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A pair (T, o) is called a covariant representation of £ over M
on a Hilbert space H, if
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A pair (T, o) is called a covariant representation of £ over M
on a Hilbert space H, if

(i) T:&— B(H) is a linear map that is continuous (w.r.t. o
and ultra weak topology)

(i) o : M — B(H) is a normal homomorphism
(i) T(a) = o(a)T(E), T(sa) = T(§)o(a) €€ aeM.

Moreover if (T, o) satisfies

T(€) " T(n) =o((&m), Enee
it is called isometric.
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space such that:

(1®@h1,&0h) = (hy,0((&41,&2))h2),  &1,& €& hy,hp € H.
@ Define o-dual of £ as
E7 ={pueBH,ER,H):uo(a) = (p(a)@1)u Vae M}.

@ Let (T,0) of £ on H be such that T is bounded. Then
T : £ ® H — H can be associated with

T(n&h):=T(n)h, ne& hen.
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(ily (T, o) is isometric if and only if T is an isometry.

T*, when bounded is an element of £ and converse.
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(i) oe(a)lrs = Prooe(a)ln, =oc(a) aeM
(i) Hg is invariant w.r.t. E() forall € € €
(iii) P E(&)|ln, =C(&) forall§ € £

Set Ha := H5, A(€) := E(&)|n, and o4(8) := o£(a)|3, for all
e ae M.
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Let(T,o) be a completely contractive covariant (c.c.c. for
short) representation of £ on 'H.
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Let(T,o) be a completely contractive covariant (c.c.c. for
short) representation of £ on 'H.

An isometric dilation (V, ) of (T, o) is an isometric covariant
representation of £ on'H > H such that (V, =) is a lifting of
(T,o0).

A minimal isometric dilation (mid) of (T, o) is an isometric
dilation (V, =) onH for which

H=—span{V(&)...V(&)h:-heH e fori=1,...n}.

@ mid is unique up to unitary equivalence.
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@ Full Fock module over M is
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@ Foréeé Lim=&®n Vneé
@ Define L& 1p, : £ — B(F ® Dr) by

(L& 1p;)(§) = Le @ 1,

12/19



Dilations

Dilations and Liftings Liftings

Presentation of mid

@ SetD, r:=(1- Tz (in B(H))
and D7 == (1 — T*T)z (in B ®, H)).

13/19



Dilations

Dilations and Liftings Liftings

Presentation of mid

@ SetD, r:=(1- Tz (in B(H))
and D7 == (1 — T*T)z (in B ®, H)).
@ Let D, r :=range D, r and D = range Dr.

13/19



Dilations

Dilations and Liftings Liftings

Presentation of mid

@ SetD, r:=(1- Tz (in B(H))
and D7 == (1 — T*T)z (in B ®, H)).
@ Let D, r :=range D, r and D = range Dr.

@ Every c.c.c. representation (T, o) of £ has a mid (V,7),
with the representation Hilbert space:

7:2:7_{@?@0'1 DT

T¢) 00
Dr(¢®.) 0 0
O=1 7 o1
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Intertwining unitary

@ Let (E, og) be a contractive lifting of (C, o¢). Clearly mid
(VC, nc) is embedded in (VE, g). We introduce a c.c.c.
representation (Y, wy) on the orthogonal complement K of
the space of mid (V¢, n¢) to encode this.
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Intertwining unitary

@ Let (E, og) be a contractive lifting of (C, o¢). Clearly mid
(VC, nc) is embedded in (VE, g). We introduce a c.c.c.
representation (Y, wy) on the orthogonal complement K of
the space of mid (V¢, n¢) to encode this.

@ Hence we can get a unitary W such that
W:He® (F®Dg) = He® (F&Dg) @K
VE@©W = WVE(),  (rc@my)(@W = Wrg(a),
Wi = g, with  VE(€) = VE(&) @ Y ()
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(E,og)isc.cc. ifandonly if (C,oc) and (A,o4) are c.c.c. and
3 a contraction ~y : D, o — D¢ such that

B =D, ay*De.

(A, 04) is called completely non-coisometric (c.n.c.), if
HYy:={h € Ha:|(A")*h|| = ||h|| foralln € N} = 0.
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@ - isresolving, i.e., forh € Hp

(YD, a(A(€))*h=0forall¢ € £) =
(D.a(A€))*h=0forall¢ € £), and

Q (A,oa)isc.n.c.

Definition

The characteristic function of reduced lifting (E,og) of (C,o¢)
is defined as

Mc e := Prep, W|reD-
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Main theorem

Mce(Le ®1g) = (Le @ 1¢)Mc E, Eek.

WHa = [(F®D¢) @ K| © W(F @ DE)
= [(f@pc)@AQE(]:@'DE)] @{MC,E X@AQEX X € FRDc}

For any c.c.c. representation (C,o¢) of £, the equivalence
classes of characteristic functions are complete invariants for
reduced liftings of (C, o¢) up to unitary equivalence.

Mc g is an element of generalized H*°(Dg, D¢).
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