Hypercontractivity on the *q*-Araki-Woods algebras

Hun Hee Lee Chungbuk National University

Joint work with Éric Ricard

August 17, 2010

q-Fock space for $-1 \le q \le 1$ (Bożejko, Speicher '91)

- ▶ $\mathcal{H}_{\mathbb{R}}$: real Hilbert space, $\mathcal{H} = \mathcal{H}_{\mathbb{R}} + i\mathcal{H}_{\mathbb{R}}$: complexification. $\mathcal{F}_0(\mathcal{H}) = \mathbb{C}\Omega \oplus \bigoplus_{n \geq 1} \mathcal{H}^{\otimes n}$ (Free Fock space)
- $ightharpoonup P_n$: Symmetrization operator on $\mathcal{H}^{\otimes n}$

$$P_0\Omega = \Omega, \ P_n(f_1 \otimes \cdots \otimes f_n) = \sum_{\pi \in S_n} q^{i(\pi)} f_{\pi(1)} \otimes \cdots \otimes f_{\pi(n)},$$

where S_n is the symmetric group on $\{1, 2, \dots, n\}$ and $i(\pi) = \#\{(i,j)|1 \le i,j \le n, \pi(i) > \pi(j)\}.$

- (*q*-inner product) $\langle \cdot, \cdot \rangle_q$ on $\mathcal{F}_0(\mathcal{H})$: $\langle \xi, \eta \rangle_q := \delta_{n,m} \langle \xi, P_n \eta \rangle_{\mathcal{H}}$ for $\xi \in \mathcal{H}^{\otimes n}, \eta \in \mathcal{H}^{\otimes m}$.
- $\begin{array}{l} \blacktriangleright \ \, (\textit{q-Fock space}) \, \mathcal{F}_{\textit{q}}(\mathcal{H}) := (\mathcal{F}_{0}(\mathcal{H}), \langle \cdot, \cdot \rangle_{\textit{q}}), \, \, -1 < q < 1 \\ \mathcal{F}_{\pm 1}(\mathcal{H}) := (\mathcal{F}_{0}(\mathcal{H}), \langle \cdot, \cdot \rangle_{\pm 1}) / \mathsf{Ker}(\langle \cdot, \cdot \rangle_{\pm 1}). \end{array}$

q-generalized gaussian

▶ For $h \in \mathcal{H}$, $\ell_q(h)$ is the left creation operator defined by

$$\ell_q(h)\Omega=h,$$

$$\ell_q(h)h_1\otimes\cdots\otimes h_n=h\otimes h_1\otimes\cdots\otimes h_n$$

for any $h_i \in \mathcal{H}, 1 \leq i \leq n$.

- $\blacktriangleright \ \ell_q^*(h)$ is the annihilation operator (the adjoint of $\ell_q(h)$).
- ▶ $(e_{\pm k})_{k \ge 1}$: an ONB of $\mathcal{H}_{\mathbb{R}}$. $\mu = (\mu_k)_{k > 1}$: a sequence of positive reals ≥ 1 .
- ► (*q*-generalized gaussian)

$$g_{q,k} := \mu_k^{-1} \ell_q(e_k) + \mu_k \ell_q^*(e_{-k}).$$

q-Araki-woods algebra (Discrete Case)

- $\Gamma_q := \{g_{q,k}\}_{k\geq 1}^{"} \subseteq B(\mathcal{F}_q(\mathcal{H})), \quad -1 \leq q < 1$ $\Gamma_1 := \{\exp(i \cdot g_{1,k})\}_{k\geq 1}^{"} \subseteq B(\mathcal{F}_1(\mathcal{H})).$
- ▶ $q = \pm 1$ Araki, Woods'69 q = 0 Shlyakhtenko '97 -1 < q < 1 Hiai '03.
- ▶ τ_q : The vacuum state defined by $\tau_q(X) = \langle X\Omega, \Omega \rangle_q$ for $X \in \Gamma_q$.
- au_q is tracial when $\mu_k \equiv 1$, and actually Γ_q is a II_1 factor. When $\mu_k \neq 1$ for some k, then τ_q is not tracial anymore, and Γ_q is a type III VN-algebra.
- \triangleright Ω is always a separating vector for Γ_q .

q-Ornstein-Uhlenbeck semigroup

- ▶ *q*-Ornstein-Uhlenbeck semigroup $P_t^q : \Gamma_q \to \Gamma_q$ is defined by $P_t^q(X)\Omega = e^{-nt}(X\Omega)$ for any $X \in \Gamma_q$ with $X\Omega \in \mathcal{H}^{\otimes n}$.
- ▶ For example, $P_t^q(g_{q,k_1}\cdots g_{q,k_n})=e^{-nt}g_{q,k_1}\cdots g_{q,k_n}$.
- ▶ P_t^q is actually a semigroup of completely positive, normal, τ_q -preserving contractions that commute with the modular group of τ_q .

