
Nurture Programme 2008
Some problems in combinatorics

Some of these problems may be hard. Don’t despair if you cannot solve them;
such problems will be discussed during the contact programme.

Q 1.
Let

(n
r

)
stand for the binomial coefficient “n choose r”. Prove that

d! =
d∑

r=0

(−1)r

(
d

r

)
(x + d− r)d ∀ x.

Deduce Wilson’s theorem from Fermat’s little theorem using this identity.

Q 2.
For each natural number r, denote by Sr, the set of r-digit numbers with the
digits in strictly decreasing order. Write the elements of Sr in increasing or-
der. For instance, S3 consists of 210, 310, 320, 321, 410, 420, 421, 430, 431, 432
and so on. If a number in Sr has the digits ar, ar−1, · · · , a1 prove that the
number of numbers which occur in Sr before this number equals

(
ar

r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
a1

1

)
.

Hence, argue that for natural numbers n, r, there is a unique expansion

n =

(
ar

r

)
+

(
ar−1

r − 1

)
+ · · ·+

(
a1

1

)

with ar > ar−1 > · · · > a1 ≥ 0.

Q 3.
(a) Let p(n) denote the number of partitions of n and, for any l ≤ n, let
p(n, r) denote the number of partitions of n into exactly r parts. For instance
the p(4) = 5 partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1, 1 + 1 + 1 + 1 and
p(4, 1) = 1, p(4, 2) = 2, p(4, 3) = 1, p(4, 4) = 1. Prove :

∞∑

n=1

p(n)Tn = T
∞∏

n=1

(1− Tn)−1;

∞∑

n=1

p(n, r)Tn =
T r

(1− T )(1− T 2) · · · (1− T r)
.
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(b) There are 3 partitions 5 = 3 + 1 + 1 = 1 + 1 + 1 + 1 + 1 of 5 into parts
all of which are odd and 3 partitions 5 = 5 = 4 + 1 = 3 + 2 into parts which
are all distinct. In general, establish a one-to-one correspondence between
the sets of partitions of an integer n into odd parts and of partitions of n
into distinct parts.

Q 4.
The Chebychev polynomials of the first kind are defined by Cos(nθ) =
Tn(Cosθ). The Chebychev polynomials of the second kind are defined by
Un(Cosθ) = Sin(n+1)θ

Sinθ . Show :

1− tx

1− 2tx + t2
=

∑

n≥0

Tn(x)tn;

1
1− 2tx + t2

=
∑

n≥0

Un(x)tn.

Q 5.
Consider the transformation T (n) = n + 1 or T (n) = n

2 according as to
whether n is odd or n is even. Let us write T 2(n) = T (T (n)), T 3(n) =
T (T (T (n))) etc. Prove that for each n, there exists k for which T k(n) = 1.
Determine the number Fk of natural numbers n such that that T k(n) = 1.

Q 6.
For natural numbers n1, n2, · · · , nr, prove :

max(n1, · · · , nr) =
∑

i

ni−
∑

i<j

min(ni, nj)+
∑

i<j<k

min(ni, nj , nk)−· · ·+(−1)r−1min(n1, · · · , nr).

Deduce from this for any sequence of natural numbers a1, · · · , ar that one
has :

[a1, · · · , ar] =
(
∏

i ai)(
∏

i<j<k(ai, aj , ak)) · · ·
(
∏

i<j(ai, aj))(
∏

i<j<k<l(ai, aj , ak, al)) · · ·

Q 7.
If every lattice point of the co-ordinate plane is coloured either black or
white, prove that there must be some rectangle all of whose sides are parallel
to the axes and whose vertices have the same colours.
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Q 8.
A Latin square is a square array in which each row and each column consists
of the same set of entries without repetition. Two n × n Latin squares
L = (lij),M = (mij) are said to be orthogonal, if the n2 pairs (lij ,mij) are

all distinct. For example, the only two 2× 2 Latin squares are
(

1 2
2 1

)
and

(
2 1
1 2

)
; these are not orthogonal. Prove, for every n ≥ 2 that there are at

the most n− 1 pairwise orthogonal n× n Lain squares.

Q 9.
Consider a 3 × 3 chess board. Show that there is a knight’s route on the
board which uses every possible move just once (in one direction or the
other). For n ≥ 4, on an n× n chess board, does the graph of knight moves
have an Eulerian path (a closed path which uses all edges of the graph) ?

Q 10.
Let X = tn

i=1Xi = tn
i=1Yi be two disjoint decompositions with all sets

Xi’s and Yj ’s having the same size. Prove that there exist distinct elements
x1, · · · , xn which are in different sets in both decompositions.

Q 11.
Let dn denote the number of ways of obtaining a total of n in successively
throwing a die (for example, d4 = 8). Show that dn equals the coefficient of
xn in (1− x− x2 − x3 − x4 − x5 − x6)−1.

Q 12.
Given a n × n chess-board, consider any subset S of squares on it. Define
the rook polynomial of S to be the polynomial

rS(x) = 1 + r1(S)x + · · ·+ rn(S)xn

where rn(S) is the number of ways of placing n rooks on squares in S such
that no two are threatening (that is, no two are in the same row or column).
For example, the rook polynomial of the set S in the following figure (where
the squares in S are marked with an S) is 1 + 8x + 19x2 + 14x3 + 2x4 :

S S
S S S

S
S S

Let S be any subset of an n×n chess board and S, its complement. Prove :

rn(S) = n!− (n− 1)!r1(S) + (n− 2)!r2(S)− · · ·+ (−1)nrn(S).
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Q 13.
For a prime number p, look at the following (p − 1) × (p − 1) matrix with
entries in the set of integers modulo p :




1 1 1 · · · 1
1 2 3 · · · p− 1
12 22 32 · · · (p− 1)2
...

. . . . . . . . .
...

1p−2 2p−2 3p−2 · · · (p− 1)p−2




Find the inverse of this matrix - here, matrix multiplication involves addition
and multiplication modulo p and any ar stands for its value modulo p.
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