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Plan

In this talk we want to explore some connections between

Markov processes in quantum probability

multivariate operator theory

concepts from control theory

We do this by examining a rather concrete toy model and we focus
on the notion of a transfer function.



Linear Systems

xn+1 = Axn + B un

yn = C xn + D un

� �

output inputinternal state
(yn)n∈N0 (xn)n∈N0 (un)n∈N0

C A B

Given x0 and (un)n∈N0 we can use these equations to compute
(xn)n∈N0 and (yn)n∈N0 recursively.



Transfer Functions

Well known technique in system theory: the z-transform. Replace
a sequence (xn)n∈N0 by a function

∞∑
n=0

xn z
n =: x̂(z)

Then if x(0) = 0

z−1 x̂(z) = A x̂(z) + B û(z)

ŷ(z) = C x̂(z) + D û(z)

Now eliminate x and obtain a direct input-output relation

ŷ(z) = Θ(z) û(z)

with the socalled transfer function

Θ(z) = D + C
∑
n∈N0

AnB zn+1

Many properties of the system are encoded in Θ in a nice way.
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Toy Model

We want to discuss a new approach to introduce a similar tool for
quantum mechanical systems.
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Interactions

Given

three Hilbert spaces H, K, P
a unitary operator U : H⊗K → H⊗P
(U∗U = UU∗ = 1l)

unit vectors ΩH ∈ H, ΩK ∈ K, ΩP ∈ P such that

U
(
ΩH ⊗ ΩK

)
= ΩH ⊗ ΩP

we call U an interaction with vacuum vectors ΩH,ΩK,ΩP .



Repeated Interaction 1

Infinite Hilbert space tensor products

K∞ :=
∞⊗
`=1

K` K` ' K

P∞ :=
∞⊗
`=1

P` P` ' P

along unit vectors ΩK∞ =
⊗∞

1 ΩK and ΩP∞ =
⊗∞

1 ΩP .

natural embeddings

H ' H⊗ ΩK∞ ⊂ H⊗K∞ ⊃ ΩH ⊗K∞ ' K∞.
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Repeated Interaction 2

We can now define repeated interactions. For ` ∈ N let

U` : H⊗K∞ → H⊗K[1,`−1] ⊗ P` ⊗K[`+1,∞)

be the unitary operator which is equal to U on H⊗K` and which
acts identically on the other factors of the tensor product.

The repeated interaction up to time n ∈ N is defined by

U(n) := Un . . .U1 : H⊗K∞ → H⊗P[1,n] ⊗K[n+1,∞)
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Markov Process

We can think of our model as a noncommutative Markov chain
or, from a physicist’s point of view, as a Markovian approximation
of a repeated atom-field interaction.

Change of an observable X ∈ B(H) until time n compressed to H:

Zn(X ) = PH U(n)∗ X ⊗ 1 U(n)|H.

For ONB
(
εj
)

of the Hilbert space P and for ξ ∈ H write

U(ξ ⊗ ΩK) =
∑
j

Ajξ ⊗ εj

with operators Aj ∈ B(H). Then

Zn(X ) =
∑

j1,j2,...,jn

A∗j1 . . .A
∗
jn X Ajn . . .Aj1 = Zn(X ),

where Z =
∑

j A
∗
j · Aj : B(H)→ B(H) is a noncommutative

transition operator: semigroup property of Markov processes.
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Example 1

Example 1.

H = K = P = C2, 0 < p < 1

U =


1 0 0 0
0
√

1− p −√p 0
0

√
p

√
1− p 0

0 0 0 1


Interpret the two basis vectors as ”empty” and ”occupied”.
Then the interaction describes a photon changing to a free
place with probability p.



Example 2

Example 2.

(discrete) Jaynes-Cummings model

H = `2(N0), K = P = C2

U |0, 0 > := |0, 0 >
U |n − 1, 1 > := αn |n − 1, 1 > +βn |n, 0 > (absorption)

U |n, 0 > := γn |n − 1, 1 > + δn |n, 0 > (spontan. emission)

with

(
αn βn
γn δn

)
unitary, n ∈ N



Some Concepts from Multivariate Operator Theory

T1, . . . ,Td ∈ B(L) for a Hilbert space L (d =∞ allowed)

T = (T1, . . . ,Td) is called a row contraction if it is contractive
as an operator from

⊕d
1 L to L or, equivalently, if

∑d
1 TjT

∗
j ≤ 1.

T = (T1, . . . ,Td) is called a row isometry if it is isometric as an
operator from

⊕d
1 L to L or, equivalently, if the Tj are isometries

with orthogonal ranges.

