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1 Introduction

Let S be the space of rapidly decreasing smooth functions and S ′ be its dual,
the space of tempered distributions on Rd. Let Ai, L : S ′ → S ′, i = 1, · · · , r
be partial differential operators (to be specified below) and A = (A1, · · · , Ar).
Consider the existence and uniqueness problem for stochastic partial differential
equations of the form

dYt = L(Yt) dt+A(Yt).dBt

where (Bt) is a r-dimensional Brownian motion and (Yt) an S ′ valued process,
with Y0 a given S ′-valued random variable. In many cases (see [1], [2], [4],
[5], [7], [8]) a sufficient condition for existence and uniqueness is the so called
‘Monotonicity Inequality’ for the pair of operators (L,A) (a related inequality,
called the coercivity inequality is also considered in the context of stochastic
partial differential equations, but in the setting of a Gelfand triple of Hilbert
spaces (see [5], [6])). In [2] the Monotonicity inequality was proved for constant
coefficient differential operators L and A of the form

L =
1

2

d∑
i,j=1

(σσt)ij∂
2
ij −

d∑
i=1

bi∂i
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and

Ai = −
d∑
j=1

σji∂j .

The object of this note is to provide a new proof that is more conceptual than
the essentially computational proof given in [2].

The Monotonicity inequality can be stated as follows : Let ∥.∥ be a Hilber-
tian semi-norm on S ′ with corresponding inner product ⟨·, ·⟩. Then the pair of
operators (L,A) satisfies the ‘Monotonicity Inequality’ for the semi-norm ∥.∥ if

⟨ϕ,Lϕ⟩+
r∑
i=1

∥Aiϕ∥2 ≤ C∥ϕ∥2, ∀ϕ ∈ S. (1.1)

In practice, the norm ∥.∥ is taken as one of the Hermite Sobolev norms ∥.∥q, q ∈
R defined in Section 2, with the corresponding Hilbert spaces denoted by (Sq, ∥·
∥q) and S ⊂ Sq ⊂ S ′. The proof in [2] involved expanding ϕ along an ONB
{hn,q} in Sq, where hn,q are multiples of the usual Hermite functions hn, that
form an ONB in S0 := L2(Rd, dx) ≡ L2(Rd) [where dx denotes the Lebesgue
measure]. The left hand side in the inequality above can then be computed using
linearity, in terms of the action of L and Ai on the hn,q , which in turn can be
computed, using the recurrence relation for the action of the derivatives ∂i on
the Hermite functions, viz. ∂ihn. It was shown in [2] that the resulting series
was essentially the same as that for ∥ϕ∥2, by showing that certain sequences
appearing in successive terms of the series was bounded (see Lemma (2.2), [2]).

In this paper we show that the set of computations mentioned in the previous
paragraph, involve essentially two main steps : One, calculation of the adjoint ∂∗i
of the derivative operator ∂i in the Hilbert Space corresponding to the norm ∥.∥p.
We calculate it as ∂∗i = −∂i+T∂i , where T∂i is a bounded operator on (Sp, ∥∥p).
The proof that T∂i is a bounded operator involves a ‘first-order’ version of the
inequalities proved in Lemma (2.2) of [2] (see Lemma (2.2) below). Two, an
‘integration by parts’, using the adjoint computed in step one, that results in
cancelation of the unbounded terms in the series for the LHS of inequality in
(1.1), and that leaves only the action of the bounded operator T∂i on ϕ. Our
proof thus is a generalization of the proof in the case p = 0 (i.e. L2(Rd)), for
which it follows trivially by ‘integration by parts’.

In Section 2, we calculate the adjoint ∂∗i and prove the representation men-
tioned above. In Section 3, we prove the Monotonicity Inequality when the
operators L and A are constant coefficient operators as above . Section 4 is
devoted to a proof of the Monotonicity Inequality for variable coefficients when
L and A correspond to the Ornstein-Uhlenbeck diffusion (see [8]). Some appli-
cations of this will be developed in a separate article. We prove our results only
when the underlying state space has dimension d = 1. We only state the results
for higher dimensions. The proofs for higher dimensions are similar to the one
dimensional case.

