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Our treatment of quantum stochastic processes is regarding cre-
ation and annihilation operators the dual of Maasen-Meyer ker-
nels. The number operator is the product of a creation operator
with an annihilator one. As analytical tool we have available all
the instrumentarium of classical measure theory.

Creation and Annihilation Operators

T he basic relations of the quantum white noise calculus are the
commutation relations

[a(s),at (t)] = 8(s —t)
[a(s),a(t)] = [aT(s),aT/t) =0

For the expression §(s —t) we have a problem. Whereas the the
calculations work perfectly, the mathematical meaning changes
with the multiplication of differentials.




If x and y are two different real variables we denote the point
measure ey

caldy) = e, dy) : [ ealdy) f(y) = ().
Caution!!! £,.(dx) is NONSENSE ,not defined.

0(x — y)dx
d(x —y)dy = ey(dz), SO y — ey(dx) is a measure valued function

ex(dy), so x — ex(dy) is a measure valued function

§(z — y)dx dy = \(dzx, dy)d(xz — y)dy is a measure on R?
with
5(z — y)dz dy = ex(dy)da = ey (dz)dy = A(dz, dy) :
[ Ade,dy) f(2,9) = [ dof(o,a)



Define
R={0}+R+R> -

+ denotes disjoint union. The space (R is locally compact. As-
sume a continuous symmetric function f on ‘R.
Annihilation operator :

(G(t)f)(t]_, e 7tn> — f(t7t17 e 7tn)
Creation operator
(@t (d) f)(t1, - tn)
— €(t17 dt)f(t27 e 7tn) + e _I_ 5(tn7 dt)f(tla e 7tn—1>

(measure valued continuous symmetric function on fR).
Commutation relation

[a(s),aT(dt)] = e(s, dt)



Number operator

n

(aT(@t)a(t)f)(t1,--- ,tn) = Y e(ts, dt) f(t1, - ,tn)

i=1
a(t)at(dt) not allowed, includes terms of the form e(¢, dt).



Multiplication of point measures

o c(x1,dxo)e(x3,dxg) = €xq,25(dxo,dxg) tensor product

o c(x1,dzp)e(wo,dr3) = E(x1,dzo,dr3)
[ E(x1,dro,dx3) f(xo,23) = f(x1,21) multiplication of a mea-
sure in dxo with a measure valued function in xz».

e(xq1,dxo)e(xo,dxq) not defined as

/ 8(:61,d£62)€(£132,d:61) = 8(:131,61331) nonsense!!
L2



For short e(xq,dxy) = e(1,2). Consider

€(b17 Cl) toe 6(bn7 Cn):

where bq1,---,b, are all different and cq,---,cp are all different
and b; = c;. Define a relation of right neighborhood in the set

S = {(b17 Cl)7 Ty (bna Cn)}
by
(b,c)> (V,d) <= c=V.

As any pair (b,c) has atmost one right neighbor (¥',c¢) , the
oriented graph (S,>) has as components either chains or circuits.



Chain: (1,2),(2,3),---,(k—1,k)
(1,2)e(2,3)---e(k—1,k) = E(1;2,3,--- ,k)

/E(1127377k)f(2737 7k):f(1717 71):f(3317

Circuit: (1,2),(2,3),---,(k—1,1)
e(1,2)e(2,3)---e(k—1,1) = Nonsense

integrate over xo, -+ ,x,_1 and arrive at e(xq1,dz1).

Result: The product

€(b17 Cl) e E(bn, Cn)
can be defined if the graph

({(b17 C]_), R (b’n7 Cn)}7[>)

IS without circuits.



Notations
If v ={cq1,---,cn} and f is a symmetric function on R then

flty) = fltey, - sten)

is defined regardless of the order of ~. Skipping the letter t we
write f(ty) = f(y). Similar if p is a symmetric measure on R we

write

:u(dtCla T 7dtCn) — N(dtV) — N(’y)

We write

/u(v)f('y)Av
= FOO) + 3 [ [ulder - dt) £, )
n=1""



with A~y = 1/(#7)!
Sum-integral-lemma u a measure on R* with u(dtay,- - ,dta,)
symmetric in any variable dtqq, -+ ,dtq,, then

/. : ./9%’4 u(dtay, - dta,)Day --- Doy, = /mV(B)AB
with

v(B) = > pn(B1,---, Br)
B1+Bo++Br=0

We denote by A the Lebesgue measure Ay = 1, Ay = di¢, - - - dic,
for vy ={c1, -+ ,cn}t.

