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Abstract

We observe that the finite regular generalized polygons are charac-
terized by their codes (over any field!): they are the only generalized
polygons (with given parameters) which maximise the number of min-
imum weight words in the dual code. We conjecture that an analogous
characterization (over Fp, p the correct prime) holds at least for the
point-line designs of a finite dimensional projective space over a prime
field. In support of this conjecture, we present a weaker coding theo-
retic characterization of these designs in terms of the notion of “large
clubs” introduced here. Along the way, we also prove a combinatorial
characterization of the point-line designs of all finite projective spaces
: apart from projective planes, these are the only Steiner 2-designs
having as many hyperplanes as points.

A similar characterization of the desarguesian projective plane
among projective planes of a prime order is not expected, except per-
haps rather vacuously. However, we conjecture that the prime order
desarguesian planes are characterized by maximising the number of
words of the second minimum weight in their dual codes. We state
a conjecture, on small linear spaces of prime order, whose validity is
shown to imply this conjecture for projective planes.

∗email: bbagchi@isibang.ac.in
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1 Introduction

Use of coding theory in designs has a long history, by now.The monograph [1]
is an excellent reference. Codes have been used to suggest constructions of de-
signs (c.f. [7] for a nice example). They have also been used in non-existence
results. A spectacular example is the proof of non-existence of projective
planes of order ten (cf. [9]). Particularly in the presence of a moderately
large group of automorphisms, codes can also be a powerful tool for charac-
terization. For example, in [3] coding theory was used to prove that if a finite
inversive plane of even order has a point-transitive automorphism group then
it is a classical inversive plane. However, despite bright early promises coding
theory has not yet been very successful in proving uniqueness results. The
purpose of this paper is to suggest that, with a focus on the correct class of
problems, this state of affairs can perhaps be improved upon substantially.
Unfortunately, the results we present here are not as satisfactory as we had
expected. But this is precisely what may attract younger researchers to the
very attractive problems that we present here. We particularly wish to draw
the attention of the reader to the “3p− 3 conjecture” in the last section.

Recall that an incidence system (finite throughout this article) is a triple
(X, B, I) where X and B are finite sets (whose elements are called points and
blocks, respectively) and I ⊆ X × B is a binary relation (called incidence)
between points and blocks. The incidence system (X0, B0, I0) is said to be
a sub-system of the incidence system (X, B, I) if X0 ⊆ X, B0 ⊆ B and
I0 = I ∩ (X0 × B0). It is called an induced subsystem (or subsystem
induced on X0) if B0 consists of all the blocks in B incident with at least one
point in X0.

It is customary to identify each block β of an incidence system with its
shadow (i.e., the set of points incident with β). With this identification,
the incidence relation becomes set inclusion ∈. Although we shall ourselves
occasionally fall in line with this custom (so that, for instance, we say that
two blocks are disjoint if no point is incident with both), this has certain
disadvantages : (a) sometimes blocks come with multiplicities, i.e., the “set”
of blocks become a multi-set (and codes do not “see” this multiplicity), (b)
the notion of sub-systems becomes some-what murky, (c) the obvious duality
between points and blocks get lost, and (d) often, in a natural construction
of an incidence system, the incidence relation is not set membership.
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Given an incidence system X = (X,B, I) and a field F, the F-ary code CF(X )
of X is defined to be the linear subspace of FX generated by the “indicator”

functions χβ, β ∈ B. Here χB(x) =

{
1 if xIβ
0 otherwise

. The F-linear space

FX is equipped with a natural “inner product” (non-degenerate symmetric
bilinear form) 〈·, ·〉 defined by 〈w1, w2〉 =

∑
x∈X

w1(x) w2(x), for w1, w2 ∈ FX .

The dual F-ary code C⊥
F (X ) is defined to be the orthocomplement of its F-ary

code with respect to this inner product:

C⊥
F (X ) = {w ∈ FX : 〈w,w′〉 = 0 ∀ w′ ∈ CF(X )}.

In particular, if F = Fp is the finite field of prime order p, we write Cp(X ) and
C⊥

p (X ) for these two codes, and call them the p-ary code and the dual p-ary
code of the incidence system X . Clearly we have dim Cp(X )+dim C⊥

p (X ) =
#(X).

More generally, a code is a linear subspace C of FX . We define its dual code
C⊥ exactly as above. For any “word” w ∈ C, its support is the point-set
{x ∈ X : w(x) 6= 0}. The Hamming weight of w is the size of its support.
The minimum of the weights of the non-zero words of a code is usually called
the minimum weight of the code.

