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Outline of the talk: Characterization of Unitary Gaussian Processes with
1. Uniformly continuous, independent and stationary increments

2. Strongly continuous, independent and stationary increments

3. Uniformly continuous, independent increments.

Wiener process/Brownian motion

On the space Q = Cy(R.,R) of continuous paths starting from origin, there
is a construction of probability measure P by Wiener. This measure is called
Wiener measure and with respect which the co-ordinate function (Wiener
process) B,(w) := w(t) satisfies:

For any 0 <17 <1--1, < o, the increments B, ,B, — B, ---B,,— B, _, are
independent Gaussian random variables 2with mean 0 and Var(B,—By) =1t —s.
P({w:w(t)—w(s) <x})=

P
Vo =€ T

The Wiener Process B, as operator in L*(Q.P) Q¥(w) = B.¥(w) =
w(t)P(w),w € Q.




Pulling back of the Wiener Space L*(Q,P) to the Symmetric Fock Space
['(L*(R,,C)) by the unitary isomorphism given below

Symmetric Fock Space I'(X) := ®,>0K*"
Exponential vector e(f) := @nzoﬁf@m le(f),e(g)
Vacuum vector ¢(0) =1H0G06 - - ( (f),e(0))
Annihilation Process a(t)e(f) =e(f )fo f(s)ds
Creation Process (e(f),a'(t)e(g)) = (a(t)e(f),e(g))

Commutation relation [a(t),a’(s)] =t As 1t

Vacuum Expectation For X € B(I'(L*(R,)),EqX = (e(0),Xe(0))

Unitary Isomorphism W F(LZ(R+)) — L*(P)

P, = We(f) := &0 F6)B—1J5" /)45 ynitarity follows from Ep(P . W,) = (e(f),e(g))
In this Unitary Isomorphism

Q, = Wla'(t) +a(t)]W* =: WQ,W* which can be seen from

(7, 0%,) = [2[7(5) +g(s))ds(e(f),e(g)) = (e(f), Qre(e))



Stochastic Evolution Consider the Hudson-Parthasarathy type Quantum
Stochastic Differential Equation on h®I'(L*(R,)): with H,L € B(h),H self
adjoint

1
v”_1+/mLa (d\) +/m —L")a(d\) +/m — UL+ iH)dh

In n-dimensional Brownian motion B(¢) = (B(¢),---B,(t)) or Kk-valued
Brownian motion with k a separable Hilbert space, corresponding Fock space
will be I'(L*(R,k). With respect to a choice of orthonormal basis {E;} ;> of
k, a;(t) and a;r-(t) can be defined and shown that [a;(),a](s)] = 8, t As. Here
we consider the HP type Equation :

t
V=14 [ L ViaLs(A)al(an) +/Zm “Ya,(dM) +/m6 A)d
S

with G(A),L;(A) be bounded measurable families of operators in B(h) and
I, L(A JulP* = —2Re (. G(L)u).



It can be seen that solution V;; of above equation satisfies certain hypotheses
given below.

Unitary process with independent and stationary increments
Let {U;;:0 <5<t <} be a family of unitary operators in B(h® # ) satisfies

Al Evolution For any 0 <r <s <t < oo, U, Us; =U,;.

A2 Independence of increments For any 0 <ys;<f;, <o : i=1,2 such that
[Sl,tl] M [Sz,tz] =g
(@) Uy, s, (u1,v1) commutes with U} (up,v,) for every u;,v; € h.
(b)For s; <a,b <t,s <g,r <t,u,vch® pwech*”
<Q7 Ujl,bl (uhvl) o Ufm,bm(umv Vm)U;,rl (plawl) T U;#n,rn (pna Wn)'Q>

— <'Q7Uj b (”tlvvl>"'U;qt b (umvvm)g><ng# r (plawl)"'U#n rn(pn,wn)Q.>
1.1 m>Om q1,'1 dn,

A3 (Stationarity of increments) For 0 < s <t < oo and u,v € h®"
<Q7 U;ft(ulv‘}l) T U;ft(umvn>9‘> — <'Q‘7 Ut#—s(ulavl) e Ut#—s(un7vn)g>'



B1 (Weak continuity )
lim, o (Q,(U; —1)(u,v)Q) =0,Vu,v € h.

