NBHM Nurture programme Algebra assignment 3

Q 1 (on permutation groups and Sylow theorems).

(1.) Let G be a finite simple group and p||G|. If G has exactly n > 1 p-Sylow subgroups, show that G is isomorphic to a subgroup of A_n .

(2.) Let p be a prime and let $a \geq b$ be positive integers. Consider disjoint sets S_1, \dots, S_a and call their union S. Fix a cyclic permutation of each S_i and let G denote the group of permutations of S generated by these a p-cycles. Considering the action of G on the set T of all pb-element subsets of S, prove that

$$\binom{pa}{pb} \equiv \binom{a}{b} \quad modulo \quad p^2.$$

(3.) (i) Prove that any element in A_n is a commutator $xyx^{-1}y^{-1}$ in S_n where x is an n-cycle.

(ii) In S_{2n+1} , prove that the cycle $(1\ 2\ \cdots\ 2n+1)$ is expressible as $xyx^{-1}y^{-1}$ where x is a n+1-cycle.

(iii) In any S_n , show that every element is a product of at the most two cycles.

(iv) Let F be a finite field (if you don't know what that is, just take $\mathbb{Z}/p\mathbb{Z}$ for a prime p). Prove that Sym(F) is generated by the permutations $\sigma: x \mapsto x^{-1}$ for $x \neq 0$; $\sigma(0) = 0$ and $\tau_{a,b}: x \mapsto ax + b$ for $a, b \in F$.

(4.) (i) For any n, it is well-known that the permutations $\sigma = (1 \ 2)$ and $\tau = (1 \ 2 \cdots n)$ generate the whole of S_n . Prove this. Further, if p is a prime, show that any transposition and any p-cycle generate S_p .

(ii) For general n, and for a transposition σ and any n-cycle τ , find a necessary and sufficient condition for S_n to be generated by σ and τ .

(5.) Prove that S_n is not isomorphic to a subgroup of A_{n+1} for any n > 1.

(6.) Let G be a finite group and p||G| a prime.

(i) Prove that if P is a p-Sylow subgroup of G, then $N_G(N_G(P)) = N_G(P)$.

(ii) Let N be a normal subgroup of G and let $Q \leq N$ be a p-Sylow subgroup of N. Then, show that $G = NN_G(Q)$.

(7.) Let G be a finite group and p^r be a prime power dividing the order of G. Then, prove that there exist subgroups of order p^r in G and that these are $\equiv 1 \mod p$ in number.

Q 2 (on nilpotent groups).

- (1.) Show that for a finite group G, the following are equivalent:
- (i) G is nilpotent, (ii) every proper subgroup H is properly contained in $N_G(H)$, (iii) all maximal subgroups are normal, (iv) all p-Sylow subgroups are normal, (v) elements of coprime order commute and, (vi) G is the direct product of its Sylow subgroups.
- (2.) The Frattini subgroup $\Phi(G)$ of a finite group G is defined to be the intersection of all (proper) maximal subgroups.
- (i) Prove that $\Phi(G)$ is the set of 'nongenerators' of G i.e., those elements which can be dropped from any generating set for G.
- (ii) Show that $\Phi(G)$ is a characteristic subgroup.
- (iii) Prove that $\Phi(G)$ is nilpotent.
- (iv) For any p-group G, prove that $\Phi(G) = [G, G] < G^p >$.
- (v) For a finite abelian p-group A, show that $A/\Phi(A)$ is an elementary abelian group of order $p^{d(A)}$ where d(A) is the minimal number of generators needed to generate A.
- (3.) (i) Show that a subgroup of a finitely generated nilpotent group is also finitely generated.
- (ii) Deduce that a finitely generated nilpotent torsion group is finite.

Q 3 (on automorphisms).

Let T be an automorphism of prime order p of a finite group G such that T(x) = x if, and only if, x = 1.