The following (admittedly some-what vague) principle is actually well known
to experts, even though we are not aware of anybody ever writing it down
explicitly.

The Fundamental principle of coding theory of designs:

The size of the dual p-ary code (for appropriate choice of the prime p) of a
design (or incidence system) is a measure of the combinatorial regularity of
the design. The larger the dual code, the more regular is the design.

This paper is an attempt to quantize this principle in various special cases.
Actually, the original conjecture of Hamada and Sachar (briefly discussed in
Section 3 below) is perhaps the first such attempt.
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2 Generalized polygons

The incidence graph of an incidence system X = (X,B, I) is the graph
with the disjoint union XtB as vertex-set, such that x ∈ X is adjacent with
β ∈ B iff xIβ; and there are no other adjacencies. This incidence system
is said to be a generalized polygon if (its incidence graph is connected and)
the girth of its incidence graph is double its diameter. If the diameter is n
then we talk of a generalized n-gon. For any finite generalized n-gon there are
parameters s and t such that each block is incident with s+1 points and each
point is incident with t + 1 blocks. One talks of an (s, t)-generalized n-gon.
It is called thin if s = 1 and thick otherwise. The ordinary polygons (i.e.
cyclic graphs with vertices thought of as points, edges thought of as blocks)
are the most obvious examples of generalized polygons (hence the name);
they are thin. All other examples are called non-trivial. In this section, by
“generalized polygon” we shall mean the non-trivial ones.

By a famous theorem of Feit and Higman (cf. [6]), all thick finite generalized
polygons have n = 3, 4, 6 or 8. The generalized 3-gons (triangles) are just the
projective planes. The following result is well known (and easy to prove):

Lemma 2.1 Let X be a finite thin (non-trivial) generalized n-gon, say with
parameter (1, t). Then X is the incidence graph of a (t, t) generalized n

2
-gon.

Thus n = 4, 6, 8 or 12.

(In the case n = 4, a generalized 2-gon is a trivial system in which each point
is incident with each block. This is usually excluded from consideration - for
instance in the statement of Feit-Higman theorem quoted above - since one
implicitly assumes n ≥ 3 in the definition of a generalized n-gon. Also, in the
Lemma above, the case n = 16 is ruled out since there is no (t, t) generalized
octagon.)

Definition 2.1 Let X and Y be generalized n-gons (with the same n). We
say that Y is a sub-generalized polygon of X if Y is a sub-system of X . The
thick generalized n-gon X with parameters (s, t) is said to be regular if any
two points x, y of X at distance n (in the incidence graph) occur together in
some (necessarily unique) sub-generalized n-gon with parameters (1, t). (This
definition is due to N.S.N. Sastry).
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The following result is actually a reformulation of an old theorem (Theorem
2.8 in [4]).

Theorem 2.1 (Bagchi and Sastry): Let X be a thick (s, t) - generalized n-
gon, with n = 2k even. (Thus n = 4, 6 or 8). Then, for any prime p, the
minimum weight of C⊥

p (X ) is at least 2(tk − 1)/(t − 1) and the dual code

contains at most p−1
2

(s + 1)(t− 1)sk((st)k − 1)/(st− 1) words of this weight.
Further, equality holds in the last inequality (i.e., X maximises the number
of minimum weight words in its dual code among all generalized polygons of
the same parameter) for some prime p iff X is regular.

Thus, if equality holds for some prime then it holds for all primes.

Proof: Usual counts show that the (s, t) generalized 2k-gon X has exactly
(s + 1)((st)k − 1)/(st− 1) points, and each point is at distance n = 2k from
exactly sktk−1 points. Therefore there are
M := (s + 1)((st)k − 1)sktk−1/(st − 1) ordered pairs of points at distance
2k in X . Similarly, any (1, t) sub-generalized (2k)-gon Y of X contains
N := 2tk−1(tk−1)/(t−1) ordered pairs of points at distance 2k. Now, it was
shown in [4] that the minimum weight of C⊥

p (X ) is at least 2(tk − 1)/(t− 1)
and the support of a word of this weight must be the point sets of a (1, t) sub-
generalized (2k)-gon Y of X . The argument there also shows that each pair
of points at distance 2k in X are together in at most one such Y . Therefore,
there are at most M/N = 1