OR

B2 (Uniform continuity)
lim, o sup{[{Q, (Ur = 1)(u,v))| : [|ul], [Jv]}=1}=0.

OR

B3 (Regularity for non stationary case)
For o>t >s5>0,

sup {|(Q, (U, — 1)(u,v)Q)| = [lul = []v]| = 1} < Clr — |

for some positive constant C independent of s,z.



C1 (Gaussian Condition) For any u;,v;ch:i=1,2,3
lim, o 1(Q, (U} — 1) (u1,v1) (U} — 1) (u2,v2) (U} — 1) (u3,v3)Q2) = 0.
OR

C2 (Gaussian Condition for non stationary case)

, 1
ltlgl;“L (U;Eft — 1)(1/‘17‘}1)((]3 — 1)(1427‘}2)([]; - 1)(u3,V3).Q> = 0.
D (Minimality)
The set § = {Usl,tl(ulavl) e 'Usn,tn(unavn)g : 0 < S1 < f < sy "Sn < In < oo,n >

Lu=®" u;,v=®",v; e h®"} is total in #.

Problem Our aim here is to address the CONVERSE: given a family of
unitary operators {U;,}, satisfying some properties listed above, on B(h® H)
with a distinguish unit vector Q € H is {U,,} necessarily a solution of HP
type equation as above?



Root of this problem is from Schiirmann’s (PTRF 1990) paper where author
has discussed the problem when h is finite dimensional and obtained the
result by some co-algebraic techniques. The problem for Fock space adapted
unitary process is discussed in: Journé ( PTRF 1987), Hudson and Lindsay
(Math. Proc. Camb. Philos. Soc. 1987 ), Lindsay and Wills (JFA 2000).

Main Results
(Sahu, Schiirmann and Sinha: Publ. R.I.M.S 2009) For the unitary family

with independent and stationary increments and Uniformly continuity :

(i) There exist a separable Hilbert space k with dim(k) =N (not necessarily
finite) H € B(h) self adjoint and L; € B(h): j=1,2,---N: Z]JYZIL;‘-L]- converges
strongly.

(ii) Consider the Unitary solution of HP equation

Ve =1+ Y, [1ViaLiai(d))

+ Y0 [ Vaa(—=Ly)a;(d\) + [ V(=3 X0 LiL;+iH )d).

Then there exist a unitary isomorphism ®:h® % — h®I'(L*(R,,k)) such
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that ®Us,t:‘/S,t @, V ZZSZO

Sahu, Sinha: AIHP 2010 Under the Weak continuity problem is discussed.

More generally, for non stationary unitary processes {U;,} with
Regularity B3 and Gaussianity C2:

(i) There exist a measurable family of separable Hilbert space k, with
dim(k,) =d(t) and G(¢),L;(t) bounded measurable family of operators in B(h)
such that || Y ;L;(A)ul]* := —2Re(u, G(A)u).

(i) The Unitary solution {V;,} of the HP type equation in h®1“(f§+ktdt):
Vie=14+Y,[; \/S,ij(K)a;(dk)
+ ¥ [ Via(—Li(A)")a;(dN) + [; Via(G(L))dA, is unitarily equivalent to {U,,}.

Ji, Sahu and Sinha: Characterization of unitary processes with independent

increments; Submitted to " Communications on Stochastic Analysis”.
Available in Math arXiv.



Lines of Argument

1. Finding a x-algebra M and Positive definite kernel K, : s > 0 to capture
the Hilbert Space k; by Kolmogorov’s construction.

