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Exchangeability in classical probability
The random variables (X,)n>0 are said to be exchangeable if

E(Xi) - Xin) = E(Xo((1)) - Xo(im)) (0 € Seo)

for all n-tuplesi: {1,2,...,n} — Ng and n € N,

Claus Kaostler Noncommutative independence from Soo



Exchangeability in classical probability

The random variables (X,)n>0 are said to be exchangeable if

E(Xi1y - Xim) = E(Xo(1)) - Xoimp) (0 € o)
for all n-tuplesi: {1,2,...,n} — Ng and n € N,
Theorem (De Finetti 1931,...)

The law of an exchangeable sequence (X,)n>0 is given by a unique
convex combination of infinite product measures.
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Exchangeability in classical probability

The random variables (X,)n>0 are said to be exchangeable if

E(Xi1y - Xim) = E(Xo(1)) - Xoimp) (0 € o)
for all n-tuplesi: {1,2,...,n} — Ng and n € N,
Theorem (De Finetti 1931,...)

The law of an exchangeable sequence (X,)n>0 is given by a unique
convex combination of infinite product measures.

’ "Any exchangeable process is an average of i.i.d. processes.”
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Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (A, ¢) the
selfadjoint operators (x,)s>0 C A are exchangeable if

e (xi) X)) = P (%) Xol(m)) (0 € Sw)

for all n-tuplesi: {1,2,...,n} — Ng and n € N.
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Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (A, ¢) the
selfadjoint operators (x,)s>0 C A are exchangeable if

e (xi) X)) = P (%) Xol(m)) (0 € Sw)

for all n-tuplesi: {1,2,...,n} — Ng and n € N.

Theorem (K 2009)

An exchangeable sequence (xp)n>0 C (A, ¢) is T-independent,
where

T = ﬂ VN(Xn, Xnt+1, Xnt2, - - -)

n>0

is the tail algebra of the sequence.
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Exchangeability in noncommutative probability

Given the tracial W*-algebraic probability space (A, ¢) the
selfadjoint operators (x,)s>0 C A are exchangeable if

e (xi) X)) = P (%) Xol(m)) (0 € Sw)

for all n-tuplesi: {1,2,...,n} — Ng and n € N.

Theorem (K 2009)

An exchangeable sequence (xp)n>0 C (A, ¢) is T-independent,
where

T = ﬂ VN(Xn, Xnt+1, Xnt2, - - -)

n>0

is the tail algebra of the sequence.

"What is this noncommutative notion of T -independence?!”
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Noncommutative conditional independence

Definition
Let NV, (M;);es be von Neumann subalgebras of (A, ¢).

NOTATION: Ejs is the p-preserving cond. expectation from M onto N.
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Noncommutative conditional independence

Definition
Let NV, (M,);c; be von Neumann subalgebras of (A, ¢). Then the
family (M;);¢; is N-independent if

Ex(xy) = Ex(x)En(y)

for all x € vN(NV, M;|j € J) and y € vN(N, M|k € K), and
disjoint subsets J, K of I.

NOTATION: Ejs is the p-preserving cond. expectation from M onto N.
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Noncommutative conditional independence

Definition
Let NV, (M,);c; be von Neumann subalgebras of (A, ¢). Then the
family (M;);¢; is N-independent if

En(xy) = Ex(x)En(y)

for all x € vN(NV, M;|j € J) and y € vN(N, M|k € K), and
disjoint subsets J, K of I.

NOTATION: Ejs is the p-preserving cond. expectation from M onto N.
Equivalent formulation for index set | = {1,2}:
VNNV, M3) C M

U U is a commuting square (w.r.t. ¢).

N C vN(N, M,)
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Exchangeability for the infinite symmetric group S,

S is the inductive limit of the symmetric group S, as n — oo,
acting on {0,1,2,...}. A positive definite function x: Soc — C is
a character if it is constant on conjugacy classes and normalized
at the identity.

Claus Kaostler Noncommutative independence from Soo



Exchangeability for the infinite symmetric group S,

Sco is the inductive limit of the symmetric group S, as n — oo,
acting on {0,1,2,...}. A positive definite function x: Soc — C is
a character if it is constant on conjugacy classes and normalized
at the identity.