Hypercontractivity problem

- ► For which p, r and t does P_t^q extends to a contraction $P_t^q: L^p(\Gamma_q) \to L^r(\Gamma_q)$?
- ▶ (Nelson '73, classical case) When q=1 and $\mu\equiv 1$ $\|P_t^q\|_{L^p\to L^r}\leq 1 \iff \mathrm{e}^{-2t}\leq \frac{p-1}{r-1}.$
- ► (Carlen, Lieb '93) When q = -1 and $\mu \equiv 1$ $\|P_t^q\|_{L^p \to L^p} \le 1 \Leftrightarrow e^{-2t} \le \frac{p-1}{r-1}$.
- ▶ (Biane '97, tracial case) When $-1 \le q \le 1$ and $\mu \equiv 1$ $\|P_t^q\|_{L^p \to L^2} \le 1 \iff e^{-2t} \le p-1, \ 1$
- ▶ **Question** : What happens for the non-tracial case? i.e. the case $\mu_k > 1$ for some k.

Non-commutative L^p spaces $1 \le p < \infty$

- \triangleright \mathcal{N} : VN-algebra with n.f. tracial state φ .
 - $\|x\|_p := \varphi(|x|^p)^{\frac{1}{p}}, \ x \in \mathcal{N}.$ $L^p(\mathcal{N}, \varphi) := \text{the completion of } (\mathcal{N}, \|\cdot\|_p).$
- ▶ $\mathcal{M} \subseteq B(H)$: VN-algebra with n.f. state φ . $L^p(\mathcal{M}, \varphi)$ can be defined in the sense of Haagerup.
- ▶ Elements in $L^p(\mathcal{M}, \varphi)$ can be understood as (well-behaving) unbounded operators acting on a bigger Hilbert space $L^2(\mathbb{R}, H)$.
- ► There is a unique functional tr on $L^1(\mathcal{M}, \varphi)$ and a distinguished element $D_{\omega} \in L^1(\mathcal{M}, \varphi)$ s.t. $\operatorname{tr}(xD_{\omega}) = \varphi(x)$.
- ▶ $\mathcal{M}D_{\varphi}^{\frac{1}{p}}$ is a norm-dense subspace in $L^p(\mathcal{M}, \varphi)$. $x \in \mathcal{M} \xrightarrow{\text{identified}} xD_{\varphi}^{\frac{1}{p}} \in L_p(\mathcal{M})$ in the sense of complex interpolation.

Extension to non-commutative L^p -setting

 $ightharpoonup \mathcal{M}$, \mathcal{N} : VN-algebras with n.f. states φ and ψ , resp., with associated density operators D_{φ} and D_{ψ} .

$$\begin{array}{l} T: \mathcal{M} \rightarrow \mathcal{N} \text{ be a c.p. contraction satisfying} \\ \left\{ \begin{array}{l} \psi \circ T = \varphi \\ \sigma_t^\psi \circ T = T \circ \sigma_t^\varphi, \ \forall t \in \mathbb{R} \end{array} \right. .$$

▶ Let $1 \le p, r < \infty$.

$$T^{p,r}: \mathcal{M}D_{\varphi}^{\frac{1}{p}} \to \mathcal{N}D_{\psi}^{\frac{1}{r}} \subseteq L_r(\mathcal{N}), \ xD_{\varphi}^{\frac{1}{p}} \mapsto (Tx)D_{\psi}^{\frac{1}{r}}.$$

- It is well-known that $T^{p,p}$ extends to a (complete) contraction.
- ▶ We will denote $T^{p,r}$ simply by T.

