II Assignment in Analysis Nurture 08-09

1. Let $f: [1, \infty) \to \mathbb{R}$ be such that f'' exists,

$$f(1) = f(2) = 4.$$

If f'' is positive in [1,3] show that

 $f'(3) \ge 0.$

- **Hint:** Write Taylors formula for f(1), f(2), f(3).
- 2. Show that $\lim_{\substack{x \to 0 \\ x \ge 0}} \frac{x^{q}-1}{x-1} = q$ for every rational number q.
- 3. Let

$$f(x) = e^{1/x^2} \text{ if } x \neq 0$$

= 0 if x = 0.

Use induction to write the formula for $f^{(n)}(x)$ for $x \neq 0$.

- 4. Give examples of functions f, g on appropriate domains so that the composition $f \circ g$ is Riemann integrable but one of f or g is not Riemann integrable.
- 5. Let $f: [0,1] \to [0,1]$ be a continuous function. Suppose $\int_{0}^{1} f(x) dx = 0$. Show that $f(x) = 0 \quad \forall x \in [0,1]$.
- 6. Let $f: [0,1] \to \mathbb{R}$ be a Riemann-integrable function. Then show that for any t between 0 and $\int_0^1 f(x) dx$ there exists $s \in [0,1]$ such that $f(s) = \int_0^s f(x) dx$.
- 7. Let $f: [0,1] \to \mathbb{R}$ be a continuous function. Then show that f is integrable. Are integrable functions continuous.

Let $f: \mathbb{R} \to \mathbb{R}$ be a function. Then the support of f, denoted by Supp (f) is defined by Supp $(f) = \overline{\{x \in \mathbb{R} \mid f(x) \neq 0\}}$. If Supp (f) is a compact set in \mathbb{R} , then we say that f has compact support.

- 8. Suppose f is a function with compact support. Can f be infinitely differentiable, if so give examples. If f is infinitely differentiable, can f have talyor series expansion.
- 9. Suppose f is a continuous real-valued functions on reals with compact support. Prove that $f(x) = \int_0^1 f(x+y)dy$ implies f = 0 everywhere.