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Exchangeability in classical probability

The random variables (Xn)n≥0 are said to be exchangeable if

E
(
Xi(1) · · ·Xi(n)

)
= E

(
Xσ(i(1)) · · ·Xσ(i(n))

)
(σ ∈ S∞)

for all n-tuples i : {1, 2, . . . , n} → N0 and n ∈ N.

Theorem (De Finetti 1931,. . . )

The law of an exchangeable sequence (Xn)n≥0 is given by a unique
convex combination of infinite product measures.

”Any exchangeable process is an average of i.i.d. processes.”
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Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (A, ϕ) the
selfadjoint operators (xn)n≥0 ⊂ A are exchangeable if

ϕ
(
xi(1) · · · xi(n)

)
= ϕ

(
xσ(i(1)) · · · xσ(i(n))

)
(σ ∈ S∞)

for all n-tuples i : {1, 2, . . . , n} → N0 and n ∈ N.

Theorem (K 2009)

An exchangeable sequence (xn)n≥0 ⊂ (A, ϕ) is T -independent,
where

T =
⋂
n≥0

vN(xn, xn+1, xn+2, . . .)

is the tail algebra of the sequence.

”What is this noncommutative notion of T -independence?!”
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Noncommutative conditional independence

Definition
Let N , (Mi )i∈I be von Neumann subalgebras of (A, ϕ).

Then the
family (Mi )i∈I is N -independent if

EN (xy) = EN (x)EN (y)

for all x ∈ vN(N ,Mj |j ∈ J) and y ∈ vN(N ,Mk |k ∈ K ), and
disjoint subsets J,K of I .

NOTATION: EN is the ϕ-preserving cond. expectation from M onto N .

Equivalent formulation for index set I = {1, 2}:
vN(N ,M2) ⊂ M

∪ ∪
N ⊂ vN(N ,M1)

is a commuting square (w.r.t. ϕ).
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Exchangeability for the infinite symmetric group S∞

S∞ is the inductive limit of the symmetric group Sn as n→∞,
acting on {0, 1, 2, . . .}. A positive definite function χ : S∞ → C is
a character if it is constant on conjugacy classes and normalized
at the identity.

Elementary observation

Let γi := (0, i). Then the sequence (γi )i∈N is exchangeable, i.e.

χ
(
γi(1)γi(2) · · · γi(n)

)
= χ

(
γσ(i(1))γσ(i(2)) · · · γσ(i(n))

)
for σ ∈ S∞ with σ(0) = 0, n-tuples i : {1, . . . , n} → N and n ∈ N.

Task
Identify the convex combination of extremal characters of S∞. In
other words: prove a noncommutative de Finetti theorem!
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Thoma’s theorem (1964) is a quantum de Finetti theorem!

An extremal character of the group S∞ is of the form

χ(σ) =
∞∏

k=2

 ∞∑
i=1

ak
i + (−1)k−1

∞∑
j=1

bk
j

mk (σ)

.

Here mk(σ) is the number of k-cycles in the permutation σ and
the two sequences (ai )

∞
i=1, (bj)

∞
j=1 satisfy

a1 ≥ a2 ≥ · · · ≥ 0, b1 ≥ b2 ≥ · · · ≥ 0,
∞∑
i=1

ai +
∞∑
j=1

bj ≤ 1.

Alternative proofs
Vershik & Kerov 1981: asymptotic representation theory
Okounkov 1997: Olshanski semigroups and spectral theory

A new operator algebraic proof from exchangeability
R. Gohm & C. Köstler. Noncommutative independence from characters of the
symmetric group S∞. 47 pages. Preprint (2010). (arXiv:1005.5726)
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A helpful reformulation of exchangeability

Theorem (Gohm & K

Suppose the tracial probability space (A, ϕ) is generated by the
sequence (xn)n≥0. TFAE:

(a) (xn) is exchangeable

(b) there exists a representation ρ : S∞ → Aut(A, ϕ)

such that

(i) xn = ρ(σnσn−1 · · ·σ1)x0 for n ≥ 1.
(ii) x0 ∈ Aρ(σn) for n ≥ 2 (Localization Property)

NOTATION:
σi is the Coxeter generator (i − 1, i) of S∞, where S∞ acts on {0, 1, 2, 3, ...} by
permutations.

Let Sn,∞ = 〈σn, σn+1, . . .〉.

Remark
Above characterization generalizes easily to sequences of algebras.
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ϕ) is equipped with the generating representation
ρ : S∞ → Aut(A, ϕ).

Let An−1 := Aρ(Sn+1,∞), with n ∈ N0, and

α

k

(x) = sot- lim
n→∞

ρ(σ1

+k

σ2

+k

· · ·σn

+k

)(x), x ∈ A.