2 The Adjoint of the Derivative on Sq
Let Zd+ := {n = (n1, · · · , nd) : ni non-negative integers}. If n = (n1, · · · , nd),
we define |n| := n1 + · · · + nd. Let {hn : n ∈ Zd+} be the orthonormal basis
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(ONB) in L2(Rd) given by the Hermite functions (see [3], [9]). Let ⟨·, ·⟩ represent
the L2(Rd) inner product. For any fixed q ∈ R, consider the following formal
sums {

⟨f, g⟩q :=
∑∞
k=0

∑
|n|=k(2k + d)2q⟨f, hn⟩⟨g, hn⟩,

∥f∥2q :=
∑∞
k=0

∑
|n|=k(2k + d)2q⟨f, hn⟩2

(2.1)

Let S ⊂ L2(Rd) be the space of smooth rapidly decreasing R-valued functions

on Rd with the topology given by L. Schwartz (see [10]). Then (S, ∥.∥q) are pre-
Hilbert spaces and completing them one obtains the Hilbert spaces (Sq, ∥.∥q)
(see [3]).

For any ϕ ∈ S, we have ϕ =
∞∑
k=0

∑
|n|=k

ϕnhn. We are going to use the following

convention: ni < 0, for some i will mean ϕn = 0, hn = 0.
Let S ′ denote the space of tempered distributions. In [3], it was shown that
(S−q, ∥.∥−q) are dual to (Sq, ∥.∥q). Furthermore, the following are also known:

L2(Rd) = (S0, ∥.∥0),
for p < q, (Sq, ∥.∥q) ⊂ (Sp, ∥.∥p),
S =

∩
q∈R(Sq, ∥.∥q),

S ′ =
∪
q∈R(Sq, ∥.∥q)

From now onwards we shall work with dimension d = 1. Any results mentioned
in the following can be generalized to multi-dimensions.

Consider the derivative map denoted by ∂ : S → S. We can extend this map
by duality to ∂ : S ′ → S ′ as follows: for ψ ∈ S ′,

⟨∂ψ, ϕ⟩ := −⟨ψ, ∂ϕ⟩, ∀ϕ ∈ S.

The following relation is wellknown (see [9])

∂hn =

√
n

2
hn−1 −

√
n+ 1

2
hn+1, ∀n ≥ 0, (2.2)

and hence it is easy to see that ∂ : Sq+ 1
2
→ Sq is a bounded linear operator. Since

S is dense in Sq, ∂ is a densely defined closed operator on Sq with Dom(∂) ⊃
Sq+ 1

2
.

Let ∂∗ denote the Hilbert space adjoint of ∂ on Sq. For convenience of notation,
we shall not introduce q in ∂∗, though it should be understood that we are
working for a fixed q ∈ R. Now ∂∗ : Dom(∂∗) ⊂ Sq → Sq with Dom(∂∗) =
{ϕ ∈ Sq : Dom(∂) � ψ → ⟨∂ψ, ϕ⟩q, is a bounded linear functional}. Note that
S ⊂ Dom(∂∗).
For ϕ ∈ Dom(∂∗), ∂∗ satisfies

⟨∂ψ, ϕ⟩q = ⟨ψ, ∂∗ϕ⟩q, ψ ∈ Dom(∂).

Observe that by integration by parts, for q = 0, we have ∂∗ = −∂. In the next
Theorem, we compute ∂∗ in Sq explicitly and the resulting formula generalizes
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the above relation to the case q ̸= 0.

