LARGE DEVIATION PRINCIPLE FOR PERIODIC STATES OF QUANTUM SPIN SYSTEMS

Henri Comman

Pontificia Universidad Católica de Valparaiso

$$I^{\phi}(\omega) = \begin{cases} P(\phi) + \omega(A_{\phi}) - s(\omega) & \text{if } \omega \in \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A}) \\ +\infty & \text{if } \omega \in \mathscr{S}(\mathcal{A}) \backslash \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A}). \end{cases}$$

$$\{I^{\phi}=0\}=\mathscr{S}_{\phi}^{\mathbb{Z}^d}(\mathcal{A})$$

$$\forall \overline{G} \cap \mathscr{S}_{\phi}^{\mathbb{Z}^d}(\mathcal{A}) = \emptyset, \qquad \nu_{\alpha}(G) \leq \nu_{\alpha}(\overline{G}) \leq e^{-1/t_{\alpha} \inf_{\overline{G}} \{I^{\phi} - \varepsilon\}}$$

In particular, when $\mathscr{S}_{\phi}^{\mathbb{Z}^d}(\mathcal{A})=\{\omega_{\phi}\}$ we have

$$\nu_{\alpha} \to \delta_{\omega_{\phi}}$$

For each convex open set \mathcal{G} containing an invariant state we have

$$\lim t_{\alpha} \log \nu_{\alpha}(\mathcal{G}) = \lim t_{\alpha} \log \nu_{\alpha}(\overline{\mathcal{G}}) = -\inf_{\overline{\mathcal{G}}} I^{\phi} = -\inf_{\mathcal{G}} I^{\phi} = -\inf_{\mathcal{G} \cap \mathscr{S}'} I^{\phi},$$

- (1) $\lim t_{\alpha} \log \nu_{\alpha}(e^{\widehat{g}/t_{\alpha}}) =: L(\widehat{g}) = P(f+g) P(f)$
- (2) For each $\mu \in \mathcal{M}^{\tau}(\Omega)$ there exists a sequence (μ_i) such that:
 - $\{\mu_i\} = \mathcal{M}^{\tau}_{g_i}(\Omega)$
 - $\mu_i \to \mu$
 - $h(\mu_i) \to h(\mu)$

When both above conditions hold we get the LDP with rate function

$$I^{f}(\mu) = \begin{cases} P(f) - \mu(f) - h(\mu) & \text{if } \mu \in \mathcal{M}^{\tau}(\Omega) \\ +\infty & \text{if } \mu \in \mathcal{M}(\Omega) \setminus \mathcal{M}^{\tau}(\Omega). \end{cases}$$

Example: $\Omega = S^{\mathbb{Z}^d}, \ \tau \equiv \text{shift}, \ f \in C(\Omega),$

$$\nu_{a,f} = \sum_{\xi \in \operatorname{Per}_a} \frac{e^{\sum_{x \in \Lambda(a)} f(\tau^x \xi)}}{\sum_{\xi' \in \operatorname{Per}_a} e^{\sum_{x \in \Lambda(a)} f(\tau^x \xi')}} \; \delta_{\frac{1}{|\Lambda(a)|} \sum_{x \in \Lambda(a)} \delta_{\tau^x \xi}}$$

$$\left(L(\hat{g}) = \lim \frac{1}{|\Lambda(a)|} \log \sum_{\xi \in \operatorname{Per}_a} e^{\sum_{x \in \Lambda(a)} f + g(\tau^x \xi)} - \lim \frac{1}{|\Lambda(a)|} \log \sum_{\xi' \in \operatorname{Per}_a} e^{\sum_{x \in \Lambda(a)} f(\tau^x \xi')} = P(f + g) - P(f)\right)$$