Elementary observation
Let v; := (0, 7). Then the sequence (7;)icn is exchangeable, i.e.

X(hyi) i) = X Ve Vo 62) - Volitn)))

for 0 € Soo with ¢(0) =0, n-tuplesi: {1,...,n} - Nand neN.
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Exchangeability for the infinite symmetric group S,

Sco is the inductive limit of the symmetric group S, as n — oo,
acting on {0,1,2,...}. A positive definite function x: Soc — C is
a character if it is constant on conjugacy classes and normalized
at the identity.

Elementary observation

Let v; := (0, 7). Then the sequence (7;)icn is exchangeable, i.e.
X (i) %im) = X (Vo)) VoG2) * * Voli(n))

for o € Soo with 0(0) =0, n-tuplesi: {1,...,n} — Nand neN.

Task

Identify the convex combination of extremal characters of S.. In
other words: prove a noncommutative de Finetti theorem!
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Thoma's theorem (1964) is a quantum de Finetti theorem!

An extremal character of the group S is of the form

x(o) = T[T (D af + (=D ) _bf
j=1

my (o)

k=2 \ i=1

Here my (o) is the number of k-cycles in the permutation o and
the two sequences (a;)72y, (b;)72; satisfy

[e.o] o0
aza>--20, b2b>-->0, Y a+y b<L
i=1 j=1

Alternative proofs

Vershik & Kerov 1981: asymptotic representation theory
Okounkov 1997: Olshanski semigroups and spectral theory

A new operator algebraic proof from exchangeability

R. Gohm & C. Késtler. Noncommutative independence from characters of the
symmetric group So. 47 pages. Preprint (2010). (arXiv:1005.5726)
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A helpful reformulation of exchangeability

Theorem (Gohm & K

Suppose the tracial probability space (A, ) is generated by the
sequence (xp)n>0. TFAE:

(a) (xn) is exchangeable

Remark
Above characterization generalizes easily to sequences of algebras.
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A helpful reformulation of exchangeability

Theorem (Gohm & K

Suppose the tracial probability space (A, ) is generated by the
sequence (xp)n>0. TFAE:

(a) (xn) is exchangeable
(b) there exists a representation p: Sy, — Aut(A, ¢) such that

Remark
Above characterization generalizes easily to sequences of algebras.

Claus Kaostler Noncommutative independence from Soo



A helpful reformulation of exchangeability

Theorem (Gohm & K

Suppose the tracial probability space (A, ) is generated by the

sequence (xp)n>0. TFAE:

(a) (xn) is exchangeable

(b) there exists a representation p: Sy, — Aut(A, ¢) such that
(i) %o = p(onon_1---01)x0 for n > 1.

NOTATION:
oi is the Coxeter generator (i — 1,/) of Seo, where S acts on {0,1,2,3,...} by
permutations.

Remark
Above characterization generalizes easily to sequences of algebras.
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A helpful reformulation of exchangeability

Theorem (Gohm & K
Suppose the tracial probability space (A, ) is generated by the
sequence (xp)n>0. TFAE:
(a) (xn) is exchangeable
(b) there exists a representation p: Sy, — Aut(A, ¢) such that
(i) %o = p(onon_1---01)x0 for n > 1.
(i) xo € A" for n > 2 (Localization Property)

NOTATION:
oi is the Coxeter generator (i — 1,/) of Seo, where S acts on {0,1,2,3,...} by
permutations.

Remark
Above characterization generalizes easily to sequences of algebras.
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A helpful reformulation of exchangeability

Theorem (Gohm & K
Suppose the tracial probability space (A, ) is generated by the
sequence (xp)n>0. TFAE:
(a) (xn) is exchangeable
(b) there exists a representation p: Sy, — Aut(A, ¢) such that
(i) %o = p(onon_1---01)x0 for n > 1.
(i) xo € A" for n > 2 (Localization Property)

NOTATION:
oi is the Coxeter generator (i — 1,/) of Seo, where S acts on {0,1,2,3,...} by
permutations.  Let Sp.o0 = (0n, Ont1, .- -)-

Remark
Above characterization generalizes easily to sequences of algebras.
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
p: Seo — Aut(A, p).
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGni1.00) with n € N,
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGnt1.00) with n € Ng, and

a (x) =so0t1- lim p(oy o -0, )(X), x € A.

n—oo
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGnt1.00) with n € Ng, and
a (x) =so0t1- lim p(oy o -0, )(X), x € A.
n—oo

Then the subalgebras (a"(Ag ))n>0 are exchangeable
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGnt1.00) with n € Ng, and

a (x) =so0t1- lim p(oy o -0, )(X), x € A.

