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Our treatment of quantum stochastic processes is regarding cre-

ation and annihilation operators the dual of Maasen-Meyer ker-

nels. The number operator is the product of a creation operator

with an annihilator one. As analytical tool we have available all

the instrumentarium of classical measure theory.

Creation and Annihilation Operators

The basic relations of the quantum white noise calculus are the

commutation relations

[a(s), a+(t)] = δ(s− t)
[a(s), a(t)] = [a+(s), a+/t) = 0

For the expression δ(s− t) we have a problem. Whereas the the

calculations work perfectly, the mathematical meaning changes

with the multiplication of differentials.



If x and y are two different real variables we denote the point

measure εx

εx(dy) = ε(x, dy) :
∫
εx(dy)f(y) = f(x).

Caution!!! εx(dx) is NONSENSE ,not defined.

δ(x− y)dx = εx(dy), so x 7→ εx(dy) is a measure valued function

δ(x− y)dy = εy(dx), so y 7→ εy(dx) is a measure valued function

δ(x− y)dx dy = λ(dx, dy)δ(x− y)dy is a measure on R2

with

δ(x− y)dx dy = εx(dy)dx = εy(dx)dy = λ(dx, dy) :∫
λ(dx, dy)f(x, y) =

∫
dxf(x, x)



Define

R = {∅}+ R + R2 + · · · .

+ denotes disjoint union.The space R is locally compact. As-

sume a continuous symmetric function f on R.

Annihilation operator :

(a(t)f)(t1, · · · , tn) = f(t, t1, · · · , tn)

Creation operator :

(a+(dt)f)(t1, · · · , tn)

= ε(t1, dt)f(t2, · · · , tn) + · · ·+ ε(tn, dt)f(t1, · · · , tn−1)

(measure valued continuous symmetric function on R).

Commutation relation

[a(s), a+(dt)] = ε(s, dt)



Number operator

(a+(dt)a(t)f)(t1, · · · , tn) =
n∑
i=1

ε(ti, dt)f(t1, · · · , tn)

a(t)a+(dt) not allowed, includes terms of the form ε(t, dt).



Multiplication of point measures

• ε(x1, dx2)ε(x3, dx4) = εx1,x3(dx2, dx4) tensor product

• ε(x1, dx2)ε(x2, dx3) = E(x1, dx2, dx3)∫
E(x1, dx2, dx3)f(x2, x3) = f(x1, x1) multiplication of a mea-

sure in dx2 with a measure valued function in x2.

ε(x1, dx2)ε(x2, dx1) not defined as∫
x2

ε(x1, dx2)ε(x2, dx1) = ε(x1, dx1) nonsense!!



For short ε(x1, dx2) = ε(1,2). Consider

ε(b1, c1) · · · ε(bn, cn),

where b1, · · · , bn are all different and c1, · · · , cn are all different

and bi 6= ci. Define a relation of right neighborhood in the set

S = {(b1, c1), · · · , (bn, cn)}

by

(b, c) . (b′, c′)⇐⇒ c = b′.

As any pair (b, c) has atmost one right neighbor (b′, c′) , the

oriented graph (S, .) has as components either chains or circuits.



Chain: (1,2), (2,3), · · · , (k − 1, k)

ε(1,2)ε(2,3) · · · ε(k − 1, k) = E(1; 2,3, · · · , k)∫
E(1; 2,3, · · · , k)f(2,3, · · · , k) = f(1,1, · · · ,1) = f(x1, · · · , xn)

Circuit: (1,2), (2,3), · · · , (k − 1,1)

ε(1,2)ε(2,3) · · · ε(k − 1,1) =⇒ Nonsense

integrate over x2, · · · , xk−1 and arrive at ε(x1, dx1).

Result: The product

ε(b1, c1) · · · ε(bn, cn)

can be defined if the graph

({(b1, c1), · · · , (bn, cn)}, .)

is without circuits.