Denote

af =at(dte) at(dte,)  ay=alte) - alte,)



Admissible monomials

Denote by ® the function on ‘R given by

_J1 forw=10
Plw) = {O for w #£ ()
and by W the meaure on ‘R given by
W (f) = ()

and extend it to measure valued functions.

We define the measure valued finite particle vectors ®, = achb.



Assume two finite sets ¢ and 7 and a finite set of pairs § =
{(b;,¢;) },such that all b; and all ¢; are different and b; = ¢; . We
extend the relation > to the triple (o0,S,7): If s€ o,(b,c) € S,t € T,
then

s> (b,c) & s=0b, (b,e)pt & c=t.
Assume the graph (o, S, 7,>) without circuits. Assume o N1 = ()
and two sets v, 8 such that the sets v, 8 and c UTUU;{b;,c;} are
pairwise disjoint, then with eg = e(b1,c1) - - -e(bn, cn) we have
(af ar®u)(B)es

is a well defined product of point measures.



Consider

W = (a(Fn,cn), - ,a(d1,c1))

at(dt.) for ¥ =+1

We call W admissible if

1> == {c; F c;j Or {c; = Cj and ¥; = —|—1,19j = —1}}.

W normal ordered

W = (a+(d31), e 7a’+(d8l)7 a+(dt1)7 e CL_I_(dtm), a’(t1>7 e ,Cl,(tm),
a(uy), -, aun)) = af | a4,
A normal ordered sequence W is admissible, the juxtaposition of

two normal ordered sequences is in general not normal ordered,
but it is admissible, provided the variables are different.



Cosider an admissible sequence and denote . We consider the
set P(W) of all decompositions of [1,n] , i.e. all sets of subsets
of [1,n] of the following form

p = {p—|—7p—7 {Q’bri}iEI}
[17 TL] — p—|— + p— + Z{Q’La TZ'}

el
pyr C{j:9;,=1}p-C{j:v; =1},

For p € P(W) we define
W= 1] a;tH‘e(qu'aCTz') 1] ac

CIS el tep_



The trlple (p—|—7Ui€I{qi7ri}7p,>)
is without circuits, so the product|W |y®,,
is well defined for any finite particle vector @,

with v {ec1, -+ ,en} = 0.

The product
M = a(ﬁn, cn) Tt a(ﬂla Cl)q)v

can be defined by successive application.
Wick's Theorm

M= > |[W].

peP(W)



Example 1. Assume
M = a(dtg)aT (dt3)a(dtsr)aT (dt1) = a(4)aT(3)a(2)aT (1)

then

M=aT(3aT(1)a(d)a(3) + £(43)aT(1)a(2)
+e(41)aT(3)a(2) + (21)aT(3)a(4) + (43)e(21)

Example 2.

M =a(3)aT(2)a(2)aT(1) = (32)e(21) = E(3;21)



If
M = a’(ﬁna Cﬂ) U CL(’&]_, Cl)

IS admissible, then denote
VMP = (M).

If n is odd, then (M) = 0. If n = 2m is even, denote by PBy(2m)
the set of all those pair partitions

p = {{p17Q1}7 T a{pm,Qm}}

<M> — Z I_MJP — Z H g(cpichi)-

pEPo(2m) pePo(2m) =1



Denote

w=A{c1, - ,en} wiq={c:V;=+1} w_={¢:9;=—-1}

For any p the graph (p,>) the product of the point measures can
be defined. The starting points of the chains are the elements
of w_ \wy. So |[M]p is the tensor product of measures of the
form E(xq;dxp,--- ,dx;) defined above and (M) is a continuous
function

R+ — M (R),
Now
driE(xq;dxo, -+ ,dxi) = N(dzq, - ,dz)
//\(dwb"' ydxp) f(z1, -, o) =/d$f(fv,“° ,T)



Multiply with

N =TT day
iEw_\w_|_

and obtain a positive measure on RY.
(MYXN=\+ = 3™ [ M pA%-\+

pePo(2m)
and any term is the tensor product of measures A.