2
(s+1)(t− 1)sk · ((st)k− 1)/(st− 1) choices for Y

(and hence for the support S of a minimum weight word). Clearly each such
S supports exactly (p− 1) words of C⊥

p (X ) (scalar multiples of each other).
Hence the upper bound. Also, if S is the point set of a sub-generalized n-gon
with parameter (1, t), then by Lemma 2.1 we can write S as a disjoint union
S+ t S− where S+ and S− are the points and blocks of the associated (t, t)
generalized k-gon. Then, any block of X is either non-incident with all points
in S, or else it is incident with exactly one point from S+ and exactly one
point from S−. Therefore the word wS defined by

wS(x)





0 if x 6∈ S
1 if x ∈ S+

−1 if x ∈ S−

is in C⊥
p (X ), and so are all its scalar multiples. Therefore, equality holds iff

X is regular. ¤
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Examples: The known regular generalized polygons are the following. (i)
the “usual” (q, q) generalized quadrangle with automorphism group Sp(4, q)
(ii) the (q2, q) generalized quadrangle with automorphism group O(5, q) (iii)
the “usual” (q, q) generalized hexagon with automorphism group G2(q), (iv)
the (q3, q) generalized hexagon with automorphism group 3D4(q) and (v) the
(q2, q) generalized octagon with automorphism group 2F4(q).

It is widely believed that these five series are actually characterized by regu-
larity, and this is actually known in the case of the generalized quadrangles in
(i) and (ii), cf. [12]. Thus Theorem 2.1 is a potential (actual for n = 4) cod-
ing theoretic characterization of these five series (among generalized polygons
of the same parameters). This may be old wine in a new bottle, but it is our
paradigm in the search for new coding theoretic characterizations. Notice,
however, one peculiarity of generalized polygons revealed here which can not
be expected of the 2-designs we study next :- Theorem 2.1 is characteristic
free; its validity is independent of the choice of the prime p.

3 Dual codes of 2-designs

Recall that a 2 − (v, k, λ) design (or 2-design with parameter v, k, λ) is an
incidence system with v points such that each block is incident with k points
(so k is called the block size) and any two distinct points are together incident
with λ common blocks. One classical series of examples are the points versus
t-flats incidence system PGt(n,Fq) in the n-dimensional projective space
PG(n,Fq) over the finite field Fq of order q. When q = pe with p prime (i.e.,
p = char(Fq)) the p-ary code (and its dual) of PGt(n,Fq) seems to carry a
huge amount of information about these designs. In [8] Hamada computed
the dimensions of these codes.

Hamada (and independently Sachar) conjectured that PGt(n,Fq) maximises
the dimension of the dual p-ary code among all 2-designs with the same pa-
rameter. This conjecture is still open. However, they also made the stronger
conjecture that PGt(n,Fq) is actually characterised as the unique maximiser
of the number of code words in the dual p-ary code. This stronger conjecture
was refuted by Tonchev (cf. [13]) when he observed that there are exactly five
distinct quasi-symmetric 2-(31,7,3) designs, including PG2(4,F2), and all of
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them have the same dimension 15 for their dual binary code. However, the
strong conjecture may still be valid in some special cases, for instance for the
points-versus-hyperplanes designs PGn−1(n,Fq). In any case, this stronger
conjecture is our model in the following discussions.

In [2] we proved a very general (and sometimes tight) lower bound on the
minimum weight of the dual p-ary code of arbitrary incidence systems. This
is our starting point. To state it, we need:

Definition 3.1 Let Xi = (Pi, Bi, Ii), i = 1, 2, be two incidence systems and
let λ be a positive integer. Then the λ-join of X1 and X2 is the incidence
system X whose point-set is the disjoint union P1 tP2, and whose blocks are
the blocks of X1 and X2 together with λ new blocks, say (x1, x2)i, 1 ≤ i ≤ λ,
each incident with x1 and x2 and with no other points, for each (x1, x2) ∈
P1 × P2.

With this definition, the following is Theorem 2 from [2]:

Theorem 3.1 (Bagchi and Inamdar): Let n, λ be positive integers and let
p be a prime. Let X be any finite incidence system in which any two distinct
points are together incident with at most λ blocks and each point is incident
with at least n + λ blocks. Then the minimum weight of the dual p-ary code
C⊥

p (X ) is at least 2(n
λ

+ 1 − n
pλ

). Further, a point-set S is the support of a

word of C⊥
p (X ) of this minimum weight if and only if the induced subsystem

on S is the λ-join of two 2− (n
λ

+ 1− n
λp

, p, λ) designs.