Consider the following two sequences:

an :=

√
n

2

[(
2n− 1

2n+ 1

)2q

− 1

]
, bn :=

√
n+ 1

2

[
1−

(
2n+ 3

2n+ 1

)2q
]

(2.3)

We now define linear operators Ã, B̃, U+1, U−1 on S via the formal expressions:

for ϕ =
∞∑
n=0

ϕnhn ∈ S,

Ãϕ :=
∞∑
n=0

anψnhn, B̃ϕ :=
∞∑
n=0

bnψnhn, (2.4)

U+1ϕ :=
∞∑
n=0

ψn+1hn, U−1ϕ :=
∞∑
n=0

ψn−1hn. (2.5)

We then have,

Theorem 2.1. Ã, B̃, U+1, U−1 are bounded linear operators on (S, ∥ · ∥q) and
hence can be extended to bounded linear operators in (Sq, ∥ · ∥q). Further we
have, for any ϕ, ψ ∈ S,

⟨∂ϕ, ψ⟩q + ⟨ϕ, ∂ψ⟩q = ⟨ϕ, (ÃU−1 + B̃U+1)ψ⟩q (2.6)

and hence we obtain
∂∗ = −∂ + T∂ on S,

where T∂ = ÃU−1 + B̃U+1.

For the proof of Theorem (2.1), we need the following two Lemmas (2.2),
(2.3).

Lemma 2.2. The sequences {an}∞n=0 and {bn}∞n=0 satisfy the following inequal-
ity:

|an| ≤
M√
n
, |bn| ≤

M√
n
, ∀n ∈ N

for some M > 0. Consequently, both the sequences are bounded. We take

M1,q := sup
n∈N∪{0}

|an| and M2,q := sup
n∈N∪{0}

|bn|. (2.7)

Lemma 2.3. For any ϕ, ψ ∈ S, we have

⟨∂ϕ, ψ⟩q + ⟨ϕ, ∂ψ⟩q =
∞∑
n=0

(2n+ 1)2qϕnanψn−1 +
∞∑
n=0

(2n+ 1)2qϕnbnψn+1 (2.8)
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Proof of Theorem (2.1).
Given ϕ ∈ S,

∥Ãϕ∥2q =
∞∑
n=0

(2n+ 1)2q|an|2ϕ2n

≤

(
sup

n∈N∪{0}}
|an|2

) ∞∑
n=0

(2n+ 1)2qϕ2n

≤M2
1,q∥ϕ∥2q (by Lemma (2.2))

Therefore, ∥Ãϕ∥q ≤M1,q∥ϕ∥q, i.e. ∥Ã∥q ≤M1,q.

Similarly, ∥B̃∥q ≤M2,q.
Again,

∥U+1ϕ∥2q =
∞∑
n=0

(2n+ 1)2q|ϕn+1|2

=

∞∑
n=0

(2n+ 1)2q

(2n+ 3)2q
(2n+ 3)2q|ϕn+1|2

≤

(
sup

n∈N∪{0}

(2n+ 1)2q

(2n+ 3)2q

) ∞∑
n=1

(2n+ 1)2q|ϕn|2

≤

(
sup

n∈N∪{0}

(
2n+ 1

2n+ 3

)2q
)
∥ϕ∥2q

from which we obtain ∥U+1∥q ≤ sup
n∈N∪{0}

( 2n+1
2n+3 )

q.

Similarly, ∥U−1∥q ≤ sup
n∈N

( 2n+1
2n−1 )

q.

Linearity of Ã, B̃, U+1, U−1 is clear from definition. Using Lemma (2.3), we now
have

⟨∂ϕ, ψ⟩q + ⟨ϕ, ∂ψ⟩q = ⟨ϕ, (ÃU−1 + B̃U+1)ψ⟩q.
Since each of Ã, B̃, U+1, U−1 is a bounded linear operator on (Sq, ∥.∥q), (ÃU−1+

B̃U+1) is also bounded linear operator on (Sq, ∥.∥q).

Proof of Lemma (2.3).

Since ϕ, ψ ∈ S, we have ϕ =

∞∑
n=0

ϕnhn, ψ =

∞∑
n=0

ψnhn.

Now,

∂ϕ =

∞∑
n=0

ϕn(∂hn)

=

∞∑
n=0

ϕn

[√
n

2
hn−1 −

√
n+ 1

2
hn+1

]

=

∞∑
n=−1

ϕn+1

√
n+ 1

2
hn −

∞∑
n=1

ϕn−1

√
n

2
hn

=
∞∑
n=0

ϕn+1

√
n+ 1

2
hn −

∞∑
n=0

ϕn−1

√
n

2
hn (2.9)
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Similar expression is true for ∂ψ.