Then the subalgebras (a"(Ag ))n>0 are exchangeable and, by
the n.c. de Finetti theorem (JFA 2010), A_; -independent.

Claus Kaostler Noncommutative independence from Soo



A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
p: Seo — Aut(A, ). Let Ap_q:= APGnt1.00) with n € Ng, and

a (x) =so0t1- lim p(oy o -0, )(X), x € A.

Then the subalgebras (a"(Ag ))n>0 are exchangeable and, by
the n.c. de Finetti theorem (JFA 2010), A_; -independent.
Moreover one obtains a triangular tower of commuting squares:
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)
Suppose (A, ¢) is equipped with the generating representation

p: Seo — Aut(A, ). Let Ap_q:= APGnt1.00) with n € Ng, and
a (x) =so0t1- lim p(oy o -0, )(X), x € A.

Then the subalgebras (a"(Ag ))n>0 are exchangeable and, by

the n.c. de Finetti theorem (JFA 2010), A_; -independent.
Moreover one obtains a triangular tower of commuting squares:

A_q c A - A C As c---C A
U U U U
Ay C a4 ) € a4 ) Cc---C a(A
U U U
Ay C a?(4y ) C---C a?(A)
U

U
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
p: Seo — Aut(A, ). Let Ap_q:= APGnt1.00) with n € Ng, and

ak(x) = SOT- lim_ P(O14k024k - Tnpi)(X), x e A

Then the subalgebras (a"(Ag ))n>0 are exchangeable and, by

the n.c. de Finetti theorem (JFA 2010), A_; -independent.
Moreover one obtains a triangular tower of commuting squares:

A_q c A - A C As c---C A
U U U U
Ay C a4 ) € a4 ) Cc---C a(A
U U U
Ay C a?(4y ) C---C a?(A)
U

U
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGnt1.00) with n € Ng, and

ak(x) = SOT- lim_ P(O14k024k - Tnpi)(X), x e A

Then the subalgebras (O‘Z(A0+k)),,>o are exchangeable and, by

the n.c. de Finetti theorem (JFA 2010), A_1 ,-independent.
Moreover one obtains a triangular tower of commuting squares:

A_q c A - A C As c---C A
U U U U
Ay C a4 ) € a4 ) Cc---C a(A
U U U
Ay C a?(4y ) C---C a?(A)
U

U
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A noncommutative de Finetti theorem

Theorem (Gohm & K 2009)

Suppose (A, ¢) is equipped with the generating representation
P Seo — Aut(A, ). Let A,_1 = APGnt1.00) with n € Ng, and

ak(x) = SOT- lim_ P(O14k024k - Tnpi)(X), x e A

Then the subalgebras (O‘Z(A0+k)),,>o are exchangeable and, by
the n.c. de Finetti theorem (JFA 2010), A_1 ,-independent.
Moreover one obtains a triangular tower of commuting squares:

Aty € Aok € A C©0 Ay CoC A
U U U U
.A_1+k - Ozk(.A()H() C Ozk(.A;Hk) c---C Ozk(A)
U U U
A1k C Oz,2((.z40+k) c---C 04,2((./4)
U

U
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.
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Identification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.

Theorem (Gohm & K '09)
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.

Theorem (Gohm & K '09)
Ay = Z(A)
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.

Theorem (Gohm & K '09)
A1 = Z(.A) A, =Ap VvV VNW(S,,+1)
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.

Theorem (Gohm & K '09)
A_1 = Z(.A) A, =AgV VNW(S,,+1)
Moreover: A_; = vN(Cy | k € N), where Cy := E_l(Ag_l),

NOTATION: E, is the tr-preserving conditional expectation from A onto A,.
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|dentification of fixed point algebras
for unitary representations of S,

Suppose the tracial probability space (A, tr) is equipped with the
(unitary) representation

7T Seo — U(A), such that A = vN-(S«).
As before, p := Ad w is generating with fixed point algebras
Ap_1 = AAGrie) — A0 (VN (ok|k > n))'.

