $g(z)$ is bounded in $\{z:|z|<1 / a\}$ it can only have a removable singularity at 0 . But, $h(z)=\sum_{n=1}^{\infty} a_{n} z^{n}$ which says $h\left(\frac{1}{z}\right)=\sum_{n=1}^{\infty} a_{n} \frac{1}{z^{n}}$
if $g(z)$ do not have any singularity at 0 then a_{n} should be $0 \forall n>m-2$ which forces $h(z)=\sum_{n=1}^{m-2} a_{n} z^{n}$ and thus $f(z)=\sum_{n=1}^{m-2} a_{n} z^{n-m}$ which shows that $\operatorname{Res}_{0} f=a_{-1}=0$

Now if $g(z)$ do have a removable singularity at 0 then $\lim _{z \rightarrow 0} z g(z)=0$ which implies $\lim _{z \rightarrow 0} h\left(\frac{1}{z}\right) z^{m-1}=0$ which again shows that a_{n} should be $0 \forall n>m-2$ and the conclusion follows as above.

Problem. 6 Find an entire function whose real part is $1+2 x^{2}-2 y^{2}+3 x^{3}-9 x y^{2}$
Proof. Let $u(x, y)=1+2 x^{2}-2 y^{2}+3 x^{3}-9 x y^{2}$
. Then, $u_{x}=4 x+9 x^{2}-9 y^{2}$ and $u_{y}=-4 y-18 x y$ and hence, $u_{x x}=4+18 x$ and $u_{y y}=-4-18 x$
Thus we can see that $u_{x x}+u_{y y}=0$ which says that u is a harmonic function. Then from the following theorem:

Let G be either the whole plane \mathbb{C} or some open unit disk. If $u: G \rightarrow \mathbb{R}$ is a harmonic function then u has a harmonic conjugate.

We get a harmonic conjugate for the given $u(x, y)$ by the formula:
$v(x, y)=\int_{0}^{y} u_{x}(x, t) d t-\int_{0}^{x} u_{y}(s, 0) d s$

Problem. 7 Find all holomorphic functions on $\mathbb{C} \backslash\{1\}$ such that f has a pole of order 3 at 1 and $\operatorname{Re}\left[(z-1)^{3} f(z)\right] \geq 3$ for all z.

Proof. Since f has a pole of order 3 at 1 then $f(z)=\frac{h(z)}{(z-1)^{3}}$, where $h(z)$ is analytic in \mathbb{C} and $h(1) \neq 0$. Now its given that $\operatorname{Re}\left[(z-1)^{3} f(z)\right] \geq 3$ which implies $\operatorname{Re}[h(z)] \geq 3$. But $h(z)$ is an entire function whose real part is bounded below, hence it is a constant.Thus the only possibilities of $f(z)$ is scalar multiples of $\frac{1}{(z-1)^{3}}$.

Problem. 8 Evaluate $\int_{0}^{\infty} \frac{x \sin (x)}{x^{4}+1}$ by the method of residues.
Proof. $\int_{0}^{\infty} \frac{x \sin (x)}{x^{4}+1}=\operatorname{Im}\left(\int_{0}^{\infty} \frac{x e^{i x}}{x^{4}+1}\right)$
Poles of the given function are $e^{i \theta}$ where $\theta=\frac{\pi}{4}, \frac{3 \pi}{4}, \frac{5 \pi}{4}, \frac{7 \pi}{4}$.
Let $a_{n}=\exp \left(i\left[\frac{\pi}{4}+(n-1) \frac{\pi}{2}\right]\right.$ for $n=1,2,3,4$.
Now to find the given integral let us consider the contour γ_{R} be the path along the positive real axis starting from the origin upto some $R>(1 / 2)$ then circling back counter-clockwise through the upper half-plane to the origin, letting the circle get infinitely big.
So a_{1} is the only pole inside γ_{R}
Thus,
$\operatorname{Im}\left(\int_{0}^{\infty} \frac{x e^{i x}}{x^{4}+1}\right)=\operatorname{Im}\left(2 \pi i \operatorname{Res}\left(f ; a_{1}\right)\right)$
where $f(x)=\frac{x e^{i x}}{x^{4}+1}$ Since a_{1} is a simple poles of $f(x)$.
$\operatorname{Res}\left(f ; a_{1}\right)=\lim _{x \rightarrow a_{1}}\left(x-a_{1}\right) f(x)=a_{1} e^{i a_{1}}\left(a_{1}-a_{2}\right)^{-1}\left(a_{1}-a_{3}\right)^{-1}\left(a_{1}-a_{4}\right)^{-1}=\frac{1}{4} e^{i a_{1}}\left(a_{1}\right)^{-2}$
Hence, $\operatorname{Im}\left(2 \pi i \operatorname{Res}\left(f ; a_{1}\right)\right)=\operatorname{Im}\left(2 \pi i \frac{1}{4} e^{i a_{1}}\left(a_{1}\right)^{-2}\right)=\operatorname{Im}\left(2 \pi \frac{1}{4} e^{i a_{1}}\right)=\frac{\pi}{2^{\frac{1}{\sqrt{2}}}} \sin \left(\frac{1}{\sqrt{2}}\right)$.
Thus, $\int_{0}^{\infty} \frac{x \sin (x)}{x^{4}+1}=\frac{\pi}{2 e^{\frac{1}{\sqrt{2}}}} \sin \left(\frac{1}{\sqrt{2}}\right)$.