Notations

If γ = {c1, · · · , cn} and f is a symmetric function on R then

f(tγ) = f(tc1, · · · , tcn)

is defined regardless of the order of γ. Skipping the letter t we

write f(tγ) = f(γ). Similar if µ is a symmetric measure on R we

write

µ(dtc1, · · · , dtcn) = µ(dtγ) = µ(γ).

We write∫
µ(γ)f(γ)∆γ

= f(∅)µ(∅) +
∞∑
n=1

1

n!

∫
· · ·

∫
µ(dt1, · · · , dtn)f(t1, · · · , tn)



with ∆γ = 1/(#γ)!
Sum-integral-lemma µ a measure on Rk with µ(dtα1, · · · , dtαk)

symmetric in any variable dtα1, · · · , dtαk, then∫
· · ·

∫
Rk
µ(dtα1, · · · , dtαk)∆α1 · · ·∆αk =

∫
R
ν(β)∆β

with

ν(β) =
∑

β1+β2+···+βk=β

µ(β1, · · · , βk)

We denote by λ the Lebesgue measure λ∅ = 1, λγ = dtc1 · · · dtcn
for γ = {c1, · · · , cn}.

Denote

a+
γ = a+(dtc1) · · · a+(dtcn) aγ = a(tc1) · · · a(tcn)



Admissible monomials

Denote by Φ the function on R given by

Φ(w) =

1 for w = ∅
0 for w 6= ∅

and by Ψ the meaure on R given by

Ψ(f) = f(∅)

and extend it to measure valued functions.

We define the measure valued finite particle vectors Φσ = a+
σ Φ.



Assume two finite sets σ and τ and a finite set of pairs S =

{(bi, ci)},such that all bi and all ci are different and bi 6= ci . We

extend the relation . to the triple (σ, S, τ): If s ∈ σ, (b, c) ∈ S, t ∈ τ ,

then

s . (b, c)⇔ s = b, (b, c) . t⇔ c = t.

Assume the graph (σ, S, τ, .) without circuits. Assume σ ∩ τ = ∅
and two sets υ, β such that the sets υ, β and σ ∪ τ ∪

⋃
i{bi, ci} are

pairwise disjoint, then with εS = ε(b1, c1) · · · ε(bn, cn) we have

(a+
σ aτΦυ)(β)εS

is a well defined product of point measures.



Consider

W = (a(ϑn, cn), · · · , a(ϑ1, c1))

a(ϑ, c) =

a+(dtc) for ϑ = +1

a(tc) for ϑ = −1

We call W admissible if

i > j =⇒ {ci 6= cj or {ci = cj and ϑi = +1, ϑj = −1}}.

W normal ordered

W = (a+(ds1), · · · , a+(dsl), a
+(dt1), · · · a+(dtm), a(t1), · · · , a(tm),

a(u1), · · · , a(un)) = a+
σ+τaτ+υ

A normal ordered sequence W is admissible, the juxtaposition of
two normal ordered sequences is in general not normal ordered,
but it is admissible, provided the variables are different.



Cosider an admissible sequence and denote . We consider the

set P(W ) of all decompositions of [1, n] , i.e. all sets of subsets

of [1, n] of the following form

p = {p+, p−, {qi, ri}i∈I}
[1, n] = p+ + p−+

∑
i∈I
{qi, ri}

p+ ⊂ {j : ϑj = 1}; p− ⊂ {j : ϑj = −1};
ϑqi = −1, ϑri = 1; qi > ri

For p ∈ P(W ) we define

bW cp =
∏
s∈p+

a+
cs

∏
i∈I

ε(cqi, cri)
∏
t∈p−

act



The triple (p+,
⋃
i∈I{qi, ri}, p,.)

is without circuits, so the productbW cpΦυ

is well defined for any finite particle vector Φυ,

with υ ∩ {c1, · · · , cn} = ∅.

The product

M = a(ϑn, cn) · · · a(ϑ1, c1)Φυ

can be defined by successive application.

Wick’s Theorm

M =
∑

p∈P(W )

bW cp.