Theorem (Gohm & K '09)
A1 = Z(.A) A, =Ap VvV VNW(S,,+1)

Moreover: A_; = vN(Cy | k € N), where Cy := E_l(Ag_l),
Ao = vN(Ag, Cx | k € N), where Ag := Eq(m(0,1)).
NOTATION: E, is the tr-preserving conditional expectation from A onto A,.
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Cycles

The transposition 7; := (0, i), for i € N, is called a star generator
and g denotes the unity in Sj,.
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Cycles

The transposition 7; := (0, i), for i € N, is called a star generator
and g denotes the unity in Sj,.

Lemma (Irving & Rattan '06, Gohm & K '09)
Let k > 2. A k-cycle 0 = (n1,ma, n3,...,nk) € S is of the form

g = 7/717/12/7!13 T ’Vnk_l’Ynk’Vnp

provided that n; = 0 if o(0) # 0.
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Cycles

The transposition 7; := (0, i), for i € N, is called a star generator
and g denotes the unity in Sj,.

Lemma (Irving & Rattan '06, Gohm & K '09)
Let k > 2. A k-cycle 0 = (n1,ma, n3,...,nk) € S is of the form

g = 7/717/12/}/!13 T ’Vnk_l’Ynk’Vnp
provided that n; = 0 if o(0) # 0.

Corollary

Disjoint cycles are supported by disjoint sets of star generators.
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Cycles & Independence

Theorem (Gohm & K)

Let /,J be subsets of Ng. Then vN(v; | i € I) and vN(v; | j € J)
are Ap-independent whenever | N J = ().
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Cycles & Independence

Theorem (Gohm & K)

Let /,J be subsets of Ng. Then vN(v; | i € I) and vN(v; | j € J)
are Ap-independent whenever | N J = ().

Corollary

Let o and 7 be disjoint cycles in So,. Then vN (o) and vN(7)
are Ag-independent.
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Cycles & Independence

Theorem (Gohm & K)

Let /,J be subsets of Ng. Then vN(v; | i € I) and vN(v; | j € J)
are Ap-independent whenever | N J = ().

Corollary

Let o and 7 be disjoint cycles in So,. Then vN (o) and vN(7)
are Ag-independent.

Notation
Let m: Soo — U(A) be a (unitary) representation as before. Put

vi := 7 (7i)-

Let E,, denote the tr-preserving conditional expectation from
A = VN (Sx) onto the fixed point algebra A,.
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Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,.
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Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,,.
Definition (Gohm & K '09)
Suppose Vi, Vi, «** Vi, Vi, € A is a k-cycle with k > 1.
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Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,,.
Definition (Gohm & K '09)
Suppose Vi, Vi, * -+ Vi, Vi, € A is a k-cycle with k > 1. Then

En—l(Vn1 VnoVing = *° VnkVn1)7 n € Np,

is called a limit k-cycle.
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Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,.
Definition (Gohm & K '09)
Suppose Vi, Vi, * -+ Vi, Vi, € A is a k-cycle with k > 1. Then

En—l(Vn1 VnoVing = *° VnkVn1)7 n € Np,

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar
multiple of the identity.

Claus Kaostler Noncommutative independence from Soo



Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,,.
Definition (Gohm & K '09)
Suppose Vi, Vi, * -+ Vi, Vi, € A is a k-cycle with k > 1. Then

En—l(Vn1 VnoVing = *° VnkVn1)7 n € Np,

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar
multiple of the identity.

Remarks

e Every k-cycle is a limit k-cycle for n sufficiently large.
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Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,.
Definition (Gohm & K '09)
Suppose Vi, Vi, * -+ Vi, Vi, € A is a k-cycle with k > 1. Then

En—l(Vn1 VnoVing = *° VnkVn1)7 n € Np,

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar
multiple of the identity.
Remarks

e Every k-cycle is a limit k-cycle for n sufficiently large.

e Limit k-cycles are certain mean ergodic averages of k-cycles.
(Compare ‘random cycles’ in Okounkov's thesis.)

Claus Kaostler Noncommutative independence from Soo



Limit cycles ...