Then the subalgebras
(
αn

k

(A0

+k

)
)
n≥0

are exchangeable and, by

the n.c. de Finetti theorem (JFA 2010), A−1

+k

-independent.
Moreover one obtains a triangular tower of commuting squares:

A−1

+k

⊂ A0

+k

⊂ A1

+k

⊂ A2

+k

⊂ · · · ⊂ A
∪ ∪ ∪ ∪

A−1

+k

⊂ α

k

(A0

+k

) ⊂ α

k

(A1

+k

) ⊂ · · · ⊂ α

k

(A)
∪ ∪ ∪

A−1

+k

⊂ α2

k

(A0

+k

) ⊂ · · · ⊂ α2

k

(A)
∪ ∪...

...
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ϕ) is equipped with the generating representation
ρ : S∞ → Aut(A, ϕ). Let An−1 := Aρ(Sn+1,∞), with n ∈ N0, and

αk(x) = sot- lim
n→∞

ρ(σ1+kσ2+k · · ·σn+k)(x), x ∈ A.

Then the subalgebras
(
αn

k(A0+k)
)
n≥0

are exchangeable and, by

the n.c. de Finetti theorem (JFA 2010), A−1+k -independent.
Moreover one obtains a triangular tower of commuting squares:

A−1+k ⊂ A0+k ⊂ A1+k ⊂ A2+k ⊂ · · · ⊂ A
∪ ∪ ∪ ∪
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∪ ∪ ∪
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Identification of fixed point algebras
for unitary representations of S∞

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

π : S∞ → U(A), such that A = vNπ(S∞).

As before, ρ := Adπ is generating with fixed point algebras

An−1 = AAdπ(Sn+1,∞) = A ∩ (vNπ(σk |k > n))′.

Theorem (Gohm & K ’09)

A−1 = Z(A) An = A0 ∨ vNπ(Sn+1)

Moreover: A−1 = vN(Ck | k ∈ N), where Ck := E−1

(
Ak−1

0

)
,

A0 = vN(A0,Ck | k ∈ N), where A0 := E0

(
π(0, 1)

)
.

NOTATION: En is the tr-preserving conditional expectation from A onto An.
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Cycles

The transposition γi := (0, i), for i ∈ N, is called a star generator
and γ0 denotes the unity in Sn.

Lemma (Irving & Rattan ’06, Gohm & K ’09)

Let k ≥ 2. A k-cycle σ = (n1, n2, n3, . . . , nk) ∈ S∞ is of the form

σ = γn1γn2γn3 · · · γnk−1
γnk

γn1 ,

provided that n1 = 0 if σ(0) 6= 0.

Corollary

Disjoint cycles are supported by disjoint sets of star generators.
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Claus Köstler Noncommutative independence from S∞



Cycles & Independence

Theorem (Gohm & K)

Let I , J be subsets of N0. Then vNπ(γi | i ∈ I ) and vNπ(γj | j ∈ J)
are A0-independent whenever I ∩ J = ∅.

Corollary

Let σ and τ be disjoint cycles in S∞. Then vNπ(σ) and vNπ(τ)
are A0-independent.

Notation
Let π : S∞ → U(A) be a (unitary) representation as before. Put

vi := π(γi ).

Let En denote the tr-preserving conditional expectation from
A = vNπ(S∞) onto the fixed point algebra An.
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Limit cycles . . .

. . . are the crucial tool for identifying all fixed point algebras An.

Definition (Gohm & K ’09)

Suppose vn1vn2 · · · vnk
vn1 ∈ A is a k-cycle with k ≥ 1.

Then

En−1(vn1vn2vn3 · · · vnk
vn1), n ∈ N0,

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar
multiple of the identity.

Remarks

• Every k-cycle is a limit k-cycle for n sufficiently large.

• Limit k-cycles are certain mean ergodic averages of k-cycles.
(Compare ‘random cycles’ in Okounkov’s thesis.)

• Limit cycles generate a monoid similar to Olshanski
semigroups.
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Examples of limit cycles

Lemma (One-shifted representation n = 1)

E0(vn1vn2vn3 · · · vnk
vn1) =

{
E0(v1)k−1 if n1 = 0

E−1

(
E0(v1)k−1

)
if n1 6= 0

Proof.
The vi ’s are A0-independent.

Thus

(L.H.S .) = E0

(
vn1E0(v1)k−1vn1

)
.

But this equals (R.H.S .), since vixvi = αi
0(x) for x ∈ A0 and the

αi
0(A0)’s are A−1-independent.

Corollary (Zero-shifted representation n = 0)

E−1(vn1vn2vn3 · · · vnk
vn1) = E−1

(
E0(v1)k−1

)
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Key observation

Distinguished roles are played by the limit 2-cycle

A0 := E0(v1) = E0

(
π(0, 1)

)

and the limit k-cycles

Ck := E−1(Ak−1
0 ) = E−1

(
π(0, 1, . . . , k − 1)

)
.

Corollary

Suppose π is non-trivial.

(i) All Ck ’s are trivial ⇔ vNπ(S∞) is a II1 factor

⇒ Fixed point algebra A0 is generated by the limit cycle A0.