Example 1. Assume

M = a(dt4)a+(dt3)a(dt2)a+(dt1) = a(4)a+(3)a(2)a+(1)

then

M = a+(3)a+(1)a(4)a(3) + ε(43)a+(1)a(2)

+ ε(41)a+(3)a(2) + ε(21)a+(3)a(4) + ε(43)ε(21)

Example 2.

M = a(3)a+(2)a(2)a+(1) = ε(32)ε(21) = E(3; 21)



If

M = a(ϑn, cn) · · · a(ϑ1, c1)

is admissible, then denote

ΨMΦ = 〈M〉.

If n is odd, then 〈M〉 = 0. If n = 2m is even, denote by P0(2m)

the set of all those pair partitions

p = {{p1, q1}, · · · , {pm, qm}}

with pi > qi, ϑpi = −1, ϑqi = +1. Then

〈M〉 =
∑

p∈P0(2m)

bMcp =
∑

p∈P0(2m)

m∏
i=1

ε(cpi, cqi).



Denote

ω = {c1, · · · , cn} ω+ = {ci : ϑi = +1} ω− = {ci : ϑi = −1}

For any p the graph (p, .) the product of the point measures can

be defined. The starting points of the chains are the elements

of ω− \ ω+. So bMcp is the tensor product of measures of the

form E(x1; dx2, · · · , dxk) defined above and 〈M〉 is a continuous

function

Rω−\ω+ →M+(Rω+).

Now

dx1E(x1; dx2, · · · , dxk) = Λ(dx1, · · · , dxk)∫
Λ(dx1, · · · , dxk)f(x1, · · · , xk) =

∫
dxf(x, · · · , x)



Multiply with

λω−\ω+ =
∏

i∈ω−\ω+

dxi

and obtain a positive measure on Rω.

〈M〉λω−\ω+ =
∑

p∈P0(2m)

bMcpλω−\ω+

and any term is the tensor product of measures Λ.

With

MT = a(−ϑ1, c1) · · · a(−ϑn, cn)

one obtains the symmetry relation

〈M〉λω−\ω+ = 〈MT 〉λω+\ω−.



Representation of unity If M = M2M1 is admissible, then

〈M2M1〉 =
∫
α
〈M2a

+
α 〉〈aαM1〉∆α

Remark. If M is admissible, and π, %, ω are pairwise disjunkt, then

〈aπMa+
% 〉λπ+ω−\ω+

is a measure on R×Rω×R. The general form of a normal ordered

monomial is a+
σ+τaτ+υand

〈aπa+
σ+τaτ+υa

+
% 〉λπ+υ

defines a measure on R5 letting run σ, τ, υ.



Quantum stochastic differential equation

Hudson-Parthasarathy

dtU
t
s = A1dB

+
t U

t
s +A0dΛtU

t
s +A−1dBtU

t
s +BU tsdt, U

s
s = 1

where A1, A0, A−1, B are Operators in B(k), where k Hilbert pace.

Accardi: normal ordered equation

dU ts/dt = A1a
+
t U

t
s +A0a

+
t U

t
sat +A−1U

t
sat +BU ts

Our approach is very similar to Accardi’s one. We understand

U ts as a sesquilinear form over Ks(R, k) (symmetric continuous

functions R→ k of compact support)

〈f |U ts|g〉 =∫
· · ·

∫
f+(π)uts(σ, τ, υ)g(%)〈aπa+

σ+τaτ+υa
+
% 〉λπ+%∆π∆%∆σ∆τ∆υ



where uts is a locally Lebesge integrable function R×R3 → B(k)in

all four variables t, tσ, tτ , tυ. We formulate the differential equa-

tion in the weak sense

(d/dt)〈f |U ts|g〉
= 〈a(t)f |A1U

t
s|g〉+〈a(t)f |A0U

t
s|a(t)g〉+〈f |A−1U

t
s|a(t)g〉+〈f |BU ts|g〉

or better as integral equation

〈f |U ts|g〉 = 〈f |g〉+
∫ t

s
dr〈a(r)f |A1U

r
s |g〉+

∫ t

s
dr〈a(r)f |A0U

r
s |a(r)g〉

+
∫ t

s
dr〈f |A−1U

r
s |a(r)g〉+

∫ t

s
dr〈f |BUrs |g〉

for t ≥ s.