A row isometry T = (T1, . . . ,Td) is called a row shift if there
exists a subspace E of L (the wandering subspace) such that
L =

⊕
α∈F+

d
TαE (F+

d free semigroup with generators 1, . . . , d)
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Outgoing Cuntz Scattering System

An outgoing Cuntz scattering system is a collection(
L, V = (V1, . . . ,Vd), G+

∗ , G
)

where V is a row isometry on the Hilbert space L and G+
∗ and G

are subspaces of L such that

1. G+
∗ is the smallest V -invariant subspace containing

E∗ := L 	 spanj=1,...,d VjL ,

thus V |G+
∗

is a row shift and G+
∗ =

⊕
α∈F+

d
VαE∗

(shift part of V in Wold decomposition)

2. V |G is a row shift, thus G =
⊕

α∈F+
d
VαE with

E := G 	 spanj=1,...,d VjG.
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Outgoing Cuntz Scattering System - Reference

Cuntz scattering systems have been introduced in

J. Ball, V. Vinnikov

Lax-Phillips Scattering and Conservative Linear Systems:
A Cuntz-Algebra Multidimensional Setting.
Memoirs AMS, vol. 178 (2005)

In this paper the emphasis is on generalizing ideas from
Lax-Phillips scattering to a multivariate operator setting.
We want to make the connection with quantum probability.
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Outgoing Cuntz Scat.System from Interaction Model 1

Theorem:
Let U be an interaction with vacuum vectors ΩH, ΩK, ΩP . Then
we have an outgoing Cuntz scattering system

(H⊗K∞)o , V = (V1, . . . ,Vd), G+
∗ , G

where

(H⊗K∞)o := (H⊗K∞)	 C(ΩH ⊗ ΩK∞)

(orthogonal complement of the vacuum)

Vj

(
ξ ⊗ η

)
:= U∗(ξ ⊗ εj)⊗ η ∈ (H⊗K1)⊗K[2,∞)

for ξ ∈ H and η ∈ K∞ and
(
εj
)

an ONB of P
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Outgoing Cuntz Scat.System from Interaction Model 2

Wold decomposition

E∗ = U∗1Y ⊂ H⊗K1, G+
∗ =

⊕
α∈F+

d

VαE∗

with Y := ΩH ⊗ (ΩP1 )⊥ ⊗ Ω[2,∞) ⊂ Po
∞

For the second row shift we take

E := H⊗ (ΩK1 )⊥ ⊗ ΩK[2,∞), G =
⊕
α∈F+

d

VαE .
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Outgoing Cuntz Scat.System from Interaction Model 3

I The Wold decomposition is very explicit here.

I V = (V1, . . . ,Vd) is an isometric dilation (in the sense of
Popescu) of the row contraction (A∗1, . . . ,A

∗
d) appearing in

the noncommutative transition operator. As it is written it is
usually not minimal but

I the setting relates more directly to physical models.
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F+
d -Linear Systems – Input and Output

I input space U := E = H⊗ (ΩK1 )⊥⊗ΩK[2,∞) ⊂ (H⊗K∞)o ,

I output space Y := (ΩP1 )⊥ ⊗ ΩP[2,∞) ⊂ (P∞)o

With H ⊗K = H⊕ U the interaction U maps H⊕ U onto H⊗P
which contains Y (identifying P and P1). Hence for j = 1, . . . , d
we can define

Aj : H → H, Bj : U → H, C : H → Y, D : U → Y

U(ξ ⊕ η) =:
d∑

j=1

(
Ajξ + Bjη

)
⊗ εj

PY U(ξ ⊕ η) =: Cξ + Dη,

with ξ ∈ H, η ∈ U and
(
εj
)d
j=1

ONB of P and PY proj. onto Y
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F+
d -Linear systems – Colligations

Further we define the colligation

CU :=


A1 B1
...

...
Ad Bd

C D

 : H⊕ U →
d⊕

j=1

H⊕ Y

The colligation CU gives rise to a F+
d -linear system ΣU

(noncommutative Fornasini-Marchesini system)

x(jα) = Aj x(α) + Bj u(α)

y(α) = C x(α) + D u(α),

where j = 1, . . . , d , further α, jα (concatenation) are words in F+
d

and
x : F+

d → H, u : F+
d → U , y : F+

d → Y.
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F+
d -Linear Systems – Example

Given x(∅) and u we can use ΣU to compute x and y recursively.

�
�
�
�
�
�
�
�

@
@
@
@
@
@
@
@

HHH
HH

�
��

��

PP

��

PP

��

∅

1

2

11

21

12

22

. . . dyadic tree for d = 2



Input - Output Relation

Can we describe an F+
d -linear system by a transfer function?

For this we define the noncommutative z-transform of x as

x̂(z) =
∑
α∈F+

d

x(α)zα,

where zα = zαn . . . zα1 if α = αn . . . α1 ∈ F+
d and z = (z1, . . . , zd)

is a d-tuple of formal non-commuting indeterminates. Similarly
û(z) =

∑
α∈F+

d
u(α)zα and ŷ(z) =

∑
α∈F+

d
y(α)zα.

For x(∅) = 0 we have the input-output relation

ŷ(z) = ΘU(z) û(z)

where

ΘU(z) :=
∑
α∈F+

d

Θ
(α)
U zα := D + C

∑
β∈F+

d
j=1,...,d

AβBjz
βj
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Noncommutative Transfer Function

We call the formal non-commutative power series

ΘU(z) :=
∑

α∈F+
d

Θ
(α)
U zα the (noncommutative) transfer

function associated to the interaction U. The ‘Taylor coefficients’

Θ
(α)
U are operators from U to Y.