Notice that if X is any incidence system, say with point set P , then we may
define r(x) to be the number of blocks of X incident with x and λ(x, y) to be
the number of blocks of X incident with both x and y, for x 6= y in P . Then,
let’s put λ = max

x6=y
λ(x, y), r = min

x
r(x) and n = r−λ. Then Theorem 2 may

be applied to X with this choice of n and λ, and any prime p. However, if
we are looking for instances of equality in this theorem, then the parameters
(n

λ
+1− n

λp
, p, λ) should satisfy the usual divisibility condition for a 2-design,

in particular we must choose p to be a prime such that p | n.

Having said this, we are interested in investigating the cases of equality in
Theorem 3.1 for 2-designs X . Recall that if X is a 2 − (v, k, λ) design then
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each point of X is incident with r blocks, where the replication number r
of X is given by r(k − 1) = λ(v − 1). The number n = r − λ is called the
order of the 2-design, and it is known to play a key role in the coding theory
of square designs. We introduce:

Definition 3.2 A subdesign of a 2-design is a subsystem which is itself
a 2-design. If D1, D2 are two subdesigns of a 2-design D then we say that
D1 and D2 are totally disjoint if no point of D1 is incident with any block
of D2 and no point of D2 is incident with any block of D1. (In particular,
this implies that D1 and D2 have disjoint point-sets and disjoint block-sets.
Notice that this definition would be very awkward to formulate if we identified
blocks with subsets of the point-set!).

In terms of this definition, the specialization of Theorem 3.1 to designs has
the following interesting formulation. Unfortunately, the parameter λ of a
2− (v, k, λ) design has no standard name. In the following, we use the name
balance for this parameter.

Theorem 3.2 Let D be a 2-design of order n and balance λ. Then, for any
prime p, the minimum weight of C⊥

p (D) is at least 2(n
λ

+ 1 − n
λp

). Further,

a set S of points of D is the support of a word of weight 2(n
λ

+ 1 − n
λp

) in

C⊥
p (D) if and only if S is the (disjoint) union of the point-sets of two totally

disjoint 2− (n
λ

+ 1− n
pλ

, p, λ) subdesigns of D.

Proof: The lower bound on minimum weight is from Theorem 3.1. Also if
S is the support of a word of C⊥

p (D) attaining this bound, then by Theorem
3.1, S must be as stated. Conversely, let S = S1 t S2 where S1, S2 are the
point-sets of totally disjoint subdesigns D1, D2 with the parameters given.
Since Di has the same balance λ as the design D, any block of D incident
with two or more points of Di must be a block of Di (and hence incident
with exactly p points of Si and no point of Sj, j 6= i). Therefore, for any
point x ∈ S1, there are exactly λ(n

λ
+ 1 − n

pλ
) = n + λ − n

p
blocks incident

with x each of which is incident with a unique point in S2. Since Di has
replication number n

p
and D has replication number n + λ, this shows that

the induced subsystem of D on the point-set S is precisely the λ-join of D1
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and D2. Therefore, by Theorem 3.1, S is the support of a word of C⊥
p (D).

¤

This has the following interesting consequence.

Corollary 3.1 With notations as in Theorem 3.2, let D be the collection
of all 2−(n

λ
+1− n

pλ
, p, λ) sub-designs of D. For D1, D2 ∈ D write D1 ∼ D2 if

either D1 = D2 or D1 and D2 are totally disjoint. Then ∼ is an equivalence
relation on D.

Proof: Only transitively needs proof. So let D1, D2, D3 be distinct members
of D with D1 ∼ D2 ∼ D3. Let Pi be the point-set of Di, 1 ≤ i ≤ 3, and let
P be the point-set of D. For 1 ≤ i ≤ 3, let wi : P → Fp be the indicator
function of Pi. Then by Theorem 3.2, w1 − w2 and w2 − w3 are words in
C⊥

p (D). Therefore, their sum w1 − w3 is also in C⊥
p (D). Hence by Theorem

3.2, D1 ∼ D3. ¤

Definition 3.3 A club in a 2-design D of order n and balance λ is a
maximal collection of pairwise totally disjoint 2− (n

λ
+1− n

λp
, p, λ) subdesigns

of D. In other words, it is an equivalence class of the relation ∼ in Corollary
3.1. (More precisely, this ought to be called a p-club, but the prime p will be
clear from the context.)

