Indian Statistical Institute
M.Math I Year
First Semester Examination, 2005-2006
General Topology

Time: 3 hrs Date: 25-11-05

Attempt any five questions. All questions carry equal marks. Any result proved in the class may be cited and used without proof.

1. a) Let X be compact and Hausdorff, $A \subseteq X$ be closed. Show that X/A is homeomorphic to the one-point compactification of $X - A$.

b) Describe explicitly the quotient topology on the quotient group \mathbb{R}/\mathbb{Q}, \mathbb{R} being the real line, \mathbb{Q} the set of rationals, treated as a subgroup of the group $(\mathbb{R}, +)$.

2. a) Prove that $GL(n, \mathbb{C})$ is path connected (hint; use the polynomial $p(z) = \det((1 - z)I + zA)$ for $A \in GL(n, \mathbb{C}))$.

b) Prove that any discrete subgroup of S^1 must necessarily be finite cyclic.

3. a) Let X be any space. Show that CX, the cone over X is contractible.

b) Show that S^{n-1} is a deformation retract of $S^n - \{N, S\}$, N and S being the north and south poles of S^n respectively.

4. Let $f, g : X \to S^n$ be continuous maps with $f(x) \neq -g(x) \ \forall \ x \in X$. Prove that $f \simeq g$.

5. Let X be a space. Then show that X is path connected if and only if all constant maps: $X \to X$ are homotopic to each other.

6. Let $R_\theta : S^1 \to S^1$ be a rotation by angle θ. Show that R_θ is homotopic to the identity map: $S^1 \to S^1$.

7. Let G be a connected group, H a discrete normal subgroup. Prove that $H \subseteq Z(G)$, the centre of G.

1