I Semestral Exam 2002-2003 B. Math. Hons. III year Complex Analysis

Date: 20-11-2002 Max. Marks: 60 Instructor: A. Sitaram

Answer all questions. Each question carries 10 marks.

You may use your classroom notes in the exam.

- 1. Decide if $f(x) = \frac{x+y+z}{(x^2+y^2+z^2)^{3/2}}$ is harmonic in $\mathbb{R}^3 \setminus \{(0,0,0)\}$. Justify your answer.
- 2. f is harmonic on \mathbb{R}^3 and $\left|\frac{1}{f(x,y,z)}\right| \geq x^2 + y^2 + z^2$ if $x^2 + y^2 + z^2 \geq 3$. Prove that $f \equiv 0$.
- 3. Construct an explicit map of $\mathbb C$ into $\mathbb C$ of the form $z \to \frac{az+b}{cz+d}$, which maps $\{z:z \text{ above the line } y=x\}$ onto $\{z:|z-5|<3\}$.
- 4. f(z) is holomorphic on $\mathbb{C}\setminus\{0\}$ and has a simple pole at 0. If $f(z)\to 0$ as $|z|\to \infty$, prove that $f(z)=\frac{constant}{z}$.
- 5. Evaluate $\int_{|z-8|=1} \frac{dz}{(2Log \ z-3)(z-8)}.$
- 6. Let $f(z) = \sum_{n=1}^{\infty} \frac{1}{z^2 n^2}$ and $S_N(z) = \sum_{n=1}^{N} \frac{1}{(z^2 n^2)}$. Prove that $S_N \to f$ uniformly on compact subsets of $\mathbb{C} \setminus \mathbb{Z}$. Is f holomorphic? Justify your answer.
- 7. Let $f(z) = Log(e^{i\pi/4}z)$. Find the maximal open set Ω on which f is holomorphic. Find the value of f(x+ix), x > 0.