Notice that if S is the support of a minimum weight word in a p-ary code
C then there are exactly p − 1 words of C with support S; they are scalar
multiples of each other. This is because if w1 6= w2 are any two words with
support S, then we can always choose a λ ∈ F∗p such that the support of
w2−λw1 ∈ C is properly contained in S and hence w2−λw1 = 0. In view of
this comment, the following is an obvious consequence of what we have seen
so far:

Proposition 3.1 If the 2-design D has t clubs, say of size c1, c2, . . . , ct,

then the number of minimum weight words in C⊥
p (D) is (p− 1)

t∑
i=1

(
ci

2

)
.
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4 Codes of finite projective spaces

We specialize to the point-line designs PG1(n,Fq). Notice that these are
Steiner designs, i.e. they have balance λ = 1. We follow an usual convention
and call all the blocks of Steiner 2-designs “lines”. Although we shall soon
specialize further to the case q = p, we begin with a purely combinatorial
characterization of PG1(n,Fq), q a power of the prime p. From now on, we
identify lines of Steiner 2-designs with their shadows.

Definition 4.1 Let D be a Steiner 2-design. A flat F in D is a set of
points such that F contains the line joining each pair of distinct points in F .
It is a proper flat if F is a proper subset of the point-set of D. A hyperplane
in D is a proper flat which meets every line of D.

Lemma 4.1 The size of any proper flat F in a Steiner 2-design D is at most
r, the replication number of D. Equality holds here iff F is a hyperplane of
D.

Proof: Fix a point x outside F . For any point y in F , let xy be the unique
line joining x to y. Then y 7→ xy is a one-one function from F into the set of
r lines through x. Hence #(F ) ≤ r. Clearly equality holds in this argument
iff F is a hyperplane. ¤

A 2-design is called trivial if each point is incident with each block; it is non-
trivial otherwise. The parameters of any non-trivial 2-design satisfy Fisher’s
inequality r ≥ k, equivalently b ≥ v. Any 2-design satisfying equality here is
called a square (or symmetric) design. A 2 − (v, k, λ) design D is a square
design iff its parameter satisfy k(k − 1) = λ(v − 1). This holds iff the dual
incidence system D∗ is also a 2-design (necessarily with the same parameters
as D) iff any two distinct blocks of D are together incident with exactly λ
points. We also recall:

Definition 4.2 A line in a 2−(v, k, λ) design is a set of at least two points
which is the intersection of λ distinct blocks. Clearly any two distinct points
are together in a unique line. However, the lines of a 2-design need not form
the lines of a Steiner 2-design since in general they may have variable sizes.
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Notice that the point-hyperplane design PGn−1(n,Fq) is self dual; the lines of
this square design are precisely the lines of PG(n,Fq). With this background,
we have the following characterization of PGn−1(n,Fq).

Theorem 4.1 (Dembowski and Wagner, cf. [10]): Let D be a square 2-
design in which every line meets every block. Then either D is a projective
plane (i.e. a square Steiner 2-design) or D = PGn−1(n,Fq) for some n ≥ 3
and prime power q.

Now we state and prove a similar characterization of the point-line designs
PG1(n,Fq). Its proof is crucially dependent on the Dembowski-Wagner the-
orem.

Theorem 4.2 Let D be a Steiner 2-design on v points. Then D has at
most v hyperplanes. Equality holds here iff either D is a projective plane or
D = PG1(n,Fq) for some n ≥ 3 and some prime-power q.

Proof: Let r and k be the replication number and block-size of D. Suppose
D has v distinct hyperplanes; we must show that it has no more. Let H
be a collection of v hyperplanes of D and let E be the incidence system
with the point-set of D and with H as its set of blocks, incidence being set-
membership. By Lemma 4.1, E has constant block size r. Also, any H ∈ H
carries a 2− (r, k, 1) subdesign DH of D, with replication number = r−1

k−1
. If

H ′ 6= H is another number of H, then H ′ ∩H is a flat of DH , and hence by
Lemma 4.1, #(H ′∩H) ≤ r−1

k−1
. Thus, each block of E has size r and any two

distinct blocks of E have at most r−1
k−1

points in common. Therefore letting ei

denote the number of points which are in exactly i blocks of E, an obvious
two-way counting yields :

∑
i≥0

ei = v,

∑
i≥0

i ei = rv,

∑
i≥0

i(i− 1)ei ≤ v(v − 1) · r − 1

k − 1
= r(r − 1)v.
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Therefore we get:

0 ≤
∑
i≥0

(i− r)2ei =
∑
i≥0

i(i− 1)ei − (2r − 1)
∑
i≥0

i ei + r2
∑
i≥0

ei

≤ r(r − 1)v − (2r − 1)rv + r2v = 0.