TheoremThe equation has a unique solution, given in the fol-

lowing way. Assume that all points s, t, tσ, tτ , tυ are different and

order

tσ + tτ + tυ = {s1 < · · · < sn}

and define

ij =


1 if j ∈ σ
0 if j ∈ τ
−1 if j ∈ υ

Then

uts(tσ, tτ , tυ) = 1{s < s1 < · · · < sn < t}
exp((t− sn)B)Ain exp((sn − sn−1)B)Ain−1

× · · · ×Ai2 exp((s2 − s1)B)Ai1 exp((s1 − s)B)



The solution has a remarkable easy analytical structure. Assume
a function

x : (t, tσ, tτ , tυ) ∈ R×Rk 7→ xt(tσ, tτ , tυ) ∈ B(k)

symmetric in tσ, tτ , tυ. Then x is called of class C0 if the function
is locally integrable and is continuous in the subspace, where all
points t, tσ, tτ , tυ are different. We call x of class C1 if it is of
class C0 and if on the same subspace the functions

∂cxt(tσ, tτ , tυ) = (d/dt)xt(ts, tτ , tυ)

(R1
±x)t(tσ, tτ , tυ) = xt±0(tσ + {t}, tτ , tυ)

(R0
±x)t(tσ, tτ , tυ) = xt±0(tσ, tτ + {t}, tυ)

(R−1
± x)t(tσ, tτ , tυ) = xt±0(tσ, tτ , tυ + {t})

(Dix)t = (Ri+x)t − (Ri−x)t

exist and are of class C0. The solution of the quantum stochastic
differential equation is of class C1



Ito’s Theorem Assume F,G : R3 → B(k) to be λ-measurable and

define the sesquilinear form over Ks(R, k)

〈f |B(F,G)|g〉 =
∫
· · ·

∫
〈aπa+

σ1+τ1
aτ1+υ1

a+
σ2+τ2

at2+υ2
a+
% 〉λπ+υ1+υ2

∆π · · ·∆υ2f
+(π)F (σ1, τ1, υ1)G(σ2, τ2, υ2)g(%)

provided the integral exists in norm. Assume xt, yt to be of class

C1 and that for f, g ∈ Ks(R, k) the sesquilinear forms 〈f |B(Ft, Gt)|g〉
exist in norm and t ∈ R 7→ 〈f |B(Ft, Gt)|g〉 is locally integrable,

where

Ft ∈ {xt, ∂cxt, R1
±xt, R

0
±xt, R

−1
± xt}

Gt ∈ {yt, ∂cyt, R1
±yt, R

0
±yt, R

−1
± yt}

is any of the functions.



Then the Schwartz derivative of 〈f |B(xt, yt)|g〉 is a locally inte-

grable function and yields

∂〈f |B(xt, yt)|g〉 =〈f |B(∂cxt, yt) + B(xt, ∂
cyt) + I−1,+1,t|g〉

+ 〈a(t)f |B(D1xt, yt) + B(xt, D
1yt) + I0,+1,t|g〉

+ 〈a(t)f |B(D0xt, yt) + B(xt, D
0yt) + I0,0,t|a(t)g〉

+ 〈f |B(D−1xt, yt) + B(xt, D
−1yt) + I−1,0,t|a(t)g〉

with

Ii,j,t = B(Ri+xt, R
j
+yt)− B(Ri−xt, R

j
−yt).



We define the Fock space

Γ = L2
s(R, k, λ)

of all symmetric square integrable functions with respect to

Lebesgue measure from R to k. If f is a mesurable function

on R define the operator N by (Nf)(w) = (#w)f(w) and define

Γk as the space of those measurable symmetric functions from

R to k , for which∫
〈f(w)|(N + 1)k f(w)〉 dw <∞

We denote by ‖.‖Γk the corresponding norm.