Therefore, ⟨ϕ, ∂ψ⟩q =
∞∑
n=0

(2n+ 1)2qϕn

[√
n+1
2 ψn+1 −

√
n
2ψn−1

]
......(*)

and

⟨∂ϕ, ψ⟩q =
∞∑
n=0

(2n+ 1)2qψn

[√
n+ 1

2
ϕn+1 −

√
n

2
ϕn−1

]

=
∞∑
n=1

(2n− 1)2qϕnψn−1

√
n

2
−

∞∑
n=−1

(2n+ 3)2qϕnψn+1

√
n+ 1

2

=
∞∑
n=0

(2n− 1)2qϕnψn−1

√
n

2
−

∞∑
n=0

(2n+ 3)2qϕnψn+1

√
n+ 1

2

=
∞∑
n=0

(2n+ 1)2qϕn

[
ψn−1

√
n

2

(
2n− 1

2n+ 1

)2q
]

−
∞∑
n=0

(2n+ 1)2qϕn

[
ψn+1

√
n+ 1

2

(
2n+ 3

2n+ 1

)2q
]
......(∗∗)

Using (*) and (**), we get the result.

Proof of Lemma (2.2).

For n ∈ N ∪ {0}, |an| =
√

n
2

∣∣∣∣[(2n−1
2n+1

)2q
− 1

]∣∣∣∣ .
To find an upper bound of an’s, we follow the method in Lemma (2.2) of [2].
Choose an analytic branch of z 7→ z2q in a domain containing the positive real
axis and then we can define

f(z) :=

(
2− z

2 + z

)2q

− 1

in a neighbourhood of 0, say in a ball of radius δ > 0, i.e. B(0, δ).

Since f(0) = 0, ∃ an analytic function g defined on B(0, δ) such that f(z) =

zg(z), ∀z ∈ B(0, δ). But on the compact set B(0, δ2 ) the function g is bounded,
say by some constant R > 0.
Fix a positive integer N such that 1

N < δ
2 . Then ∀n > N ,

|an| =
√
n

2

∣∣∣∣f ( 1

n

)∣∣∣∣ ≤ 1√
2n

∣∣∣∣g( 1

n

)∣∣∣∣ ≤ R√
2n
.

Then taking M := sup{|a1|,
√
2|a2|, · · · ,

√
N |aN |, R√

2
}, we have

|an| ≤
M√
n
, ∀n > 0.

From this inequality required bound can be obtained.
Proof for bn’s are similar.

The operator T∂ has the following important property that will be needed
in the next section.
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Lemma 2.4. The map ⟨∂(·), T∂(·)⟩q : S × S → R defined by

(ϕ, ψ) 7→ ⟨∂ϕ, T∂ψ⟩q, ∀ϕ, ψ ∈ S

is a bounded bilinear form in ∥∥q and hence extends to a bounded bilinear form
on (Sq, ∥∥q)× (Sq, ∥∥q).

Proof. For ϕ, ψ ∈ S,

= ⟨∂ϕ, T∂ψ⟩q

=
∞∑
n=0

(2n+ 1)2q⟨∂ϕ, hn⟩⟨T∂ψ, hn⟩

= −
∞∑
n=0

(2n+ 1)2q⟨ϕ, ∂hn⟩⟨ÃU−1 + B̃U+1ψ, hn⟩

= −
∞∑
n=0

(2n+ 1)2q⟨ϕ,
√
n

2
hn−1 −

√
n+ 1

2
hn+1⟩⟨(ÃU−1 + B̃U+1)ψ, hn⟩

= −
∞∑
n=0

(2n+ 1)2q

(√
n

2
ϕn−1 −

√
n+ 1

2
ϕn+1

)
(anψn−1 + bnψn+1)

From Lemma (2.2), we have that an ∼ O( 1√
n
), bn ∼ O( 1√

n
).

Now using the Cauchy-Schwarz inequality, we get ∃C > 0, such that

|⟨∂ϕ, T∂ψ⟩q| ≤ C∥ϕ∥q∥ψ∥q.