Therefore
∑

(i − r)2ei = 0. Thus ei = 0 for i 6= r. This means that each
point of E is in exactly r blocks of E. Also the inequalities in the above
argument must actually be equalities. Thus any two distinct blocks of E
have exactly r−1

k−1
points in common. This means that the dual E∗ of E is a

2 − (v, r, r−1
k−1

) design. Since this design has b = v, it is square. Therefore E
itself is a square design. Now notice that any block of a design is uniquely
determined by its remaining blocks (the incidence system consisting of the
remaining blocks has two replication numbers r − 1 and r, and the missing
block must consist of the points of replication r − 1). However, if there is
a hyperplane H of D outside H, then replacing any particular block of E
by the new block H one obtains another 2-design (by the above argument),
contrary to the observation just made.

Thus if D has at least v hyperplanes then it has exactly v hyperplanes (prov-
ing the inequality) and in that case the hyperplanes of D form the blocks of
a square design E. From the definition of hyperplane one sees that every line
of E contains a (unique) line of D and every line of D meets every block of
E. Therefore every line of E meets every block of E. Therefore, by Theorem
4.1, E is either a projective plane (in which case D = E is a projective plane)
or else E = PGn−1(n,Fq). In the latter case, comparing parameters of D
and E, one sees that the lines of D are precisely the lines of PGn−1(n,Fq),
so that D = PG1(n,Fq). ¤

Now we specialize further to the case q = p. Let D be a 2− (pn+1−1
p−1

, p + 1, 1)
design, p prime. By Definition 3.3, a club in D is a maximal collection of
pairwise totally disjoint 2 − (pn−1, p, 1) subdesigns of D. Therefore, letting

v = pn+1−1
p−1

. v0 = pn−1, we see that any club in D has at most b v
v0
c = p + 1

members. This leads to :

Definition 4.3 A large club in a 2 − (pn+1−1
p−1

, p + 1, 1) design is a club
with p + 1 members.

Then we have :
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Theorem 4.3 For a prime p, any 2−(pn+1−1
p−1

, p+1, 1) design D has at most
as many large clubs as there are lines of D. If n ≥ 3, equality holds here iff
D = PG1(n,Fp).

Proof: Let D0, D1, . . . , Dp be a large club, with corresponding point sets
P0, P1, . . . , Pp. Let P be the point set of D and put Q = P\(P0 t . . . t Pp).
By Theorem 3.2, for i 6= j, the subsystem induced by D on Pi t Pj is the
join (i.e. 1-join) of Di and Dj. It follows that for 0 ≤ i ≤ p, Hi = Q t Pi is

a hyperplane of D and Q is a flat of size pn−1−1
p−1

. We call a flat of this size a
coline of D. Thus, with any large club in D we have associated a coline Q
which is contained in p + 1 hyperplanes.

Now notice that if Q is a coline and x 6∈ Q a point, then there is at most
one hyperplane H ⊇ Q ∪ {x}. H must be the union of the lines joining x
to the points of Q. Thus the hyperplanes through Q are pairwise disjoint
outside Q. Hence any coline is in at most p + 1 hyperplanes, and equality
holds when it is associated with a large club. It follows that any coline is
associated with at most one large club. The members Di of a large club
associated with the coline Q must be the subdesigns of D carried by Hi\Q,
where Hi are the hyperplanes through Q. Thus the map from large clubs to
colines is injective.

Now suppose D has (at least) b large clubs, where b is the number of lines
of D. Thus D has b colines each of which is the intersection of

(
p+1
2

)
pairs of

hyperplanes. Thus there are (at least)
(

p+1
2

)
b unordered pairs of hyperplanes

in D. Letting N denotes the total number of hyperplanes in D, we deduce
that

(
N
2

) ≥ (
p+1
2

)
b =

(
v
2

)
, where v is the number of points of D. Therefore

N ≥ v. Hence by Theorem 4.2, N = v and (if n ≥ 3) D = PG1(n,Fp). ¤

Notice that the proof of Theorem 4.3 (applied to D = PG1(n,Fp)) shows
that C⊥

p (PG1(n,Fp)) has minimum weight 2pn−1 and its words of minimum
weight are precisely the non-zero scalar multiples of the words w1−w2 where
w1, w2 are indicator functions of distinct hyperplanes of PG(n,Fp). This is
actually a special case of Proposition 2 in [2].