We can proceed from formal power series to operators between
Hilbert spaces.

Theorem
The input-output relation

ŷ(z) = ΘU(z) û(z)

corresponds to a contraction

MΘU
: `2(F+

d ,U)→ `2(F+
d ,Y)

which (with x(∅) = 0) maps an input sequence u to the
corresponding output sequence y.
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Multi-Analytic Operators and Noncommutative Schur Class

The operator MΘU
has the property that it intertwines with right

translation, i.e., for all j = 1, . . . , d

MΘU

( ∑
α∈F+

d

x(α)zα z j
)

= MΘU

( ∑
α∈F+

d

x(α)zα
)
z j .

Such operators have been called analytic intertwining operators
or multianalytic operators: there are analogies to the theory of
multiplication operators by analytic functions on Hardy spaces.
The non-commutative power series ΘU is called the symbol of
MΘU

.

It was one of the motivations for this work to make this theory
available for the study of interaction models and non-commutative
Markov chains. Note that because MΘU

is a contraction the
transfer function ΘU belongs to the socalled non-commutative
Schur class Snc,d (U ,Y).
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Physical Interpretation – Input

We may think of H as the (quantum mechanical) Hilbert space of
an atom, K` as the Hilbert space of a part of a light beam or field
which interacts with the atom at time `.

Then we think of ΩH as a vacuum state of the atom and of
ΩK = ΩP in K = P as a state indicating that no photon is
present.

I The input

η ∈ U = H⊗ (ΩK1 )⊥ ⊗ ΩK[2,∞) ⊂ H⊗K∞

represents a vector state with

I photons arriving at time 1 and stimulating an interaction
between the atom and the field,

I but no further photons arriving at later times.

I Nevertheless it may happen that some activity (emission) is
induced which goes on for a longer period.
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Physical Interpretation – Output

The orthogonal projection Pα onto

εα1 ⊗ . . .⊗ εαn−1 ⊗ (ΩPn )⊥ ⊗ Ω[n+1,∞),

corresponds to the following event:

I We measure data α1, . . . , αn−1 at times 1, . . . , n − 1 in the
field, finally there is a last detection of photons corresponding
to (ΩPn )⊥ at time n, nothing happens after time n.

I This experimental record is obtained by measuring (at times
indexed by the positive integers) an observable Y ∈ B(P)
with eigenvectors ε1, . . . , εd . Such lists of data have been used
for indirect measurements of an atom, for quantum filtering
and for updating protocols such as quantum trajectories.



Physical Interpretation of Taylor Coefficients

We can obtain the following formula for the Taylor coefficients

Pα U(n)η = Θ
(α)
U η

According to the usual probabilistic interpretation of quantum
mechanics this means for example that

πα := ‖Θ
(α)
U η ‖2

is the probability for the event described by Pα if we start in the
state η at time 0.

I Actually the transfer function also keeps track of the complex
amplitudes and contains additional coherent information.

Conclusion: We can think of the transfer function ΘU as a
convenient way to assemble such data into a single mathematical
object.
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Observability and Scattering Theory

I The control theoretic concept of ‘observability’ for our model
is closely related to an operator-algebraic scattering theory
for noncommutative Markov chains

(as in B. Kümmerer, H. Maassen, A Scattering Theory for
Markov Chains. IDAQP vol.3 (2000), 161-176)

I Roughly: A system is called observable if by studying the
outputs for given inputs we can determine the internal state of
the system.

In our model: We observe output fields for given input fields
and we want to determine the state of the atom from that.

If a system is asymptotically complete in the sense of
scattering theory then this can be done. This is the link!
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Observability Operator

Guided by such considerations, in our setting this can be made
precise. We define the observability operator

WO : H → `2(F+
d ,Y)

ξ 7→
(
C Aα ξ

)
α∈F+

d

If WO is injective then the system is called observable. This is
the mathematical counterpart of our intuitive discussion above.



Observability and Scattering Theory – Main Result

For simplicity we state the following Theorem for finite-dimensional
systems only. But most of the assertions are true in general under
technical modifications.

Theorem:
The following are equivalent:

I The system is observable.

I The observability operator is isometric.

I The transfer function ΘU is inner, i.e., the associated
multi-analytic operator MΘU

is isometric.

I The noncommutative transition operator Z : B(H)→ B(H) is
ergodic (i.e., the fixed point space is trivial)

I We have asymptotic completeness in (a suitable version of)
Kümmerer-Maassen scattering theory.



Open Ends

The classical transfer function plays an important role in
control theory. Hence we expect the noncommutative
transfer function to play its role in quantum control.

We have already seen that it relates to filtering.

Another plan: Study networks of quantum systems. Are
there effective ways to compute the transfer function of
suitable networks consisting of many quantum systems?

Finally connections should appear to work already done for
continuous time models (for example by Belavkin, Bouten,
van Handel, James, Gough etc.).
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