When $f = f_{\phi}$ one can take

$$\nu_{a,f_\phi} = \sum_{\xi \in \operatorname{Per}_a} \frac{e^{-U_\phi(\Lambda(a))(\xi)}}{\sum_{\xi' \in \operatorname{Per}_a} e^{-U_\phi(\Lambda(a))(\xi')}} \ \delta_{\frac{1}{|\Lambda(a)|} \sum_{x \in \Lambda(a)} \delta_{\tau^x \xi}}$$

because

$$\lim \frac{1}{|\Lambda(a)|} \sup_{\xi \in \operatorname{Per}_a} \left| \sum_{x \in \Lambda(a)} f(\tau^x \xi) + U_{\phi}(\Lambda(a))(\xi) \right| = 0$$

$$P(\phi) := \lim \frac{1}{|\Lambda(a)|} \log \operatorname{Tr} \, e^{-H_{\phi}(\Lambda(a))} \qquad \overset{\text{variational principle}}{=} \quad \sup_{\omega \in \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A})} \{s(\omega) - \omega(A_{\phi})\}$$

Let \mathcal{B} denote the Banach space of relatively short range translation-invariant interactions:

$$\phi \in \mathcal{B} \quad \text{ if } \quad \|\phi\| := \frac{1}{|\Lambda|} \sum_{\Lambda \ni 0} ||\phi(\Lambda)|| < +\infty$$

$$\forall \omega \in \mathscr{S}(\mathcal{A}), \qquad V_a(\omega) = \frac{1}{|\Lambda(a)|} \sum_{x \in \Lambda(a)} \omega \circ \tau^x \quad \text{(average)}$$

$$\omega \in \mathscr{S}(\mathcal{A})$$
 is a-periodic if $\omega = \omega \circ \tau^x \quad \forall x \in \mathbb{Z}^d(a)$

$$\forall \omega \in \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A}), \qquad \qquad U_a(\omega) \quad \text{(a-periodization)}$$

$$\forall A \text{ local self-adjoint}, \qquad \lim \sup_{\omega \in \mathscr{S}^{\mathbb{Z}^d}(A)} |V_a \circ U_a(\omega)(A) - \omega(A)| = 0$$

Theorem 1. Let Per_a be a finite set of a-periodic states for all $a \in \mathbb{Z}_{>}^d$, and for each $\phi \in \mathcal{B}$ we endow Per_a with the probability measure

$$p_{\phi, \operatorname{Per}_a} = \sum_{\omega \in \operatorname{Per}_a} \ \frac{e^{s_{\Lambda(a)}(\omega) - \omega(H_\phi(\Lambda(a)))}}{\sum_{\omega' \in \operatorname{Per}_a} e^{s_{\Lambda(a)}(\omega') - \omega'(H_\phi(\Lambda(a)))}} \ \delta_\omega.$$

We assume that the limit

$$l = \lim |\Lambda(a)|^{-1} \log \operatorname{Card}(\operatorname{Per}_a)$$

exists and is finite.

- a) The following statements are equivalent:
 - (i) For each $\phi \in \mathcal{B}$ the net $(\sum_{\omega \in \operatorname{Per}_a} p_{\phi,\operatorname{Per}_a}(\omega) \delta_{V_a(\omega)})$ satisfies a large deviation principle in $\mathscr{S}(\mathcal{A})$ with powers $(|\Lambda(a)|^{-1})$ and rate function

$$I^{\phi}(\omega) = \begin{cases} P(\phi) + \omega(A_{\phi}) - s(\omega) & \text{if } \omega \in \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A}) \\ +\infty & \text{if } \omega \in \mathscr{S}(\mathcal{A}) \backslash \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A}). \end{cases}$$

(ii) For each $\phi \in \mathcal{B}$ we have

$$l = \lim \varepsilon_{\to 0} \liminf_{a} |\Lambda(a)|^{-1} \log \operatorname{Card}(\{\omega \in \operatorname{Per}_a : I^{\phi}(V_a(\omega)) \le \varepsilon\}).$$

(iii) For each $\phi \in \mathcal{B}$ we have

$$\lim \frac{1}{|\Lambda(a)|} \log \sum_{\omega \in \operatorname{Per}_a} e^{s_{\Lambda(a)}(\omega) - \omega(H_{\phi}(\Lambda(a)))} = l + P(A_{\phi}).$$