Theorem 4.3 is actually a characterization of PG1(n,Fp), n ≥ 3, by its dual
p-ary code, even if this is somewhat obscured by the technical terms. But
we would like to prove:
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Conjecture 4.1 Let D be a 2 − (pn+1−1
p−1

, p + 1, 1) design, n ≥ 3, p prime.

Then C⊥
p (D) has at most p

2
(pn − 1)(pn+1 − 1)/(p − 1) words of (minimum)

weight 2pn−1. Equality holds here iff D = PG1(n,Fp).

In view of Theorem 4.3, it suffices to show that if D has the right number
of totally disjoint pairs of 2− (pn−1, p, 1) subdesigns, then there must be the
right number of large clubs.

5 Projective planes of prime order

We recall that a projective plane is just a square Steiner 2-design. Thus a
projective plane of order n is nothing but a 2− (n2 + n + 1, n + 1, 1) design.
It is a folklore conjecture that, for each prime p, there is a unique projective
plane of order p, namely the desarguesian plane PG1(2,Fp). Indeed, since
the dual p-ary code of any projective plane of order p is easily seen to have
dimension

(
p+1
2

)
, this conjecture may be seen as a special case of the strong

Hamada-Sachar conjecture.

Thus it is specially interesting to obtain coding theoretic characterizations
of PG1(2,Fp). Such a characterization will provide a powerful tool to attack
the uniqueness conjecture.

Theorem 3.2 from Section 3 specializes to the following result, first proved
by Inamdar.

Corollary 5.1 Let π be a projective plane of prime order p. Then the
minimum weight of C⊥

p (π) is = 2p and, up to multiplication by non-zero
scalars, the words of minimum weight in C⊥

p (π) are w1 − w2, where w1, w2

are indicator functions of distinct lines.

Since this holds for all putative projective planes of order p, the minimum
weight words of the dual code fail to distinguish them. We suspect that
looking at the second minimum weight will suffice. But what is the second
minimum weight for the dual p-ary code even for the desarguesian plane
PG1(2,Fp)? Nobody knows! In [5] it was shown that this weight is at least
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5
2
(p + 1) for p ≥ 11. The following result shows that this weight is at most

3p − 3 for every prime p ≥ 5. Note that when p = 11, the upper and lower
bounds coincide, so that the second minimum weight is 3p − 3 in this case.
Indeed, calculations show that it is 3p− 3 for 5 ≤ p ≤ 11.

Theorem 5.1 For any prime p ≥ 5, the dual p-ary code of PG1(2,Fp) con-
tains at least 1

6
p3(p3 − 1)(p2 − 1) words of weight 3p− 3.

Proof: Take a point x, three distinct lines `1, `2, `3 through x and a line `
not passing through x. Put S = (`1 ∪ `2 ∪ `3)\(` ∪ {x}). Thus S is a set of
size 3p−3. It is enough to construct one word of C⊥

p with support S. To this
end, we set up co-ordinates such that ` is the line at infinity, x is the origin,
and `1, `2, `3 are the lines with equation Y = 0, X = 0 and Y = X. Notice
that, in this co-ordinate system, S consists of 3p−3 affine points. Define the
word w by setting w(P ) = 0 for any point P of the projective plane, P 6∈ S,
and define it on S by the formula

w(α, β) =





1/α if β = 0, α 6= 0
1/β if α = 0, β 6= 0
−1/α if α = β 6= 0.

Then it is easy to see that w is a word of C⊥
p , with support S. Therefore

S supports (at least, but one can show exactly) p − 1 words of C⊥
p , namely

the non-zero scalar multiples of w. Since there are (p2 + p + 1)× p2 × (
p+1
3

)
choices for S, we are done. ¤

Notice that in Theorem 5.1, p could be any prime power. But, when p is not
prime, the words obtained are defined only over Fp and not over its prime
subfield. In view of the comments preceding Theorem 5.1, we suspect that
when p is prime, the second minimum weight of C⊥

p (PG1(2,Fp)) is 3p − 3
and the words described in that theorem are its only words of weight 3p− 3.
But we go ahead and state a much stronger conjecture (a priori stronger,
that is!).

