Physics IV Indian Statistical Institute, Bangalore. B.Math III Year Final Exam: May 3, 2013

Total Marks: 70. Time: Three Hours.

NOTE: Please note that Question 5 needs to be answered in the question sheet and submitted along with the rest of the answer sheets.

Question 1. [15]

The Hamiltonian of a planar rigid body with moment of inertia I rotating freely in the xy plane is given by $H=(-\frac{\hbar^2}{2I})\frac{\partial^2}{\partial \phi^2}$ where ϕ is the angle of rotation.

- a.) Show that the allowed energy levels of the system are either zero or multiples of $\frac{\hbar^2}{2I}$. What are the corresponding energy eigenstates?
- b.) If at time t=0 the initial wave function $\psi(x,t=0)=A\sin^2\phi$, where A is the normalization constant, what is $\psi(x,t)$ for t>0?

Question 2. [15]

Consider a 1-dim quantum particle of mass m in a potential $V(x) = \infty$ for x < 0, V(x) = 0 for $0 \le x \le 0$, and $V(x) = V_0$ for $x \ge a$.

- a.) Show that the bound state energies E, $(0 \le E \le V_0)$ are given by the equation $\tan \frac{\sqrt{2mEa}}{\hbar} = -\sqrt{\frac{E}{V_0-E}}$
- b.) Without solving the equation further, sketch the ground state wave function.

Question 3. [15]

A 1-dim harmonic oscillator is in an energy eigenstate that is described by the wave function $N(16\xi^4-48\xi^2+12)e^{-\xi^2/2}$ where N is a normalization constant, and $\xi=x(\frac{m\omega}{\hbar})^{\frac{1}{2}}$ in usual notation.

- a.) Determine the energy of this state. (An answer without accompanying cogent reasoning and/or calculation will not be given credit.)
- b.) Determine the wave function for the next higher energy eigenstate as a function of ξ . You need not find the value of the normalization constant.

[Potentially useful formula $a = \frac{1}{\sqrt{2m\hbar\omega}}(m\omega x + ip), p = -i\hbar\frac{\partial}{\partial x}$]

Answer Either Question 4a OR 4b.

Question 4a[10]

- a.) Show that for any 3-dim spherically symmetric potential, $\frac{d}{dt} < L_x >= 0$.
- b.) What is the value of $< l, m | L_x | l, m >$ where | l, m > is an eigenstate of L^2 and L_z ?

Question 4b[10]

An object of rest mass m_1 moving with three momentum $\overrightarrow{p_1}$ collides and coalesces with a stationary object with rest mass m_2 . Show that the rest mass M of the compound object thus formed is given by

$$M^2c^2 = m_1^2c^2 + m_2^2c^2 + 2m_2(|p_1|^2c^2 + m_1^2c^4)^{1/2}$$

WRITE YOUR NAME HERE IN BLOCK LETTERS

PLEASE WRITE YOUR ANSWERS IN THIS SHEET AND SUB-MIT ALONG WITH OTHER SHEETS. Use other sheets if you need to do rough work, but you need not submit those rough works

Question 5.[1+2+2+2+3+3+2=15]

5a.) Among the operators x, y, p_z, p_y which pairs do NOT commute? Write your answer in the space below.

Please CIRCLE the right answer in 5b, c, and d

5b.) What is the Hermitian Conjugate of $(x + \frac{\partial}{\partial x})$?

(i) $i(x+\frac{\partial}{\partial x})$ (ii) $(x+i\frac{\partial}{\partial x})$ (iii) $(x-i\frac{\partial}{\partial x})$ (iv) $(x-\frac{\partial}{\partial x})$

5c.) For 1-dim harmonic oscillator,
the matrix element $< n \mid \frac{1}{2} m \omega^2 x^2 \mid n+1 >$ is

(i) $n(n+1)\frac{\hbar\omega}{2}$ (ii) $(2n+1)\frac{\hbar\omega}{2}$ (iii) zero (iv) none of these

5d.) An electron confined to the ground state in an one dimensional box of width $10^{-10}m$ has energy 38 ev. A photon hits the electron and moves it to the NEXT higher energy level. What minimum energy must this photon have?

 $\hbox{(i) $114ev} \quad \hbox{(ii) $38ev} \quad \hbox{(iii) $19ev} \quad \hbox{(iv) $304ev}$

- 5e.) A 2-dim isotropic harmonic osciilator of angular frequency ω is in an energy eigenstate of energy $4\hbar\omega$ What is its degeneracy (Write your answer in the space just below this question)
- 5f.) Consider a two state system. Let the state $|1\rangle$ be represented by

$$\frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

and let $\mid 2 \rangle$ represent the state orthonormal to $\mid 1 \rangle$. What is the 2x2 matrix that represents the operator $\mid 2 \rangle \langle 2 \mid$? (Write your answer in the space just below this question)

5g.) Consider a Hydrogen atom in an eigenstate that has total angular momentum $12\hbar^2$ and has the highest component of the angular momentum in the z direction. In (r, θ, ϕ) coordinate, what is the ϕ dependence for this state? (Write your answer in the space just below this question)