2. Finding L;(s) and G(s)

3. Establishment of unitary equivalence

Algebra M

Let My:={(u,v,e): u=Q" u;, v=",v;eh®" ecZ; n>1}. Then the
relation ‘~’ : (u,v,€) ~ (p,w,€) ife=¢ and [u><v|=|p><w| € Bh®") is
an equivalence relation on M;. Now consider the x-algebra M generated by
M()/ ~ with

Multiplication (u,v,€).(p,w,&') = (URP,VvROW,EDE)

Involution (u,v,€)" = (v, u,&")

(_7%7_
where for u =u Quy - u, e = (&, --€),& = (¢&,---€,) :

(817“'81178,17'“8;71) EZT’”v and g* :l+(8n7"°81) = Zg and &:un@)un— .

Correspondence (u,v,€) < S(;’l)(ul,vl) o Us(f’”’>(un,vn) —: US(J
U9 € B(h®" @ H)



Positive Definite Kernel K, on M

1
Ks VL,E), ) 78/ = lim——
(U,v,8),(w,2,€)) := lim-—

Due to Gaussianity,
K;((u,v,8), (p,w,¢))

!
=lim— ( (U} -
tls Tt — S ’

(S -1) @wwe (Ui -1) ewe)

1) e (U 1) p.we)

— Z H<Mk,vk>H<Pl,Wl>

1<i<m, 1<j<n ki

1

I#]

« lim —— <(US,, 1)@ (), (U, — 1)E (p j,wj)gz> .

tls T — 3§
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Since

(Uss = 1) (,v)Q, (Us, = 1) (p,w)Q)
= (Uss (u,v)Q, Uy, (p,w)Q) — (u,v) (P, W)
— (U, ) (Q, (Us; = 1) (p,w)Q) = (Q, (Uyy = 1) (,v)Q)(p, w)
= (P, (Zss = 1) (|w ><v])u) = (u,v) (p, (T5s = 1) w) = u, (T = 1) v)(p,w),

(P
—{

the existence of the limits on the right hand side follows from the continuity
of the evolutions {Z,} ,{T;,} defined by

(u, Ty v) = (Q, Uy, (u,v)Q).

and
(D, Zs 1 (|w ><V|)u) := (Us(,v)Q,Us ,(p, w)€2) .

11



K; is given by
K((u,v,€),(p,w,€)) (1)
/ Zi;— 1 — T,,— 1
— (—1 €+¢€ 1 8.t . s,t
0 tim{ (0 2R > <ol ) =TT (2w

/ T,;,—1
—(—=1)%"*® lim<u, ! v><p,w>

tls

= (=1 {{p, £(5) (1w >< v])u) — o) (p,Gl5)w) — {0, Gs)) (o) }

Thus K; define a positive definite kernel and Kolmogorov’s construction
give a Hilbert space k; with embedding m,(u,v,¢). Gaussianity gives that
{ns(u,v) : u,v € h} is total in k;. Let d(s) = dim(k,) and consider the basis
{Ej(s):j=1,2,---d(s)} where {E;: j> 1} be a fixed orthonormal basis for
the separable Hilbert space [*(N)
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Coefficient L;(t)
Lemma 1. There exists a unique measurable family {L;(t)} in B(h) such that
(u,Lj(t)v) = (E;(t),M:(u,v)) and ¥ ;> ||L;j(t)u|* = Re(u,G(t)u), ¥V u € h.

Unitary Equivalence: Now consider the unitary solution {V;;} of Hudson-
Parthasarathy type equation, on h@l“(flg+ k.ds), with coefficients L;(¢) and
G(1).

Recall that S = {Usl,tl(ul,vl)---Usn,tn(un,vn)Q . 0 <51 <11 <8508y,
ty <ooon > 1lu=Q" uv=~a" v €h®} is total in H. Let S :
{Vy i ui,v1) -+ Vi, 1 (i, v)€(0) 1 0 <5y < t) < 5p---5, < 1, <oo,m > 1,u,v € h*"},

Lemma 2. The set S is total in T'(L*(R,,K)).

I IA

Now we ready to established an unitary isomorphism. Define a map
O: H — T by setting,
OUs, 4, (u1,v1) - Us, 4, (U, ) 1= Vi, 1, (ur,v1) -+ Vs, 1 (U, v)€(0),0Q := e(0). This
extends to a unitary operator and OU;; =V;; ©, V ¢t > s> 0.
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