The main results

Theorem

Let 1 . Then, we have

$$\|P_t^q\|_{L^p \to L^2} \le 1 \text{ if } e^{-2t} \le C \alpha_\mu^{4-\frac{8}{p}}(p-1),$$

where
$$\alpha_{\mu} = \sup_{n \geq 1} \mu_n$$
.

▶ Note that we get the same optimal order p-1 for $p \sim 1$.

Theorem

Suppose that $\alpha_{\mu} = \infty$, then P_t^q can not be extended to a contraction from $L^p(\Gamma_q)$ into $L^2(\Gamma_q)$ for any $1 \le p < 2$.

Sketch of Proof

- For the "if" part, we approximate creations and annihilations (and consequently generalized gaussians) by using the Baby Fock model.
- ▶ P.A. Meyer '95: the case q = 1 or Bosonic case.
 - P. Biane '97: the case $-1 \le q \le 1$.
 - A. Nou '06: the case $-1 \le q \le 1$ focusing on the non-tracial case.
- ► For the "only if" part, we get the conclusion by examining 1-dimensional behavior as usual.

A. Nou's twisted baby Fock

- ▶ $I = \{\pm 1, \pm 2, \dots, \pm n\}$ $\varepsilon : I \times I \to \{\pm 1\}$: a choice of sign satisfying $\varepsilon(i,j) = \varepsilon(j,i), \ \varepsilon(i,j) = \varepsilon(|i|,|j|), \ \text{and} \ \varepsilon(i,i) = -1.$
- ▶ $\mathcal{A}(I,\varepsilon)$: unital algebra with generators $(x_i)_{i\in I}$ with $x_ix_j \varepsilon(i,j)x_jx_i = 2\delta_{i,j}, \ i,j\in I$. In particular, $x_i^2 = 1$.
 - $\mathcal{A}(I,\varepsilon)$ is equipped with an involution *, such that $x_i^*=x_i$.
- ▶ $x_{\emptyset} := 1$ and $x_A := x_{i_1} \cdots x_{i_k}$ for $A = \{i_1 < \cdots < i_k\} \subseteq I$ $\{x_A : A \subseteq I\}$ is a basis for $A(\mathcal{I}, \varepsilon)$, so that $\dim A(\mathcal{I}, \varepsilon) = 2^{2n}$.
- $\varphi^{\varepsilon}: \mathcal{A}(I, \varepsilon) \to \mathbb{C}$: a tracial state given by $\varphi^{\varepsilon}(x_A) = \delta_{A,\emptyset}$. • $H = L^2(\mathcal{A}(I, \varepsilon), \varphi^{\varepsilon})$: the corresponding L^2 -space $\{x_A : A \subseteq I\}$: an ONB of H.

A. Nou's twisted baby Fock: continued

► (Creations and Annihilations)

$$\beta_i^*(x_A) = \left\{ \begin{array}{ll} x_i x_A & \text{if } i \notin A \\ 0 & \text{if } i \in A \end{array} \right., \quad \beta_i(x_A) = \left\{ \begin{array}{ll} x_i x_A & \text{if } i \in A \\ 0 & \text{if } i \notin A \end{array} \right.$$

► (Gaussians and corresponding VN-algebra)

$$\gamma_i := \mu_i^{-1} \beta_i^* + \mu_i \beta_{-i}, \ 1 \le i \le n.$$

$$\Gamma_n := \{ \gamma_i : 1 \le i \le n \}'' \subseteq B(H) \cong M_{2^{2n}}.$$

$$\dim \Gamma_n = 2^n.$$

 $au^arepsilon(\cdot) = \langle \cdot 1, 1
angle$: the vacuum state.

► (Relations satisfied by Gaussians)

$$\begin{cases} \gamma_{i}\gamma_{j} - \varepsilon(i,j)\gamma_{j}\gamma_{i} = 0 & i \neq j \in I \\ \gamma_{i}^{*}\gamma_{j} - \varepsilon(i,j)\gamma_{j}\gamma_{i}^{*} = 0 & i \neq j \in I \\ \gamma_{i}^{2} = (\gamma_{i}^{*})^{2} = 0 & i \in I \\ \gamma_{i}^{*}\gamma_{i} + \gamma_{i}\gamma_{i}^{*} = (\mu_{i}^{2} + \mu_{i}^{-2})id & i \in I \end{cases}$$

A. Nou's twisted baby Fock: continued 2

• (ε -Ornstein-Uhlenbeck semigroup)

 $N_{\varepsilon} = \sum_{i \in I} \beta_i^* \beta_i$: the number operator on H.

