1. Problem: Let X be a normed linear space. Show that X^{*} is a Banach space.

Solution: See the proposition 2.3.3 from the book "Functional Analysis" by S. Kesavan. It tells that for any two normed linear spaces V, W the set of all bounded linear map from V to W is a Banach space if W is a banach space. For dual space of a normed linear space the codomain is \mathbb{C} which is a Hilbert space and hence we are done.
2. Problem: State the Open mapping theorem. State and prove the Closed graph theorem.

Solution: Let X, Y are two Banach spaces and $A \in \mathcal{B}(X, Y)$. If A is surjective, then it is open i.e. it maps open set to open set.

For Closed graph theorem see page number: 44 from the book "Note on Functional Analysis" by Rajendra Bhatia.
3. Problem: Let $\left\{f_{n}\right\}_{n \geq 1} \subset L^{4}([0,1])$ be such that $\left\|f_{n}\right\| \rightarrow 0$. Show that for any $g \in L^{\frac{4}{3}}([0,1])$, $\int f_{n} g d x \rightarrow 0$.
Solution: $\left|\int f_{n} g d x\right| \leq \int\left|f_{n} g\right| d x \leq\left\|f_{n}\right\|_{4}\|g\|_{\frac{4}{3}}$ using Holder's inequality.
But, it is given that $\|g\|_{\frac{4}{3}}$ is bounded so $\left\|f_{n}\right\|_{4}\|g\|_{\frac{4}{3}} \rightarrow 0$ as $n \rightarrow \infty$ i.e. $\int f_{n} g d x \rightarrow 0$ as $n \rightarrow \infty$.
4. Problem: Let A be a commutative Banach algebra with identity e. Let I be a proper closed ideal. Show that the qutient space A / I is a banach algebra.
Solution: As, I is a proper ideal A / I is nonzero. From page number 20 of the book "Note on Functional Analysis" by Rajendra Bhatia, we know that A / I is a Banach space with respect to the norm defined by $\|x+I\|:=\inf \{\|x+i\|: i \in I\}$ where $x \in A$.
Multiplication in A / I is given by $\left(x_{1}+I\right)\left(x_{2}+I\right):=\left(x_{1} x_{1}+I\right)$. As A is a Banach algebra, multiplication in A / I is associative. So, only remaining part is $\left\|\left(x_{1}+I\right)\left(x_{2}+I\right)\right\| \leq\left\|\left(x_{1}+I\right)\right\|\left\|\left(x_{2}+I\right)\right\|$ i.e. to show that $\left\|\left(x_{1} 5 x_{2}+I\right)\right\| \leq\left\|\left(x_{1}+I\right)\right\|\left\|\left(x_{2}+I\right)\right\|$.

For $i_{1}, i_{2} \in I,\left(x_{1}+i_{1}\right)\left(x_{2}+i_{2}\right)=\left(x_{1} x_{2}+x_{1} i_{2}+i_{1} x_{2}+i_{1} i_{2}\right) \in\left(x_{1} x_{2}+I\right)$.
$\left\|x_{1} x_{2}+I\right\|:=\inf \left\{\left\|x_{1} x_{2}+i\right\|: i \in I\right\} \leq \inf \left\{\left\|\left(x_{1}+i_{1}\right)\left(x_{2}+i_{2}\right)\right\|: i_{1}, i_{2} \in I\right\} \leq \inf \left\{\|\left(x_{1}+\right.\right.$ $\left.i_{1}\right)\left\|\left\|\left(x_{2}+i_{2}\right)\right\|: i_{1}, i_{2} \in I\right\}=\left\|\left(x_{1}+I\right)\right\|\left\|\left(x_{2}+I\right)\right\|$.
5. Problem: Show that any finite dimensional subspace of a normed linear space is closed. Solution: See Corollary 2.3.2 from the book "Functional Analysis" by S. Kesavan.
6. Problem: State and prove the Banach-Alaoglu theorem.

Solution: See page no. 74 of the book "Note on Functional Analysis" by Rajendra Bhatia.
7. Problem: Show that any separable Hilbert space is isomorphic to l^{2}.

Solution: See Theorem 10. from page no. 96 of the book "Note on Functional Analysis" by Rajendra Bhatia.
8. Problem: Let A be a Banach algebra with identity e. Show that for any complex homomorphism $\phi: A \rightarrow \mathbb{C}, \operatorname{ker} \phi$ is a closed ideal.
Solution: We first show that $I:=\operatorname{ker} \phi$ is an ideal of A.
Let $x \in \operatorname{ker} \phi$ and $a \in A$, then $\phi(a x)=\phi(a) \phi(x)=0$ and also $\phi(x a)=\phi(x) \phi(a)=0$ i.e. $a x, x a \in \operatorname{ker} \phi$ and hence I is a two sided ideal of A.
Now, we will show that ϕ is continous. As, for $a \in A, \phi(a-\phi(a))=0$ therefore $\phi(a) \in \operatorname{sp}(a)$ i.e. $|\phi(a)| \leq\|a\|$, which shows that ϕ is continuous.

To show that, I is closed, consider a sequence $\left\{x_{n}\right\} \in I$ coverging to $x \in A$. Now, as ϕ is continuos we get, $\phi(x)=\lim \left(\phi\left(x_{n}\right)\right)=0$ i.e. $x \in I$. Hence, we are done.
9. Problem: Show that any unitary operator on a complex Hilbert space is an isometry and preserves the the inner product.
Solution: $\quad U \in \mathcal{B}(H)$ is said to be unitary if $U^{*} U=I$ and $U U^{*}=I$. First condition tells that U is an isometry and using Polarisation identity we show that $U^{*} U=I$ iff $\langle U x, U y>=<x, y>$ for any $x, y \in H$.
10. Problem: Let $\triangle=\{z:|z| \leq 1\}$. Let $A=\{f \in C(\triangle): f$ is analytic in the interior $\}$. Show that A is a Banach algebra with identity.
Solution: Multiplication in A is pointwise multiplication and addition is pointwise addition. For $f \in A$ we define norm as $\|f\|:=\sup _{z \in \triangle}|f(z)|$.
To show that A is closed in this norm, let a sequnce $\left\{f_{n}\right\}$ converging to f in this sup norm.
It is clear that $f \in \mathbb{C}(\triangle)$ because the convergence is uniform.
But to check that f is analytic in the interior of \triangle we use Moreara's theorem. Let C is a closed curve in \triangle.
Now, using uniform convergence of $\left\{f_{n}\right\}$ and holomorphicity of f_{n} we get
$\oint_{C} f(z) d z=\oint_{C} \lim f_{n}(z) d z=\lim \oint_{C} f_{n}(z) d z=0$.
Hence, A is closed with respect to the above norm.
Let $f, g \in A$. Then, $\|f g\|=\sup _{z \in \triangle}|f g(z)|=\sup _{z \in \triangle}\left|f(z)\left\|g(z) \mid \leq\left(\sup _{z \in \triangle}|f(z)|\right)\left(\sup _{z \in \triangle}|g(z)|\right)=\right\| f\| \| g \|\right.$.
Therefore, A is a Banach algebra. We call this as disc algebra.

