Nurture Programme 2008: Problems in Analysis

- 1. Show that a set A is infinite if and only if for every finite set B there is a one-one map $\phi: B \to A$.
- 2. Show that $Q[i] = \{ \alpha + i\beta \mid \alpha, \beta \text{ are rationals } \}$ is a countably infinite set.
- 3. Let $\{s_n\}$ be a sequence defined by

$$s_1 = \sqrt{2}, \quad s_n = \sqrt{2 + \sqrt{s_{n-1}}}, \quad n \ge 2.$$

Then show that $\{s_n\}$ converges.

- 4. Let $\{a_n\}$ and $\{b_n\}$ be two bounded sequences of real numbers. Suppose $a_n \to a$. Then find the realtionship between $\limsup(a_n + b_n)$ and $\liminf(a_n + b_n)$.
- 5. If $\sum_{n=1}^{\infty} a_n < \infty$ and $a_n \ge 0$, then $\sum_{n=1}^{\infty} \frac{\sqrt{a_n}}{n} < \infty$.
- 6. If $\sum_{n=1}^{\infty} a_n < \infty$ and $a_n \ge 0$, then $\sum_{n=1}^{\infty} a_n^2 < \infty$.
- 7. Assume that $\sum_{r=1}^{n} \frac{1}{(r+2)(r+3)} = \frac{1}{3} \frac{1}{n+3}$. Find $\sum_{r=1}^{\infty} \frac{1}{(r+2)(r+3)}$.
- 8. If x is not an integer, prove that $\frac{1}{x+1} \frac{1}{x+2} + \frac{1}{x+3} \cdots$ converges. Is this series absolutely convergent.
- 9. Let x be a real number with |x| < 1 and q be another real number. Then show that the series $\sum_{n=0}^{\infty} n^q x^n$ is absolutely convergent and in particular, $\lim n^q x^n = 0$.
- 10. Determine the possible points of continuity of

$$f(x) = x \quad \text{if} \quad x \quad \text{is rational} \\ = 0 \quad \text{otherwise}$$

- 11. Find the points of continuity of f(x) = x [x] for any real x where [x] is the largest integer smaller than or equal to x.
- 12. Suppose f is a real-valued continuous function on $(0, \infty)$. If $g(x) = f(\frac{1}{x})$, then show that $\lim_{x\to\infty} f(x) = L$ if and only if $\lim_{x\to 0^+} g(x) = L$.

13. Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by

$$f(x) = \begin{cases} \frac{1}{2n} & \text{if } x = \frac{1}{n}, n \in N\\ \frac{1}{x} & \text{if } x = 3, 5, 7, \cdots\\ \frac{x}{2} & \text{if } x = 2, 4, 6, \cdots\\ x & \text{otherwise} \end{cases}$$

Show that f is bijective and f is continuous at 0 but f^{-1} is not continuous at $f^{-1}(0)$.

- 14. Let $a, b \in \mathbb{R}$ with a < b. Let $f: [a, b] \to \mathbb{R}$ be a increasing function. Suppose f maps [a, b] onto [f(a), f(b)]. Then show that f is continuous. Give a counter-example to show that this need not hold if f is not increasing.
- 15. Show that a continuous rational valued function must be constant.
- 16. If $f: [0, \infty) \to \mathbb{R}$ is a continuous function such that $\lim_{x\to\infty} f(x) = 10$, then show that f is uniformly continuous.
- 17. Show that $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = d(x, \mathbb{N}) = \inf_{n \ge 1} |x n|$ is uniformly continuous.
- 18. Let f be a real-valued continuous function on a bounded interval [a, b]. Suppose $s, t \in f([a, b])$ and $s \neq t$. Then prove that $\delta(s, t) = \inf\{|x - y| \mid f(x) = s, f(y) = t\}$ is positive. Further if $r, s, t \in f([a, b])$ with r < s < t, then show that $\delta(r, s) < \delta(r, t)$. That is, fixing r, show that the map $s \mapsto \delta(r, s)$ is an increasing function in $f([a, b]) \cap (r, \infty)$.
- 19. Let $a, b \in R$ with a < b. Suppose $f: [a, b] \to \mathbb{R}$ is a continuous one-one function. Then show that f is strictly monotone.
- 20. Suppose $\{x_n\}$ is a Cauchy sequence in [0, 1) and has convergent subsequence in [0, 1). Then show that $x_n \to x \in [0, 1)$.