With
MT — CL(—Q?:]_, Cl) e a’(_ﬁno Cn)

one obtains the symmetry relation

<M>>\w_\w_|_ — <MT>>\w_|_\w_ .



Representation of unity If M = M»>M, is admissible, then

(MaMy) = [ (Mpaf)(aaM1) Ac

«

Remark. If M is admissible, and =, o, w are pairwise disjunkt, then
<a7TMa3_))\7T+w—\w+

is @ measure on RxRY xR. The general form of a normal ordered

g &
monomial is %+TCLT+Ua”d

(awa;__HaT_Fva,g'))\w'l'U

defines a measure on R° letting run o, 7, v.



Quantum stochastic differential equation
Hudson-Parthasarathy

dUL = A1dB;YUL + Agd\U! + A_1dBUL + BULdt, US = 1
where A1, Ag, A_1, B are Operators in B(¢), where ¢ Hilbert pace.

Accardi: normal ordered equation
dUt/dt = A1a7 UL 4+ Aga] Ulay + A_1Ulay + BU

Our approach is very similar to Accardi’'s one. We understand
Ul as a sesquilinear form over Ks(R,t) (symmetric continuous
functions R — ¢ of compact support)

(fIULlg) =
/.../f"’(w)ug(a, T,’U)g(Q)<CI,7TCL;__I_7_CL7-_|_UCL3_>)\W+QA7TAQAO'ATA’U



where vl is a locally Lebesge integrable function R x %3 — B(£)in
all four variables t,ts,t+,ty. We formulate the differential equa-
tion in the weak sense

(d/dt)(f|UL|g)
= (a(t) flA1UL|g)+(a(t) f|AoUL|a(t) g)+(f|A_1UL|a(t)g)+(f| BUL|g)

or better as integral equation

(F1UL1g) = (719) + [ drla(r)f1A1UL1g) + [ dr(a()f1AqUEla(r)g)

; t
-|—/8 dr{fl|A_1U|a(r)g) -|—/8 dr{f|BUg|g)
for t > s.



TheoremThe equation has a unique solution, given in the fol-
lowing way. Assume that all points s,t,ts, t+,ty are different and
order

tg+t7+t1}:{31<<8n}

and define
(1 if jeo
15 =40 ifjer
| —1 if 7 €v
Then

ug(taat’ﬁt’l}) — 1{8 <81 << sp < t}
exp((t — Sn)B)Azn eXD((Sn — Sn—l)B)Ain_l
X oo X Ay, exp((s2 — s1)B)A;, exp((s1 — s)B)



The solution has a remarkable easy analytical structure. Assume
a function

z: (tto, tr,t) € R X RF = 24(to, tr, ty) € B(E)

symmetric in ts,tr,t,. Then z is called of class CO if the function
is locally integrable and is continuous in the subspace, where all
points t,ty,tr,t, are different. We call = of class Cl if it is of
class CY and if on the same subspace the functions

5’C:I:t(tg,t7,tv) = (d/dt)a:t(ts,tT,tv)
(legw)t(ta, trytv) = zi10(te + {t} tr, tv)
(Riiv)t(ta, tr, tv) — xt:I:O(tUa tr + {t}7 tv)
(Rilx)t(taa tr,tv) = x440(to, tr, to + {t})
(D'x); = (RYyx)r — (RLz)y
exist and are of class C°. The solution of the quantum stochastic
differential equation is of class C1



Ito’'s Theorem Assume F,G : R3 — B(¢) to be A-measurable and
define the sesquilinear form over Ks(iR, £)

<f|B(F7 G>|g> — / o /<a’7Ta'O—|—_1_|_7-1a’Tl—|—U1a’o—l-;-|-7-2at2—|—vga'3_>)‘ﬂ'—|—vl—|—vg
AT Avgf (1) F (o1, 11,v1)G(02, T2,v2)9(0)

provided the integral exists in norm. Assume xz, y; to be of class
cl and that for f, g € Ks(R, £) the sesquilinear forms (f|B(F;, Gt)|g)
exist in norm and t € R — (f|B(F:, Gt)|g) is locally integrable,
where

Fy € {xt, O, Rzltaﬁt, Rixt, R;lwt}

Gt c {yt7 8Cyt7 R}l:yta R:Ol:yta R:T:lyt}

IS any of the functions.