Unitarity
There exists a family of unitary operators Ũ ts : Γ→ Γ such that

〈f |Ũ ts|g〉 = 〈fU ts|g〉

for f, g ∈ Ks(R, k) iff the operators Ai, i = 1,0,−1;B fulfill the
following conditions: There exist a unitary operator Υ such that

A0 = Υ− 1

A1 = −ΥA+
−1

B +B+ = −A+
1 A1 = −A−1A

+
−1.

We write U ts = Ũ ts. Furthermore there exists a polynomial P of
degree ≤ k,such that for f ∈ Γk

‖U tsf‖Γk ≤ P (|t− s|)‖f‖Γk

‖U tsf − f‖Γk → 0



Characterization of the Hamiltonian Define for t < 0 the opera-

tor U t0 = (U0
t )+ and denote by Θ(t) the right shift on R.Then

t→W (t) = Θ(t)U t0

ist a strongly continuous unitary one paremeter group on Γ. By

Stone’s theorem there exists a closed selfadjoint operator H with

dense domain DH ⊂ Γ such that

W (t) = e−iHt.

We want to give an explicit representation of H.(Accardi, Cheb-

otariew, Belavkin, Gregoratti)



If ϕ ∈ (L1 ∩ L2)(R) define Θ(ϕ) =
∫
ϕ(t)Θ(t)dt. Denote for

f ∈ L2(Rn)

a = a(0) :(af)(t2, · · · , tn) = f(0, t2, · · · , tn)

a+ :(a+f)(dt0, · · · , dtn) = ε0(dt0)f(t1, t2, · · · , tn)dt1 · · · dtn)

+ · · ·+ ε0(dtn)f(t0, · · · , tn−1)dt0 · · · dtn−1

The operator Θ(ϕ) works as mollifyer and makes out of the

singular measure a+f a measure with density, wich we identify

with its density

(Θ(ϕ)a+f)(t0, · · · , tn) =

ϕ(−t0)(Θ(−t0)f)(t1, · · · , tn)+· · ·+ϕ(−tn)(Θ(−tn)f)(t0, · · · , tn−1).



We double the point 0 and introduce

R0 =]−∞,0] + [0,∞]

R0 = {∅}+ R0 + R2
0 + · · ·

We have the point measures ε±0, define accordingly a±, a
+
±and

â = 1
2(a+ + a−) â+ = 1

2(a+
+ + a+

− )

We call a δ-sequence ϕn , i.e. ϕn → δ a symmetric δ-sequence if

the ϕn are real and if ϕn(t) = ϕn(−t) for all n and t. We define

the symmetric differentiation ∂̂ by

∂̂ = − lim Θ(ϕ′n),

where ϕn is a symmetric δ-sequence.



Define

Z =
∫ ∞

0
e−tΘ(t)dt

D = {f = Z(f0 + a+f1) : f0 ∈ Γ1, f1 ∈ Γ2}

The sesquilinear form

f, g ∈ D 7→ 〈f |i∂̂g〉 =
∫
f+(ω)(i∂̂g)(ω)λω

exists and is symmetric,i.e.〈f |i∂̂g〉 = 〈i∂̂f |g〉. Assume four opera-

tors M0,M±1, G ∈ B(k) such that

M+
0 = M0 M+

1 =M−1 G+ = G,

then define by

Ĥ = i∂̂ +M1â
+ +M0â

+â +M−1â +G.



an application from D into the singular measures on R0. The

operator is symmetric, the singular part of Ĥf is given by

â+(−if1 +M1f +M0âf).

Denote by D0 the subspace, where the singular part vanishes and

by H0 the restriction of Ĥ to D0.



TheoremAssume

A1 =
1

i−M0/2
M1

A0 =
M0

i−M0/2

A−1 = M−1
1

i−M0/2

B = −iG− i
2M−1

1

i−M0/2
M1

Then the domain DH of the Hamiltonian H of W (t) contains D0

and the restriction of H to D0 coincides with the restriction H0

of

Ĥ = i∂̂ +M1â
+ +M0â

+â +M−1â +G.

to D0 and D0 is dense in Γ and H is the closure of H0.