(ii) A0 is trivial ⇔
{

the (subfactor) inclusion
vNπ(S2,∞) ⊂ vNπ(S∞) is irreducible.
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A simple application: Thoma multiplicativity

The limit cycles
Ck = E−1(Ak−1

0 )

depend only on k .

Corollary (Thoma Multiplicativity)

Let mk(σ) be the number of k-cycles in the cycle decomposition of
the permutation σ ∈ S∞.

Then

E−1

(
π(σ)

)
=
∞∏

k=2

C
mk (σ)
k

Remarks

• E−1 is a center-valued trace.

• If vNπ(S∞) is a factor, then E−1 can be replaced by the
tracial state tr:

tr(π(σ)) =
∏
k≥2

(
tr(Ak−1

0 )
)mk (σ)
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E−1

(
π(σ)

)
=
∞∏

k=2

C
mk (σ)
k

Remarks

• E−1 is a center-valued trace.

• If vNπ(S∞) is a factor, then E−1 can be replaced by the
tracial state tr:

tr(π(σ)) =
∏
k≥2

(
tr(Ak−1

0 )
)mk (σ)
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Commuting squares & Discrete spectrum

Theorem (Gohm & K ’09)

Let M0 be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u ∈M satisfies:

1. u implements the commuting square
uM0u

∗ ⊂ M
∪ ∪
C ⊂ M0

,

2. the contraction EM0(u) is a normal.

Then EM0(u) has discrete spectrum which may accumulate only at
the point 0.

NOTATION: EM0 is the trace-preserving cond. expectation fromM onto M0.

Corollary (Okounkov ’97, Gohm & K ’09)

Suppose vNπ(S∞) is a factor. Then the limit 2-cycle A0 = E0(v1)
has discrete spectrum which may only accumulate at the point 0.

Claus Köstler Noncommutative independence from S∞



Commuting squares & Discrete spectrum

Theorem (Gohm & K ’09)

Let M0 be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u ∈M satisfies:

1. u implements the commuting square
uM0u

∗ ⊂ M
∪ ∪
C ⊂ M0

,

2. the contraction EM0(u) is a normal.

Then EM0(u) has discrete spectrum which may accumulate only at
the point 0.

NOTATION: EM0 is the trace-preserving cond. expectation fromM onto M0.

Corollary (Okounkov ’97, Gohm & K ’09)

Suppose vNπ(S∞) is a factor. Then the limit 2-cycle A0 = E0(v1)
has discrete spectrum which may only accumulate at the point 0.
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Thoma measures

Definition
A discrete probability measure µ on [−1, 1] satisfying

µ(t)

|t|
∈ N0 (t 6= 0)

is called a Thoma measure.

Theorem (Okounkov ’97, Gohm & K ’09)

Suppose vNπ(S∞) is a factor with tracial state tr. Then the
spectral measure µ of the limit 2-cycle A0 with respect to tr is a
Thoma measure.
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Conclusion: Thoma’s theorem

The spectral measure µ is supported on the spectral values of A0.

Denote by ai , −bi with ai > 0 and bi > 0 the non-zero elements in
suppµ. By the previous theorem,

ν(t) := µ(t)/|t| ∈ N0.

Thus we have the identity

tr(Ak−1
0 ) =

∑
i

(
ak−1
i µ(ai ) + (−bi )

k−1µ(−bi )
)

=
∑

i

ak
i ν(ai ) + (−1)k−1

∑
i

bk
i ν(−bi )

for every k > 1. One recovers from this the traditional form of the
Thoma theorem, by writing spectral values with multiplicities.
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N.

Given the (tracial) probability space (A, ϕ), let R(A, ϕ) denote
the complete lattice of von Neumann subalgebras of A. A map
F : B → R(A, ϕ) is called a factorization of (A, ϕ) over N if the
following conditions are satisfied for all b, b1, b2 ∈ B:

• F (b1) ∨ F (b2) = F (b1 ∨ b2)

• F (b1) ∩ F (b2) = F (b1 ∧ b2)

• F (0B) = N
• F (1B) = A
• F (b) and F (b′) are N -independent

A suitable continuity condition needs to be stipulated for a relevant
class of sets S ⊂ B, if B is not finite. Here: S are all finite subsets
of N and the continuity condition is

∨
s∈S F (s) = A.
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Factorizations from unitary representations of S∞

Theorem (K)

Let (A, ϕ) be a tracial probability space equipped with a
representation π : S∞ → U(A) such that A = vNπ(S∞).

Put

A0 := sot- lim
n→∞

1

n

(
π(0, 1) + π(0, 2) + . . .+ π(0, n)

)
N := vN(A0) ∨ EZ(A)(vN(A0))

F (I ) := vNπ

(
(0, i) | i ∈ I

)
∨N (I ⊂ N0)

Then
F : 2N → R(A, ϕ)

is a factorization of (A, ϕ) over N .
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