... are the crucial tool for identifying all fixed point algebras A,.
Definition (Gohm & K '09)
Suppose Vi, Vi, * -+ Vi, Vi, € A is a k-cycle with k > 1. Then

En—l(Vn1 VnoVing = *° VnkVn1)7 n € Np,

is called a limit k-cycle. A limit k-cycle is trivial if it is a scalar
multiple of the identity.

Remarks

e Every k-cycle is a limit k-cycle for n sufficiently large.
e Limit k-cycles are certain mean ergodic averages of k-cycles.
(Compare ‘random cycles’ in Okounkov's thesis.)

e Limit cycles generate a monoid similar to Olshanski
semigroups.
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Examples of limit cycles

Lemma (One-shifted representation n = 1)
Eo(vl)k_l ifni=0

E nVnoVns * " Vn Vny ) =
0(V1V2V3 Vkvl) {E_1<E0(V1)k_1) ifn17é0
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Examples of limit cycles

Lemma (One-shifted representation n = 1)
Eo(vl)k_l ifni=0

E nVnoVns * " Vn Vny ) =
0(V1V2V3 Vkvl) {E_1<E0(V1)k_1) ifn17é0

Proof.
The v;'s are Ap-independent.
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Examples of limit cycles

Lemma (One-shifted representation n = 1)
£ Eo(vl)k_l ifni=0
O(an Viy Vg = Vi, Vn1) - E—l (EO(Vl)k_l) I-fnl ;é 0

Proof.
The v;'s are Ag-independent. Thus

(LH.S) = Eo(v,,lEo(vl)k’lv,,l).
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Examples of limit cycles

Lemma (One-shifted representation n = 1)
Eo(vl)k_l ifni=0

E nVnoVns * " Vn Vny ) =
0(V1V2V3 Vkvl) {E_1<E0(V1)k_1) ifn17é0

Proof.
The v;'s are Ag-independent. Thus

(LH.S) = Eo(v,,lEo(vl)k’lv,,l).

But this equals (R.H.S.), since vixv; = ajy(x) for x € Ag and the
af(Ap)'s are A_1-independent. O
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Examples of limit cycles

Lemma (One-shifted representation n = 1)
£ Eo(vl)k_l ifni=0
O(an Viy Vg = Vi, Vn1) - E—l (EO(Vl)k_l) I-fnl ;é 0

Proof.
The v;'s are Ag-independent. Thus

(LH.S) = Eo(v,,lEo(vl)k’lv,,l).

But this equals (R.H.S.), since vixv; = ajy(x) for x € Ag and the
af(Ap)'s are A_1-independent. O

Corollary (Zero-shifted representation n = 0)
Efl(vnl Vo Vng = Vnk an) = E,l (EO(Vl)k_l)
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Key observation

Distinguished roles are played by the limit 2-cycle

Ao = Eo(wr) = E0(7T(0, 1))
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Key observation
Distinguished roles are played by the limit 2-cycle
Ao = Eo(v1) = Eo(m(0,1))
and the limit k-cycles

Ch = E1(A{Y) = E_1(n(0,1,... k — 1)).

Claus Kaostler Noncommutative independence from Soo



Key observation
Distinguished roles are played by the limit 2-cycle
Ao = Eo(v1) = Eo(m(0,1))
and the limit k-cycles

Ch = E1(A{Y) = E_1(n(0,1,... k — 1)).

Corollary
Suppose 7 is non-trivial.
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Key observation
Distinguished roles are played by the limit 2-cycle
Ao = Eo(v1) = Eo(m(0,1))
and the limit k-cycles

Ch = E1(A{Y) = E_1(n(0,1,... k — 1)).

Corollary
Suppose 7 is non-trivial.
(i) All Cy's are trivial < vNz(Sx) is a Il; factor
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Key observation
Distinguished roles are played by the limit 2-cycle
Ao = Eo(v1) = Eo(m(0,1))
and the limit k-cycles

Ch = E1(A{Y) = E_1(n(0,1,... k — 1)).

Corollary
Suppose 7 is non-trivial.

(i) All Cy's are trivial < vNz(Sx) is a Il; factor
= Fixed point algebra Ag is generated by the limit cycle Ag.
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Key observation
Distinguished roles are played by the limit 2-cycle
Ao = Eo(v1) = Eo(m(0,1))
and the limit k-cycles

Ch = E1(A{Y) = E_1(n(0,1,... k — 1)).

