Problem. 1 Prove or Disprove the following:

If f is an entire function such that $|f(|z|^{1/3})| \leq 2 + 3|z|^{300}$ then f is a polynomial.

Proof. Counterexample:

We know that sin(z) is an entire function which is not a polynomial.

and $|\sin(|z|^{1/3})| \leq 1$ because $|z|^{1/3}$ is real. But the RHS of the inequality is always strictly greater than 1. Thus $|\sin(|z|^{1/3})| \leq 2+3|z|^{300}$ but it is not a polynomial.

Problem. 2 Prove(in detail) that $\int_{-\pi}^{\pi} \frac{e^{it}+z}{e^{it}-z}\phi(t)dt$ is a holomorphic function of z on U for any continuous function ϕ on $[-\pi,\pi]$ with $\phi(-\pi) = \phi(\pi)$.

Problem. 3 Find the number of zeroes of the polynomial $1 - 2z^{10} + (3/4)z^n$ in U for any integer n > 10.

Proof. Since the given function is a polynomial it is an entire function. So it is a analytic function on the unit circle.

 $1 - 2z^{10} + (3/4)z^n$ has no zeroes on the unit circle as then we will have $1 + (3/4)z^n = 2z^{10}$ but lhs has maximum absolute value to be 7/4 which is strictly less than the absolute value of the rhs which is 2.

Since n > 10 we have $|z^n| < |z^{10}|$ in and thus $|1 + (3/4)z^n| < 1 + (3/4)z^{10} < |-2z^{10}| = 2|z^{10}|$ Hence by Rouche's theorem we have $1 - 2z^{10} + (3/4)z^n$ and $-2z^{10}$ have the same number of zeroes in U which is 10.

Problem. 4 Show that $\prod_{n=1}^{\infty} \frac{(1-\frac{1}{n^2})-z}{1-(1-\frac{1}{n^2})z}$ converges to a holomorphic function uniformly in compact subsets of U and the set of zeroes has a limit point at 1.

Proof. We use the following Theorem 15.6 from Real and Complex Analysis , Walter Rudin, 3rd edition, which says that:

Suppose $f_n \in H(\Omega)$ for n = 1, 2... such that no f_n is identically zero in any component of Ω , and $\sum_{n=1}^{\infty} |1 - f_n(z)|$ converges uniformly on compact subsets of Ω . Then the product $f(z) = \prod_{n=1}^{\infty} f_n(z)$ converges uniformly on compact subsets of Ω . Hence $f \in H(\Omega)$. Furthermore, we have $m(f; z) = \sum_{n=1}^{\infty} m(f_n; z)(z \in \Omega)$ where m(f; z) is defined to be the multiplicity of the zero of f at z.

Let $a_n = (1 - \frac{1}{n^2})$. So, here we have $1 - \frac{a_n - z}{1 - a_n z} = (1 - \frac{a_n - z}{1 - a_n z})\frac{a_n}{a_n} = \frac{(a_n - a_n^2 z - a_n^2 + a_n z)}{(1 - a_n z)a_n} = \frac{(a_n + a_n z)(1 - a_n)}{(1 - a_n z)a_n}$ If $|z| \le r$ for some 0 < r < 1 then $\frac{(a_n + a_n z)(1 - a_n)}{(1 - a_n z)a_n} \le \frac{1 + r}{1 - r}(1 - a_n)$ Hence we get $\sum_{n=1}^{\infty} |1 - f_n(z)| \le \sum_{n=1}^{\infty} \frac{1 + r}{1 - r}(1 - a_n) = \frac{1 + r}{1 - r} \sum_{n=1}^{\infty} (\frac{1}{n^2}) < \infty$. So we get that $\sum_{n=1}^{\infty} |1 - f_n(z)|$ converges uniformly on compact subsets of U and hence $f(z) = \prod_{n=1}^{\infty} \frac{(1 - \frac{1}{n^2}) - z}{1 - (1 - \frac{1}{n^2})z} \in H(U)$. And, since the zeroes of f_n are $\{a_n\}$, the zeroes of f are also $\{a_n\}$ which has limit point 1.

Problem. 5 Let f be a holomorphic function on $\mathbb{C} \setminus \{0\}$ such that f has a pole at 0 and $z^2 f(z)$ is bounded on $\{z : |z| \ge a\}$ for some positive number a. Prove that the residue of f at 0 is necessarily 0.

Proof. Let f has a pole at 0 of order m > 0. Then we can write $f(z) = \frac{h(z)}{z^m}$ where h(z) is analytic in \mathbb{C} and $h(0) \neq 0$ Since, $z^2 f(z)$ is bounded on $\{z : |z| \ge a\}$ for some positive number a, we get that $\frac{f(\frac{1}{z})}{z^2}$ is bounded in $\{z : |z| < 1/a\}$.

