INDIAN STATISTICAL INSTITUTE, BANGALORE CENTRE B.MATH - Third Year, First Semester, 2002-03 Statistics - III, Semesteral Examination, November 27, 2002

- (10) 1. Consider the model $y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, i = 1, ..., n, where ϵ_i are uncorrelated errors with mean 0 and variance σ^2 . Show that the coefficient of determination in this case is the square of the sample correlation coefficient between y and x.
- (10) 2. Consider the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$, where \mathbf{X} (which has (1, ..., 1)' as its first column) has full column rank. Let $\epsilon \sim N_n(\mathbf{0}, \sigma^2 I_n)$. Further, let $\hat{\mathbf{Y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ where $\hat{\boldsymbol{\beta}}$ is the least squares estimator of $\boldsymbol{\beta}$. Find the joint probability distribution of $\frac{1}{n}\sum_{i=1}^n y_i$ and $\sum_{i=1}^n (y_i \hat{y}_i)^2$.
- (10) 3. Consider the model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \epsilon$, where \mathbf{X} does not have full column rank, and ϵ has mean 0 and covariance matrix $\sigma^2 I_n$. Let $\hat{\boldsymbol{\beta}} = (\mathbf{X}'\mathbf{X})^-\mathbf{X}'\mathbf{Y}$, where $(\mathbf{X}'\mathbf{X})^-$ is any generalized inverse of $(\mathbf{X}'\mathbf{X})$. Show that $\hat{\boldsymbol{\beta}}$ minimizes $(\mathbf{Y} \mathbf{X}\boldsymbol{\beta})'(\mathbf{Y} \mathbf{X}\boldsymbol{\beta})$.
- (10) 4. Let $\mathbf{X} = (X_1, X_2, X_3, X_4)'$ have mean 0 and covariance matrix $\sigma^2 \{(1-a)I_4 + a\mathbf{1}\mathbf{1}'\}$, for some 0 < a < 1 and where 1 is the vector with all elements equal to 1. Find the partial correlations, $\rho_{12.3}$ and $\rho_{12.34}$.
- (10) 5. Four chemists are asked to determine the percentage of methyl alcohol in a certain chemical compound. Each chemist makes three determinations, and the results are the following:

Chemist	Methyl Alcohol (%)		
1	84.99	84.04	84.38
2	85.15	85.13	84.88
3	84.72	84.48	85.16
4	84.20	84.10	84.55

Describe the methodology for determining whether the chemists significantly differ in their chemical analysis. Numerical computations are not needed.