Then, for any $A \subseteq I$ we have $N_{\varepsilon}x_A = |A|x_A$.

We define the ε -Ornstein-Uhlenbeck semigroup $P_t^{\varepsilon}: \Gamma_n \to \Gamma_n$ by

$$P_t^{\varepsilon}(X)1 = e^{-tN_{\varepsilon}}(X1), X \in \Gamma_n.$$

 $ightharpoonup P_t^{\varepsilon}$ is actually a semigroup of unital, completely positive maps.

Hypercontractivity of ε -Ornstein-Uhlenbeck semigroup

- ▶ Using Speicher's central limit procedure it is enough to show Hypercontractivity of ε -Ornstein-Uhlenbeck semigroup.
- ▶ Following the idea of Carlen/Lieb and Biane we use the induction on *n*, the number of generators.
- ▶ We start with any element $X \in \Gamma_n$, which is uniquely expressed as

$$X = a + \gamma_n b + \gamma_n^* c + y_n d$$

where $a, b, c, d \in \Gamma_{n-1}$ and $y_n = \gamma_n^* \gamma_n - \mu_n^{-2} id$.

▶ We use y_n instead of $\gamma_n^* \gamma_n$ because of orthogonality.

Key estimates

▶ We will end up with the estimate

$$\left\|XD_{n}^{\frac{1}{p}}\right\|_{p}^{2} \geq \left\|aD_{n-1}^{\frac{1}{p}}\right\|_{p}^{2} + C_{1}(p-1)\left\|bD_{n-1}^{\frac{1}{p}}\right\|_{p}^{2} + C_{2}(p-1)\left\|cD_{n-1}^{\frac{1}{p}}\right\|_{2}^{2} + C_{3}(p-1)\left\|dD_{n-1}^{\frac{1}{p}}\right\|_{2}^{2},$$

where D_n and D_{n-1} are corresponding densities.

▶ (Optimal convexity inequality, Ball/Carlen/Lieb, '94)

$$\left(\frac{1}{2}\left[\|A+B\|_{p}^{p}+\|A-B\|_{p}^{p}\right]\right)^{\frac{2}{p}}\geq\|A\|_{p}^{2}+(p-1)\|B\|_{p}^{2},\ A,B\in M_{n}.$$

▶ By the optimal convexity inequality and the fact that $\gamma_n \mapsto -\gamma_n$ is a state-preserving *-isomorphism we get

$$\left\|XD_n^{\frac{1}{p}}\right\|^2 \ge \left\|(a+y_nd)D_n^{\frac{1}{p}}\right\|^2 + (p-1)\left\|(\gamma_nb+\gamma_n^*c)D_n^{\frac{1}{p}}\right\|^2 = I + (p-1)II.$$

Key estimates 2

▶ The estimate of I and II heavily depends on the structure of the algebra generated by Γ_{n-1} and y_n . Indeed, we have the following state-preserving *-isomorphism.

$$\Phi: (\Gamma_{\langle 1, \dots, n-1, y_n \rangle}, \tau^{\varepsilon}) \to (\ell_2^{\infty}(\Gamma_{\langle 1, \dots, n-1 \rangle}), \psi \otimes \tau^{\varepsilon}) \subseteq M_2 \otimes \Gamma_{\langle 1, \dots, n-1 \rangle},$$

$$a + y_n d \mapsto \begin{bmatrix} a + \mu_n^2 d & 0 \\ 0 & a - \mu_n^{-2} d \end{bmatrix},$$

where ψ is a tracial state on ℓ_2^∞ given by

$$\psi(x,y) = \lambda x + (1-\lambda)y, \ x,y \in \mathbb{C}$$

and
$$\lambda = \frac{1}{1+\mu^4}$$
.

An asymmetric convexity inequality as follows.

$$\left(\lambda \|A + \mu^2 B\|_{p}^{p} + (1 - \lambda) \|A - \mu^{-2} B\|_{p}^{p}\right)^{\frac{2}{p}} \ge \|A\|_{p}^{2} + \frac{1}{3\mu^{4}} (p - 1) \|B\|_{p}^{2}.$$

Approximation by the central limit procedure

the parameter μ_i for 1 < i < n, 1 < j < m.