Corollary
Suppose 7 is non-trivial.
(i) All Cy's are trivial < vNz(Sx) is a Il; factor
= Fixed point algebra Ag is generated by the limit cycle Ag.

the (subfactor) inclusion

(if) Ao is trivial < { VN7 (S2,00) C VN (Sx) is irreducible.
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A simple application: Thoma multiplicativity

The limit cycles
Ce=E_1(AF™)
depend only on k.
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A simple application: Thoma multiplicativity

The limit cycles

Ce = E-1(Ap )
depend only on k.
Corollary (Thoma Multiplicativity)

Let mk(o) be the number of k-cycles in the cycle decomposition of
the permutation 0 € S..
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A simple application: Thoma multiplicativity

The limit cycles

Ce = E-1(Ap )
depend only on k.
Corollary (Thoma Multiplicativity)

Let mk(o) be the number of k-cycles in the cycle decomposition of
the permutation o € S,,. Then

E1(n(0)) =[] ¢™°
k=2
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A simple application: Thoma multiplicativity
The limit cycles
Ce = E-1(Ap )
depend only on k.
Corollary (Thoma Multiplicativity)

Let mk(o) be the number of k-cycles in the cycle decomposition of
the permutation o € S,,. Then

E1(n(0)) =[] ¢™°
Remarks =2

e F_4 is a center-valued trace.
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A simple application: Thoma multiplicativity

The limit cycles

Ce = E-1(Ap )
depend only on k.
Corollary (Thoma Multiplicativity)

Let mk(o) be the number of k-cycles in the cycle decomposition of
the permutation o € S,,. Then

E1(n(0)) =[] ¢™°
Remarks =2

e F_4 is a center-valued trace.

e If YN (S ) is a factor, then E_;j can be replaced by the
tracial state tr:

tr(n(0)) = [ (r(A5~1)™

k>2
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Commuting squares & Discrete spectrum

Theorem (Gohm & K '09)

Let Mg be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u € M satisfies:
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Commuting squares & Discrete spectrum

Theorem (Gohm & K '09)

Let Mg be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u € M satisfies:

uMou®* C M
1. v implements the commuting square U u ,
C Cc Mo
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Commuting squares & Discrete spectrum

Theorem (Gohm & K '09)

Let Mg be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u € M satisfies:

uMou®* C M
1. v implements the commuting square U u ,
C Cc Mo

2. the contraction Ej,(u) is a normal.

NOTATION: Eay, is the trace-preserving cond. expectation from M onto Mo.
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Commuting squares & Discrete spectrum

Theorem (Gohm & K '09)

Let Mg be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u € M satisfies:

uMou®* C M
1. v implements the commuting square U u ,
C Cc Mo

2. the contraction Ej,(u) is a normal.

Then Epy,(u) has discrete spectrum which may accumulate only at
the point 0.

NOTATION: Eay, is the trace-preserving cond. expectation from M onto Mo.
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Commuting squares & Discrete spectrum

Theorem (Gohm & K '09)

Let Mg be a von Neumann subalgebra of the finite factor M.
Suppose the unitary u € M satisfies:

uMou®* C M
1. v implements the commuting square U u ,
C Cc Mo

2. the contraction Ej,(u) is a normal.

Then Epy,(u) has discrete spectrum which may accumulate only at
the point 0.

NOTATION: Eay, is the trace-preserving cond. expectation from M onto Mo.

Corollary (Okounkov '97, Gohm & K '09)

Suppose VN, (S ) is a factor. Then the limit 2-cycle Ag = Ep(v1)
has discrete spectrum which may only accumulate at the point 0.
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Thoma measures

Definition
A discrete probability measure i on [—1, 1] satisfying
t
H|(t‘) €No (t#0)

is called a Thoma measure.
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Thoma measures

Definition
A discrete probability measure p on [—1, 1] satisfying

t
“|(t‘) €Ny (t#£0)
is called a Thoma measure.