The above equivalences hold verbatim replacing for each $a \in \mathbb{Z}_{>}^d$ and each $\omega \in \operatorname{Per}_a$ the quantity $s_{\Lambda(a)}(\omega)$ in the definition of $p_{\phi,\operatorname{Per}_a}$ by any real $s_a(\omega)$ fulfilling

$$|\Lambda(a)|s(V_a(\omega)) \le s_a(\omega) \le s_{\Lambda(a)}(\omega).$$

b) Let $D = \{\varphi_n : n \in \mathbb{N}\}$ be a countable dense set in \mathcal{B} and let $\omega_{\varphi_n} \in \mathscr{S}_{\varphi_n}^{\mathbb{Z}^d}(\mathcal{A})$ for all $n \in \mathbb{N}$. Then all the conditions of part a) hold if l = 0 and for each $n \in \mathbb{N}$ we have eventually

$$\operatorname{Per}_a \supset \{U_a(\omega_{\varphi_k}) : 1 \leq k \leq n\}.$$

Example 2. Take $\operatorname{Per}_a = \{U_a(\omega_{\varphi_k}) : 1 \leq k \leq |a|\}$, or more generally $\operatorname{Per}_a = \{U_a(\omega_{\varphi_k}) : 1 \leq k \leq n_a\}$ with $\lim |\Lambda(a)|^{-1} \log n_a = 0$.

Corollary 3. Each limit point of the net $\left(\sum_{\omega\in\operatorname{Per}_a}p_{\phi,\operatorname{Per}_a}(\omega)\ V_a(\omega)\right)$ is an equilibrium state for ϕ ; in particular $\lim\sum_{\omega\in\operatorname{Per}_a}p_{a,\phi}(\omega)\ V_a(\omega)=\omega_\phi$ when ω_ϕ is the unique equilibrium state for ϕ .

Corollary 4. For each convex open set \mathscr{G} containing some invariant state we have

$$\lim \max_{\omega \in \operatorname{Per}_a, V_a(\omega) \in \mathscr{G}} \left\{ s_{\Lambda(a)}(\omega) - \omega(H_{\phi_a}(\Lambda(a))) \right\} = \sup_{\omega \in \mathscr{G} \cap \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A})} \left\{ s(\omega) - \omega(A_{\phi}) \right\}$$
$$= \sup_{\omega \in \overline{\mathscr{G}} \cap \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A})} \left\{ s(\omega) - \omega(A_{\phi}) \right\}$$

and we can replace \mathscr{G} by $\overline{\mathscr{G}}$ in the left-hand side of both equalities. For each $\omega \in \mathscr{S}^{\mathbb{Z}^d}(\mathcal{A})$ and each convex local basis \mathscr{G}_{ω} at ω we have

$$s(\omega) = \omega(A_\phi) + \inf_{\mathscr{G} \in \mathscr{G}_\omega} \max_{\omega \in \operatorname{Per}_a, V_a(\omega) \in \mathscr{G}} \left\{ \frac{1}{|\Lambda(a)|} \left(s_{\Lambda(a)}(\omega) - \omega(H_{\phi_a}(\Lambda(a))) \right) \right\}.$$

Corollary 5. Let D be a dense subset of \mathcal{B} , let ω_{φ} be an equilibrium state for φ for all $\varphi \in D$, and let $a \to \infty$. Then for each invariant state ω , there is a sequence (φ_n) in D, and a subsequence (a_{α_n}) satisfying the following properties:

- (i) $\lim V_{a_{\alpha_n}} \circ U_{a_{\alpha_n}}(\omega_{\varphi_n}) = \omega;$
- $\text{(ii)} \ \ s(\omega) \leq s(V_{a_{\alpha_n}} \circ U_{a_{\alpha_n}}(\omega_{\varphi_n})) \leq \tfrac{s_{\Lambda(a_{\alpha_n})}}{|\Lambda(a_{\alpha_n})|}(U_{a_{\alpha_n}}(\omega_{\varphi_n})) \ \text{for all } n \in \mathbb{N};$
- (iii) The sequences $(s(V_{a_{\alpha_n}} \circ U_{a_{\alpha_n}}(\omega_{\varphi_n})))$ and $(\frac{s_{\Lambda(a_{\alpha_n})}}{|\Lambda(a_{\alpha_n})|}(U_{a_{\alpha_n}}(\omega_{\varphi_n})))$ are decreasing and converge to $s(\omega)$.

Moreover, (i)-(iii) hold verbatim replacing $V_{a_{\alpha_n}} \circ U_{a_{\alpha_n}}(\omega_{\varphi_n})$ by ω_{φ_n} .