Now, $g(z) = \frac{f(\frac{1}{z})}{z^2} = h(\frac{1}{z})z^{m-2}$ Since g(z) is bounded in $\{z : |z| < 1/a\}$ it can only have a removable singularity at 0. But, $h(z) = \sum_{n=1}^{\infty} a_n z^n$ which says $h(\frac{1}{z}) = \sum_{n=1}^{\infty} a_n \frac{1}{z^n}$

if g(z) do not have any singularity at 0 then a_n should be $0 \forall n > m-2$ which forces $h(z) = \sum_{n=1}^{m-2} a_n z^n$ and thus $f(z) = \sum_{n=1}^{m-2} a_n z^{n-m}$ which shows that $Res_0 f = a_{-1} = 0$

Now if g(z) do have a removable singularity at 0 then $\lim_{z\to 0} zg(z) = 0$ which implies $\lim_{z\to 0} h(\frac{1}{z})z^{m-1} = 0$ which again shows that a_n should be $0 \forall n > m-2$ and the conclusion follows as above.

Problem. 6 Find an entire function whose real part is $1 + 2x^2 - 2y^2 + 3x^3 - 9xy^2$

Proof. Let $u(x, y) = 1 + 2x^2 - 2y^2 + 3x^3 - 9xy^2$. Then, $u_x = 4x + 9x^2 - 9y^2$ and $u_y = -4y - 18xy$ and hence, $u_{xx} = 4 + 18x$ and $u_{yy} = -4 - 18x$ Thus we can see that $u_{xx} + u_{yy} = 0$ which says that u is a harmonic function. Then from the following theorem:

Let G be either the whole plane \mathbb{C} or some open unit disk. If $u: G \to \mathbb{R}$ is a harmonic function then u has a harmonic conjugate.

We get a harmonic conjugate for the given u(x, y) by the formula: $v(x, y) = \int_0^y u_x(x, t) dt - \int_0^x u_y(s, 0) ds$

Problem. 7 Find all holomorphic functions on $\mathbb{C} \setminus \{1\}$ such that f has a pole of order 3 at 1 and $\operatorname{Re}[(z-1)^3 f(z)] \geq 3$ for all z.

Proof. Since f has a pole of order 3 at 1 then $f(z) = \frac{h(z)}{(z-1)^3}$, where h(z) is analytic in \mathbb{C} and $h(1) \neq 0$. Now its given that $\operatorname{Re}[(z-1)^3 f(z)] \geq 3$ which implies $\operatorname{Re}[h(z)] \geq 3$. But h(z) is an entire function whose real part is bounded below, hence it is a constant. Thus the only possibilities of f(z) is scalar multiples of $\frac{1}{(z-1)^3}$.

Problem. 8 Evaluate $\int_0^\infty \frac{x\sin(x)}{x^4+1}$ by the method of residues.

Proof. $\int_0^\infty \frac{x\sin(x)}{x^4+1} = Im(\int_0^\infty \frac{xe^{ix}}{x^4+1})$

Poles of the given function are $e^{i\theta}$ where $\theta = \frac{\pi}{4}, \frac{3\pi}{4}, \frac{5\pi}{4}, \frac{7\pi}{4}$. Let $a_n = \exp(i[\frac{\pi}{4} + (n-1)\frac{\pi}{2}])$ for n = 1, 2, 3, 4.

Now to find the given integral let us consider the contour γ_R be the path along the positive real axis starting from the origin up to some R > (1/2) then circling back counter-clockwise through the upper half-plane to the origin, letting the circle get infinitely big. So a_1 is the only pole inside γ_R Thus, $Im(\int_0^\infty \frac{xe^{ix}}{x^4+1}) = Im(2\pi i Res(f; a_1))$ where $f(x) = \frac{xe^{ix}}{x^4+1}$ Since a_1 is a simple poles of f(x). $Res(f; a_1) = \lim_{x \to a_1} (x - a_1)f(x) = a_1e^{ia_1}(a_1 - a_2)^{-1}(a_1 - a_3)^{-1}(a_1 - a_4)^{-1} = \frac{1}{4}e^{ia_1}(a_1)^{-2}$ Hence, $Im(2\pi i Res(f; a_1)) = Im(2\pi i \frac{1}{4}e^{ia_1}(a_1)^{-2}) = Im(2\pi \frac{1}{4}e^{ia_1}) = \frac{\pi}{2e^{\frac{1}{\sqrt{2}}}}sin(\frac{1}{\sqrt{2}})$.

Thus, $\int_0^\infty \frac{x\sin(x)}{x^4+1} = \frac{\pi}{2e^{\frac{1}{\sqrt{2}}}}\sin(\frac{1}{\sqrt{2}}).$