- 1. **Problem:** Let X be a normed linear space. Show that X^* is a Banach space. **Solution:** See the proposition 2.3.3 from the book "Functional Analysis" by S. Kesavan. It tells that for any two normed linear spaces V, W the set of all bounded linear map from V to W is a Banach space if W is a banach space. For dual space of a normed linear space the codomain is \mathbb{C} which is a Hilbert space and hence we are done.
- 2. **Problem:** State the Open mapping theorem. State and prove the Closed graph theorem. Solution: Let X, Y are two Banach spaces and $A \in \mathcal{B}(X, Y)$. If A is surjective, then it is open i.e. it maps open set to open set. For Closed graph theorem see page number: 44 from the book "Note on Functional Analysis" by Rajendra Bhatia.
- 3. **Problem:** Let $\{f_n\}_{n\geq 1} \subset L^4([0,1])$ be such that $||f_n|| \to 0$. Show that for any $g \in L^{\frac{4}{3}}([0,1])$, $\int f_n g dx \to 0$. **Solution:** $|\int f_n g dx| \leq \int |f_n g| dx \leq ||f_n||_4 ||g||_{\frac{4}{3}}$ using Holder's inequality. But, it is given that $||g||_{\frac{4}{3}}$ is bounded so $||f_n||_4 ||g||_{\frac{4}{3}} \to 0$ as $n \to \infty$ i.e. $\int f_n g dx \to 0$ as $n \to \infty$.
- 4. **Problem:** Let A be a commutative Banach algebra with identity e. Let I be a proper closed ideal. Show that the qutient space A/I is a banach algebra. **Solution:** As, I is a proper ideal A/I is nonzero. From page number 20 of the book "Note on Functional Analysis" by Rajendra Bhatia, we know that A/I is a Banach space with respect to the norm defined by $||x + I|| := inf\{||x + i|| : i \in I\}$ where $x \in A$. Multiplication in A/I is given by $(x_1 + I)(x_2 + I) := (x_1x_1 + I)$. As A is a Banach algebra, multiplication in A/I is associative. So, only remaining part is $||(x_1 + I)(x_2 + I)|| \le ||(x_1 + I)||||(x_2 + I)||$ i.e. to show that $||(x_15x_2 + I)|| \le ||(x_1 + I)||||(x_2 + I)||$. For $i_1, i_2 \in I$, $(x_1 + i_1)(x_2 + i_2) = (x_1x_2 + x_1i_2 + i_1x_2 + i_1i_2) \in (x_1x_2 + I)$. $||x_1x_2 + I|| := inf\{||x_1x_2 + i|| : i \in I\} \le inf\{||(x_1 + i_1)(x_2 + i_2)|| : i_1, i_2 \in I\} \le inf\{||(x_1 + i_1)||||(x_2 + I)||$.
- 5. **Problem:** Show that any finite dimensional subspace of a normed linear space is closed. **Solution:** See Corollary 2.3.2 from the book "Functional Analysis" by S. Kesavan.
- 6. Problem: State and prove the Banach-Alaoglu theorem.Solution: See page no. 74 of the book "Note on Functional Analysis" by Rajendra Bhatia.
- 7. **Problem:** Show that any separable Hilbert space is isomorphic to l^2 . **Solution:** See Theorem 10. from page no. 96 of the book "Note on Functional Analysis" by Rajendra Bhatia.
- 8. Problem: Let A be a Banach algebra with identity e. Show that for any complex homomorphism φ : A → C, kerφ is a closed ideal.
 Solution: We first show that I := kerφ is an ideal of A.
 Let x ∈ kerφ and a ∈ A, then φ(ax) = φ(a)φ(x) = 0 and also φ(xa) = φ(x)φ(a) = 0 i.e. ax, xa ∈ kerφ and hence I is a two sided ideal of A.
 Now, we will show that φ is continuous. As, for a ∈ A, φ(a φ(a)) = 0 therefore φ(a) ∈ sp(a) i.e. |φ(a)| ≤ ||a||, which shows that φ is continuous.

To show that, I is closed, consider a sequence $\{x_n\} \in I$ coverging to $x \in A$. Now, as ϕ is continuos we get, $\phi(x) = \lim(\phi(x_n)) = 0$ i.e. $x \in I$. Hence, we are done.

- 9. **Problem:** Show that any unitary operator on a complex Hilbert space is an isometry and preserves the the inner product. **Solution:** $U \in \mathcal{B}(H)$ is said to be unitary if $U^*U = I$ and $UU^* = I$. First condition tells that U is an isometry and using Polarisation identity we show that $U^*U = I$ iff $\langle Ux, Uy \rangle = \langle x, y \rangle$ for any $x, y \in H$.
- 10. **Problem:** Let $\triangle = \{z : |z| \le 1\}$. Let $A = \{f \in C(\triangle) : f \text{ is analytic in the interior}\}$. Show that A is a Banach algebra with identity.

Solution: Multiplication in A is pointwise multiplication and addition is pointwise addition. For $f \in A$ we define norm as ||f|| := sup|f(z)|. $z \in \triangle$

To show that A is closed in this norm, let a sequnce $\{f_n\}$ converging to f in this sup norm. It is clear that $f \in \mathbb{C}(\triangle)$ because the convergence is uniform.

But to check that f is analytic in the interior of \triangle we use Moreara's theorem. Let C is a closed curve in \triangle .

Now, using uniform convergence of $\{f_n\}$ and holomorphicity of f_n we get $\oint_C f(z)dz = \oint_C lim f_n(z)dz = lim \oint_C f_n(z)dz = 0.$ Hence, A is closed with respect to the above norm.

Let $f, g \in A$. Then, $||fg|| = \sup_{z \in \Delta} |fg(z)| = \sup_{z \in \Delta} |f(z)||g(z)| \le \left(\sup_{z \in \Delta} |f(z)|\right) \left(\sup_{z \in \Delta} |g(z)|\right) = ||f|| ||g||$. Therefore, A is a Banach algebra. We call this Therefore, A is a Banach algebra. We call this as disc algebra