▶ For the increased index set

$$\widetilde{I} = \{(i,j) : 1 \leq i \leq n, \ 1 \leq j \leq m\} \cup \{(-i,-j) : 1 \leq i \leq n, \ 1 \leq j \leq m\},$$

we construct generalized baby gaussians $\gamma_{i,i}$ associated with

 \blacktriangleright Note that the "choice of sign" function ε in this case would be

$$\varepsilon: \widetilde{I} \times \widetilde{I} \to \{\pm 1\}$$

satisfying a similar conditions.

Now we replace $\varepsilon((i_1,i_2),(j_1,j_2))$, $(i_1,i_2) \prec (j_1,j_2) \in \widetilde{I}$ with a family of i.i.d. random variables with

$$P(\varepsilon((i_1, i_2), (j_1, j_2)) = -1) = \frac{1-q}{2}, \ P(\varepsilon((i_1, i_2), (j_1, j_2)) = 1) = \frac{1+q}{2},$$

where $(i_1, i_2) \prec (j_1, j_2)$ means $i_1 < j_1$ or $i_1 = j_1, i_2 < j_2$.

Approximation by the central limit procedure: continued

We set.

$$s_{i,m} = \frac{1}{\sqrt{m}} \sum_{j=1}^{m} \gamma_{i,j}.$$

Then, the Speicher's central limit procedure tells us that: For any *-polynomial Q in n non-commuting variables we have

$$\lim_{m\to\infty}\tau^{\varepsilon}(Q(s_{1,m},\cdots,s_{n,m}))=\tau_q(Q(g_{q,1},\cdots,g_{q,n}))$$

for almost every ε .

▶ Since the set of all non-commuting *-polynomials is countable, we can find a choice of sign ε such that the above is true for any Q.

Approximation by the central limit procedure: continued

▶ We can transfer the above convergence in L_p -setting following A. Nou's ultraproduct approach:

Let $\mathcal U$ be a fixed free ultrafilter on $\mathbb N$ and $1 \le p \le 2$. For any *-polynomial Q in n non-commuting variables we have

$$\lim_{m,\mathcal{U}}\left\|Q(s_{1,m},\cdots,s_{n,m})D_m^{\frac{1}{p}}\right\|_p=\left\|Q(g_{q,1},\cdots,g_{q,n})D_q^{\frac{1}{p}}\right\|_p.$$

and with a careful analysis we also have

$$\lim_{m,\mathcal{U}}\left\|P_t^{\varepsilon}(Q(s_{1,m},\cdots,s_{n,m})D_m^{\frac{1}{p}}\right\|_p=\left\|P_t^q(Q(g_{q,1},\cdots,g_{q,n})D_q^{\frac{1}{p}}\right\|_p.$$

Combining the above approximation and the baby version of hypercontractivity we get the "if" direction.

1-dimensional estimate

▶ g_i : q-gaussian with parameter μ_i . For $1 \le p < 2$ we have

$$\left\|g_i D_n^{\frac{1}{p}}\right\|_p \sim \mu_i^{2-\frac{4}{p}}$$

whilst $\left\|g_i D_n^{\frac{1}{2}}\right\|_2 = 1$. Thus, P_t^q can not be extended to a contraction from $L^p(\Gamma_q)$ into $L^2(\Gamma_q)$.

▶ When $p \to 1$ we have a more precise estimate. Indeed, for $\frac{1}{p} = 1 - \frac{1}{2n}$, $n(\geq 2) \in \mathbb{N}$, $\left\|P_q^t\right\|_{L_p \to L_2} \leq 1$ implies that

$$e^{-2t} \le 2\alpha_{\mu}^{4-\frac{8}{p}}(p-1).$$

Final remarks

- ▶ Our results are far from the optimal one. Even though we restrict ourselves to the tracial case $\mu \equiv 1$ we do not get the optimal estimate.
- Note that we did not use the Jordan-Wigner transformation! Actually, if we adapt our approach to the tracial case $\mu \equiv 1$, we can prove the tracial optimal hypercontractivity without using the Jordan-Wigner transformation.
- ► The second quantization procedure in the twisted baby Fock model is not available!