- (i) Show that the function $F(g) := g^{-1}T(g)$ is a bijection on G.
- (ii) Prove that for any g in G, the product g T(g) $T^2(g) \dots T^{p-1}(g)$ is the identity.
- (iii) Prove that |G| is congruent to 1 modulo p.
- (iv) For any prime q dividing the order of G, prove that there is a q-Sylow subgroup Q of G such that T(Q) = Q.
- (v) For any prime q, prove that there is a unique q-Sylow subgroup Q of G such that T(Q) = Q.
- (vi) Let q be a prime. Then, show that the q-Sylow subgroup Q fixed by T contains any q-subgroup of G fixed by T.
- (vii) For p = 2, use (i), (ii) to show that G is abelian.
- (viii) For p = 3, show that G is nilpotent.

Q 4 (on finitely generated abelian groups).

- (1.) Using the invariant factor theorem (another name is the theorem of elementary divisors) or otherwise, prove that any unimodular integral vector (a_1, \dots, a_n) (that is, a vector such that the GCD of the a_i 's is 1) is the first column of a matrix in $SL(n, \mathbf{Z})$ for any $n \geq 2$. Deduce that $SL(n, \mathbf{Z})$ acts transitively on the set of unimodular vectors.
- (2.) Let $A = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} \in M(2, \mathbf{Z})$ be any matrix of trace 0. If (a, b, c) is unimodular, use the conclusion of the previous problem that this vector can be completed to a matrix in $SL(3, \mathbf{Z})$, to prove that A = BC CB for some $B, C \in M(2, \mathbf{Z})$. Hence, prove for general a, b, c also that A can be written as above.

Q 5 (combinatorial).

- (1.) Let G be a finite group of order n and let S be any subset of G. Show that the set $S^n := \{s_1 s_2 \cdots s_n : s_i \in S\}$ is a subgroup of G. Assuming that S generates G, show further that S^n is normal in G with G/S^n cyclic.
- (2.) Let G be a group such that the set S of all elements of G of finite order is finite. Then, prove that S is a group. (3.) Let G be any group. An action of G on a set S is said to be transitive if, for each $s, t \in S$, there exists $g \in G$ such that g.s = t.
- (i) Denote by t_n , the number of different transitive actions of G on $\{1, 2, \dots, n\}$. Prove that the number a_n of subgroups of G which have index equal to n satisfies $a_n = t_n/(n-1)!$.
- (ii) If $h_n = |Hom(G, S_n)|$, the number of homomorphisms from G to S_n , then prove that one has the relation

$$a_n = h_n/(n-1)! - \sum_{k=1}^{n-1} \frac{h_{n-k}}{(n-k)!} a_k.$$

- (iii) Prove that the number of subgroups of index n in \mathbb{Z}^2 is $\sigma(n)$, the sum of the divisors of n.
- (iv) Show that application of (ii) to \mathbb{Z}^2 yields the identity involving the partition function p(n) and the sum-of-divisors function $\sigma(n)$:

$$np(n) = \sum_{i=1}^{n-1} \sigma(i)p(n-i) + \sigma(n).$$

Q 6 (Miscellaneous).

1.) Consider S_n , the group of permutations of $A = \{1, 2, ...n\}$. Fix an integer k with 1 < k < n and consider all subsets of A of cardinality k. For such a subset B and a permutation g, define sgn(g,B) to be 0 if $g(B) \neq B$ and $sign(g|_B)$ otherwise. (Recall that sign of a permutation is ± 1 depending on the parity of number of transpositions needed to write it.) Show that

$$\sum_{g \in S_n} \left(\sum_B sgn(g, B) \right)^2 = 2n! .$$

2.) Let G be a group of cardinality 2k, where k is odd. First show that G has a subgroup of order 2. Then show that G has a subgroup of order k. (Hint: Recall the proof of Cayley's theorem. As done there, realize G as a

subgroup of the symmetric group S_{2k} thought of as the group of all permutations of elements of G.)

2) Let A and B be subset

3.) Let A and B be subsets of a finite group G. If |A| + |B| > |G|, show that AB = G. Here $AB = \{ab | a \in A, b \in B\}$.

4.) Let f be an automorphism of a finite group G and let $I = \{g \in G | f(g) = g^{-1}\}$. If |I| > 3|G|/4, show that G is abelian. If |I| = 3|G|/4, show that G has an abelian subgroup of index 2. Examples of such G and f?