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{ P(¢) + w(Ay) — s(w) ifw e %" (A)

+o0 if we S (A)\SE(A).
{1? = 0} = #2(A)

VG NS (A) Va(G) < va(G) < e~ /ta nigll® <)

I
=

In particular, when de (A) = {wy} we have

Vo = O,y

For each convex open set G containing an invariant state we have

limta log ve(G) = limt, logva(G) = —inf I? = —inf I® = — inf I,
imt, logv,(G) = limt, log v, (G) 1r§1 in 4k,



(1) limty log vy (e9/t) =: L(g) = P(f + g) — P(f)

(2) For each € M7(Q) there exists a sequence (u;) such that:
o {pi} = MG ()

® Ly —

o h(pi) — h(p)

When both above conditions hold we get the LDP with rate function

P(f) = pu(f) = h(p) if pe M7(Q)

+o0 if p e M(Q)\ M7(Q).

Example: Q= SZ°, 7 = shift, f € c(9),

ezme/\(a) F(r78)

1% = E (5 1
! > ewen(a) F(T7E) TTAGT Yaen(a) Oroe
¢€Per, ¢’ €Per,

1 o
L(§) = lim —— log Z eXwenca FH9(78) i log Z eXwen(a F(T7E) _ P(f+g) — P(f)
|A(a)‘ £€Per,, |A((],)| ¢/ ePer,

When f = fg one can take

e~ Us(A@))(€)

Va,fo = U (A w01 > e Acay O
56;‘% Zf/ePerae Ug(A(@))(§") " TAT@IT 2vzen(a) Or7¢

because

lim——— sup | S £(r°€) + Us(A(@)(€)] =0

|A(a)‘ {€Per, zeA(a)



1 variational princi
P(¢) := lim —— log Tr e~ (A(a)) ariational principle sup  {s(w) —w(4y)}
|A(a) wes™ (A)

Let B denote the Banach space of relatively short range translation-invariant interactions:

peB i ol = ﬁ S 6(A)]] < +o0

A30

Yw e S (A), Valw) = b Z woT® (average)

we.Z(A) s aperiodic if w=wor® Ve Z%a)
Vw e 7% (A), Uy,(w)  (a-periodization)

VA local self-adjoint, lim sup |V,oU,(w)(A) —w(A)| =0
wes2 (A)



Theorem 1. Let Per, be a finite set of a-periodic states for all a € Z¢, and for each ¢ € B we endow
Per, with the probability measure
Ao (@) —w(Hy (A()))
Poper, = ) ro @) @) O
Zw’EPera e>A@) ¢

wePer,

We assume that the limit
I = lim [A(a)| ! log Card(Per,)
exists and is finite.

a) The following statements are equivalent:

(i) For each ¢ € B the net (3_, cper, Po,Per, (W)dv, () satisfies a large deviation principle in 7 (A)
with powers (|A(a)|™') and rate function

P(¢) + w(Ay) — s(w) if w e 2 (A)
[(z’(w) =

+o0 if we S(ANSZ (A).

(ii) For each ¢ € B we have
I = lime_,oliminf |A(a)| "' log Card({w € Per, : I?(V,(w)) < €}).
(iii) For each ¢ € B we have

lim

log Z esA(a)(W)_w(Htﬁ(A(a)) = l + P(AQB)

w€EPer,

1
|A(a)]
The above equivalences hold verbatim replacing for each a € Z‘i and each w € Per, the quantity
SA(a)(w) in the definition of py per, by any real sq(w) fulfilling
|A(a)]s(Va(w)) < sa(w) < sa(a) (@)
b) Let D = {¢, : n € N} be a countable dense set in B and let w,, € Yf: (A) for alln € N. Then all
the conditions of part a) hold if | = 0 and for each n € N we have eventually
Pery, D {Uq(wy,) : 1 <k <n}.

Example 2. Take Per, = {U,(wy,) : 1 < k < |a|}, or more generally Per, = {Uy(wy,) : 1 < k < ng}
with lim |A(a)| =t logn, = 0.
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Corollary 3. Each limit point of the net (Zwepera Do Per, (W) Va(w)) s an equilibrium state for ¢; in
particular im - cpo. Pa,p(w) Va(w) = wy when wg is the unique equilibrium state for ¢.

Corollary 4. For each convex open set 4G containing some invariant state we have

lim m s —w(H, = su s(w) —w(A
e e (M)~ M@} = o (5() —w(4)
= sup  {s(w) —w(Ay)}
we@ns7(A)

and we can replace G by G in the left-hand side of both equalities. For each w € S (A) and each convex
local basis 9, at w we have

) =lida) + oL (s (@) — (e, (@)}

bGe€Y, wePer,,V,(w)EY

Corollary 5. Let D be a dense subset of B, let wy, be an equilibrium state for ¢ for all ¢ € D, and
let a — oo. Then for each invariant state w, there is a sequence (p,) in D, and a subsequence (a,, )
satisfying the following properties:

(i) lim Vaa, ©Ua,, (We,,) = w;

(i) s(w) < s(Va, oUa, (we,)) < ISAA((Q%) v,

225 (Ua,, () for all n € N;

an

(iii) The sequences (s(Va,, © Ua,, (wy,))) and (‘SAA(S::))l (Ua,, (wy,))) are decreasing and converge to

s(w).

Moreover, (i)-(iii) hold verbatim replacing V,, o U,, (wy,) by wy, .



