Nurture Programme 2007-2010 at I.S.I. Bangalore Problems in number theory - 2nd set

Q 1.

For odd primes $p \neq q$, prove that the quadratic reciprocity law is equivalent to the statement

$$(\frac{p}{q}) = 1 \Leftrightarrow q \equiv \pm \alpha^2 \mod 4p$$

for some odd α .

Q 2.

Show that $(1!)^2 + (2!)^2 + \dots + (n!)^2$ is not a square when n > 1.

Q 3.

Prove that $2^n - 1$ cannot divide $3^n - 1$ for n > 1.

Q 4.

Prove that no square can be of the form $x^3 + 7$.

Q 5.

Show that the polynomial $(x^2 - 13)(x^2 - 17)(x^2 - 221)$ has no solutions in integers whereas it has solutions modulo p for every prime p.

Q 6.

Prove that the binary quadratic forms $3x^2 + xy + 4y^2$ and $3x^2 - xy + 4y^2$ are not equivalent forms although they represent the same set of integers.

Q 7.

Let $n \equiv 1 \mod 4$ be a nonsquare positive integer such that $n = a^2 + 4b^2$ for some integers a, b. Assume that $x^2 - ny^2 = -1$ has an integer solution $(x, y) = (t_1, t_2)$. Show that n = rs for some r, s where $rx^2 - sy^2 = a$ has an integer solution. What do you deduce when a prime p > 2 is expressed as a sum of two squares.

P.T.O.

Q 8.

Consider the following 2-dimensional analogue $p_2(n)$ of the partition function. Write each rectangular array summing to n where the numbers are non-increasing both from left to right and from top to bottom. For example, p(4) = 5 while $p_2(4) = 13$ as the thirteen 2-dimensional partitions of 4 are (apart from 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1):

We have seen that $1 + \sum_{n \ge 1} p(n)t^n = \prod_{k \ge 1} \frac{1}{1-t^k}$. Find an analogous expression for the generating function $1 + \sum_{n \ge 1} p_2(n)t^n$ of $p_2(n)$. What guess would you make for the generating function higher-dimensional partitions?

Q 9.

Assume (learn this proof, if possible) that for a given natural number n, the number $r_2(n)$ of ordered pairs of integers (x, y) with $x^2 + y^2 = n$ equals $4\#\{d|n, d \equiv 1 \mod 4\} - 4\#\{d|n, d \equiv 3 \mod 4\}$. Using this, prove :

$$\sum_{r \ge 0} [\sqrt{n - r^2}] = \sum_{k \ge 0} (-1)^i \left[\frac{n}{2k + 1} \right]$$

Q 10.

(i) Show that the above equality for $r_2(n)$ can be rephrased as

$$\sum_{n \ge 1} \frac{r_2(n)}{n^s} = 4\left(\sum_{n \ge 1} \frac{1}{n^s}\right)\left(\sum_{n \ge 1} \frac{(-1)^{n-1}}{(2n-1)^s}\right)$$

(ii) If $\sum_{n\geq 1} \frac{a_n}{n^s} = (\sum_{n\geq 1} \frac{1}{n^s})(\sum_{n\geq 1} \frac{b_n}{n^s})$, prove that $\sum_{n\geq 1} a_n t^n = \sum_{n\geq 1} \frac{b_n x^n}{1-x^n}$. (iii) Use (i),(ii) to deduce that the number $r_8(n)$ of ways of expressing n as a sum of 8 squares, equals $16 \sum_{d|n} (-1)^{n+d} d^3$.