Theorem (Okounkov '97, Gohm & K '09)

Suppose VN, (S« ) is a factor with tracial state tr. Then the
spectral measure y of the limit 2-cycle Ag with respect to tr is a
Thoma measure.
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
Denote by a;, —b; with a; > 0 and b; > 0 the non-zero elements in

Supp fi.
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
Denote by a;, —b; with a; > 0 and b; > 0 the non-zero elements in
supp i. By the previous theorem,

v(t) = p(t)/[t] € No.
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
Denote by a;, —b; with a; > 0 and b; > 0 the non-zero elements in
supp i. By the previous theorem,

v(t) = p(t)/[t] € No.

Thus we have the identity

w(Ag ) = Y (a (@) + (—b)< tu(-bi))
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
Denote by a;, —b; with a; > 0 and b; > 0 the non-zero elements in
supp i. By the previous theorem,

v(t) = p(t)/[t] € No.

Thus we have the identity
w(AsY) = 3 (a (@) + (=)< u(-b)
= Y afv(a) + (1Y bfu(-by)

for every k > 1.
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Conclusion: Thoma's theorem

The spectral measure i is supported on the spectral values of Ag.
Denote by a;, —b; with a; > 0 and b; > 0 the non-zero elements in
supp i. By the previous theorem,

v(t) = p(t)/[t] € No.

Thus we have the identity
w(AsY) = 3 (a (@) + (=)< u(-b)
= Y afv(a) + (1Y bfu(-by)

for every k > 1. One recovers from this the traditional form of the
Thoma theorem, by writing spectral values with multiplicities.
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,
Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A.
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,

Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,

Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,
Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)

° F(bl) N F(bz) = F(b1 A b2)
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,
Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)

° F(bl) N F(bz) = F(b1 A b2)

e F(0g) =N
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,

Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,

Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A,) is called a factorization of (A, ©) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)

° (bl)ﬁF(bz) F(b1 /\b2)

e F(0g) =

° F(lB)

e F(b) an (b’) are N-independent
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Noncommutative random measure factorizations

Let B be a complete Boolean algebra. In this talk: B = 2N,

Given the (tracial) probability space (A, ¢), let R(A, ¢) denote
the complete lattice of von Neumann subalgebras of A. A map
F: B — R(A, ) is called a factorization of (A, y) over N if the
following conditions are satisfied for all b, by, by € B:

° F(bl) V F(bz) = F(bl V b2)

° F(bl) N F(bz) = F(b1 A b2)

o F(0g) =N

e F(l1g)=A

e F(b) and F(b') are N-independent

A suitable continuity condition needs to be stipulated for a relevant
class of sets S C B, if B is not finite. Here: S are all finite subsets
of N and the continuity condition is \/ .5 F(s) = A.
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Factorizations from unitary representations of Sy

Theorem (K)

Let (A, ) be a tracial probability space equipped with a
representation 7: Soo — U(.A) such that A = vN(S).
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Factorizations from unitary representations of Sy

Theorem (K)

Let (A, ) be a tracial probability space equipped with a
representation 7: Soq — U(A) such that A = vN,(S). Put

Ap = SOT- lim 1(77(0, 1)+ 7(0,2) + ...+ 7(0,n))

n—oo n
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Factorizations from unitary representations of Sy

Theorem (K)

Let (A, ) be a tracial probability space equipped with a
representation 7: Soq — U(A) such that A = vN,(S). Put

Ay = SOT- nIer;o %(77(0, 1)+ 7(0,2) + ...+ 7(0,n))
N VN(Ao) V EZ(A)(VN(A()))
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Factorizations from unitary representations of Sy

Theorem (K)

Let (A, ) be a tracial probability space equipped with a
representation 7: Soq — U(A) such that A = vN,(S). Put

Ay = SOT- nIer;o %(77(0, 1)+ 7(0,2) + ...+ 7(0,n))
N == VN(Ao) V Ez(a)(vN(Ao))
F(I) == N ((0,i)|iel)VN (I C No)
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Factorizations from unitary representations of Sy

Theorem (K)

Let (A, ) be a tracial probability space equipped with a
representation 7: Soq — U(A) such that A = vN,(S). Put

Ay = SOT- nIer;o %(77(0, 1)+ 7(0,2) + ...+ 7(0,n))
N == VN(Ao) V Ez(a)(vN(Ao))
F(I) == N ((0,i)|iel)VN (I C No)

Then
F: 2N S R(A, )

is a factorization of (A, ¢) over N.
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