Then the Schwartz derivative of (f|B(x¢, y¢)|g) is a locally inte-
grable function and vyields

O(f1B(xt, yt)g) =(f|B(O°wt,yt) + B(xt, 0%t) + 1_1 41 +¢|9)
+ (a(t) fIB(D x4, yt) + B(a, D yr) + I 41.4]9)
+ (a(t) fIB(D ¢, yt) + B(at, DOyt) + Ip.0.¢la(t)g)
+ (fIB(D™ Yz, yt) + B(ae, D™ y) + 11 0.4]a(t)g)
with
I; j+ = B(R' =, Rﬂ_yt) — B(RLa, R yy).



We define the Fock space

M= L2(R, N\

of all symmetric square integrable functions with respect to
Lebesgue measure from ‘R to ¢ If f is a mesurable function
on R define the operator N by (Nf)(w) = (#w)f(w) and define
[, as the space of those measurable symmetric functions from
R to £, for which

[{F@IN + 1) fw)) dw < oo

We denote by |.|[r, the corresponding norm.



Unitarity
There exists a family of unitary operators U;? [ — I such that
(f10%g) = (fU%|g)

for f,g € Ks(R,8) iff the operators A;,7 = 1,0, —1; B fulfill the
following conditions: There exist a unitary operator Y such that

Ag=7T-1
A =—-TAT,
B4+ BT =—AfA4;=—-A_1AT,.

We write Ul = UL. Furthermore there exists a polynomial P of
degree < k,such that for f el

UL lF, < P(t—sDI I,

\ULf = flir, — O



Characterization of the Hamiltonian Define for t < O the opera-
tor U§{ = (UP)T and denote by ©(t) the right shift on %.Then

t— W(t) = O(t)U§

ist a strongly continuous unitary one paremeter group on . By
Stone’'s theorem there exists a closed selfadjoint operator H with
dense domain Dy C [ such that

W(t) = e 1,

We want to give an explicit representation of H.(Accardi, Cheb-
otariew, Belavkin, Gregoratti)



If ¢ € (L' N L2 (R) define ©(p) = [p(t)O(t)dt. Denote for
f e L*(R™)

a=a(0) :(af)(to, - ,tn) = f(O,t2, - ,tn)
at (aTf)(dty, -+ ,dtn) = eo(dtg) f(t1,to, - ,tn)dty - - - dtn)
+ -+ eo(dtn) f(to, -+ tn—1)dlo---dty_1
The operator ©(¢) works as mollifyer and makes out of the

singular measure atf a measure with density, wich we identify
with its density

(©()aT ) (tg, - tn) =
e(—t0)(O(—tg) f)(t1, - ,tn)+ - +o(—tn)(O(—=tn) f)(to, -+ ytn_1)-



We double the point O and introduce

IRO :] —O0,0]—I—[0,00]
Ro = {0} +Ro +RE + -
_|_

We have the point measures 4, define accordingly a4, aand

i=3(ay +a) at = 1(al +al)

We call a é-sequence ¢y, , i.e. on — 0 @ symmetric é-sequence if
the ¢, are real and if pnp(t) = pn(—t) for all n and t. We define
the symmetric differentiation 8 by

where ¢, is a symmetric )-sequence.



Define
> ¢
Z = /O e 'O(t)dt

D={f=2Z(fo+aTf1): fo€1,f1 €M}
T he sesquilinear form
f,9 €D (flifg) = [ FH()(i89) (@)

exists and is symmetric,i.e.(f|i0g) = (i0f|g). Assume four opera-
tors Mg, M4+1,G € B(¢) such that

Mg = My M} =M_ Gt =a,
then define by

H=1i0+ Myat + Mgata+ M_1a+ G.



an application from D into the singular measures on Rg. The
operator is symmetric, the singular part of Hf is given by

at(—if1 + Myf + Moaf).

Denote by Dg the subspace, where the singular part vanishes and
by Hp the restriction of A to Dy.



T heoremAssume

1
Ay = M
L M2t
M,
Ag= —
Z—Mo/Q
1
A 1=M_
! Li — My/2
. 1
B=—iG—LiM_ M
T2 g2t

Then the domain Dy of the Hamiltonian H of W (t) contains Dy
and the restriction of H to Dg coincides with the restriction Hg
of

H=i0+ Miat + Mgata+ M_{a+ G.

to Dg and Dg is dense in ' and H is the closure of Hy.