We recall that a linear space is an incidence system with exactly one line
joining any two distinct points, and each line containing at least two points.
We shall say that a linear space is of order p if each of its points is in exactly
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p + 1 lines. Clearly any linear space of order p has at most p2 + p + 1 points,
with equality only for projective planes of order p. Thus, there are only
finitely many linear spaces of any given order, and the projective planes are
the largest among them.

Definition 5.1 An incidence system X is said to be non-trivial at a prime
p if C⊥

p (X ) 6= {0}.

Examples of small linear spaces of order p which are non-trivial at the prime
p:

(a) Let Xp be the linear space with two disjoint “long lines” `1, `2 of size p
each and p2 short lines of size two each joining a point of `1 to a point of
`2. The word sending each point of `1 to +1 and each point of `2 to -1 is in
C⊥

p (Xp). Thus Xp is non-trivial at p.

(b) For p ≥ 3, let Yp be the linear space on 3p−3 points described as follows.
Its point-set is F∗p × {1, 2, 3}. It has three long lines `i = F∗p × {i}, i =
1, 2, 3, of size p − 1 each. It has (p − 1)(p − 2) lines of size 3, namely
{(α1, 1), (α2, 2), (α3, 3)} where α1, α2, α3 ∈ F∗p with α1 + α2 + α3 = 0. It
also has 3p− 3 lines of size 2, namely {(α1, i), (α2, j)} where 1 ≤ i 6= j ≤ 3,
α1, α2 ∈ F∗p with α1 + α2 = 0. It is easy to verify that Yp is a linear space
of order p. The word w : (α, i) 7→ α is clearly a non-trivial word in C⊥

p (Yp).
Thus Yp is non-trivial at p.

Inamdar deduced Corollary 5.1 from the following result by looking at the
subsystem of π induced on the support of a minimum weight word in C⊥

p (π):

Proposition 5.1 : For primes p,Xp is the unique smallest linear space of
order p which is non-trivial at p. That is, it has the smallest number (2p) of
points among all such spaces.

Proof: This is the special case n = p, λ = 1 of Theorem 3.1. ¤

Conjecture 5.1 (The 3p − 3 conjecture): For primes p ≥ 5, Yp is the
unique second smallest linear space of order p which is non-trivial at p.
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That is, we conjecture that if Z is a linear space of prime order p ≥ 5 which
is non-trivial at p, then either Z = Xp or Z = Yp or Z has at least 3p − 2
points.

Clearly Xp is obtained as the induced subsystem of PG1(2,Fp) on the support
of a minimum weight word of its dual code, and Yp is obtained as the induced
subsystem on one of the words described in Theorem 5.1. This is why they are
non-trivial at p. Indeed, in our final result, we shall show that Conjecture 5.1
implies the following coding theoretic characterization of PG1(2,Fp) among
projective planes of order p:

Conjecture 5.2 Let π be a projective plane of prime order p ≥ 5. Then
the second minimum weight of C⊥

p (π) is ≥ 3p − 3 and there are at most
1
6

p3(p3 − 1)(p2 − 1) words of weight 3p − 3 in this code. If, further, both π
and its dual π∗ satisfy equality in the last inequality then π = PG1(2,Fp).

Theorem 5.2 : Conjecture 5.1 implies Conjecture 5.2.

Proof: The first statement follows by looking at the induced subsystem of
π on the support of words of weight ≤ 3p − 3. In view of the uniqueness
statement in Conjecture 5.1, it also follows that the support S of any word in
C⊥

p (π) of weight 3p−3 is as described in the proof of Theorem 5.1. Hence the
upper bound on the number of weight 3p− 3 words follows since the bound
is just (p− 1) times the number of such sets S in π. If equality holds for π,
then the induced subsystem on each such set S is isomorphic to Yp. This has
the following translation. If S = (`1 ∪ `2 ∪ `3)\(` ∪ x) then, letting σ denote
the affine plane obtained from π∗ by deleting its “line” x, the Bruck subnet
of σ corresponding to the three “points” `1, `2, `3 at infinity is co-ordinatized
by the cyclic group of order p. Indeed, any word of C⊥

p (π) with support
S provides such a co-ordinatization. As this holds for any three concurrent
lines `1, `2, `3 of π, and since π∗ is also assumed to satisfy the same, standard
arguments imply that π must be desarguesian (cf. Proof of Theorem 5.1 in
[11]). ¤
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