This completes the proof.

Multi dimensional version of the above results can be formulated as follows:

For any fixed integer i, 1 ≤ i ≤ d consider the sequences:

an,i :=

√
ni
2

[
(2k + d− 2)2q − (2k + d)2q

(2k + d)2q

]
,

bn,i :=

√
ni + 1

2

[
(2k + d)2q − (2k + d+ 2)2q

(2k + d)2q

]
.

where n = (n1, · · · , nd) is a multi-index with |n| = k ≥ 0.

Let {fi : 1 ≤ i ≤ d} denote the standard basis for Rd. Define linear operators

Ãi, B̃i, U−fi , U+fi on S(Rd) by the formal expressions: for ψ =
∞∑
k=0

∑
|n|=k

ψnhn ∈

S,

Ãiϕ :=
∞∑
k=0

∑
|n|=k

an,iψnhn, B̃iϕ :=
∞∑
k=0

∑
|n|=k

bn,iψnhn. (2.10)

U+fiϕ :=
∞∑
k=0

∑
|n|=k

ψn+fihn, U−fiϕ :=
∞∑
k=0

∑
|n|=k

ψn−fihn. (2.11)
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Theorem 2.5. Each of Ãi, B̃i, U−fi , U+fi is a bounded operator on (Sq(Rd), ∥.∥q)
hence extends to (Sq(Rd), ∥.∥q) as bounded linear operators. Furthermore, for
any 1 ≤ i ≤ d and for any ϕ, ψ ∈ S(Rd),

⟨∂iϕ, ψ⟩q + ⟨ϕ, ∂iψ⟩q = ⟨ϕ, (ÃiU−fi + B̃iU+fi)ψ⟩q
and hence we have

∂∗i = −∂i + T∂i on S,
where T∂i = ÃiU−fi + B̃iU+fi .

3 The Monotonicity Inequality

Let {ei : 1 ≤ i ≤ r} denote the standard ONB in Rr. Let σ = (σij) be a
constant d× r matrix with (aij) = (σσt)ij and b = (b1, ..., bd) ∈ Rd. For ϕ ∈ S,
we define

Lϕ := 1
2

∑d
i,j=1 aij∂

2
ijϕ−

∑d
i=1 bi∂iϕ,

Aiϕ := −
∑d
j=1 σji(∂jϕ)

Aϕ = (A1ϕ, . . . , Arϕ)


So that for l ∈ Rr,

Aϕ(l) := −
r∑
i=1

d∑
j=1

σji(∂jϕ)li =

r∑
i=1

Aϕ(ei)li.

The following result has already been established in [2].

Theorem 3.1. For every q ∈ R, ∃ a constant C = C(q, d, (σij), (bj)) > 0, such
that

2⟨ϕ,Lϕ⟩q + ∥Aϕ∥2HS(q) ≤ C.∥ϕ∥2q (3.1)

for all ϕ ∈ S(Rd), where ∥Aϕ∥2HS(q) :=
∑r
i=1 ∥Aiϕ∥2q.

Furthermore, by density arguments the above inequality can be extended to all
ϕ ∈ Sq+1(Rd).

Proof of Theorem (3.1) for the case d = 1.
Let ϕ ∈ S.
For the sake of convenience, we shall denote
L2ϕ := 1

2a∂
2ϕ and L1ϕ := −b∂ϕ, so that Lϕ = L1ϕ+ L2ϕ.

Observe that,

⟨ϕ, ∂ψ⟩q + ⟨∂ϕ, ψ⟩q = ⟨T∂ϕ, ψ⟩q
≤ ∥T∂∥q∥ψ∥q∥ψ∥q.

Therefore,

⟨ϕ,L1ψ⟩q + ⟨L1ϕ, ψ⟩q = −b [⟨ϕ, ∂ψ⟩q + ⟨∂ϕ, ψ⟩q]
≤ (|b|∥T∂∥q) ∥ϕ∥q∥ψ∥q.

Taking ϕ = ψ, we obtain

2⟨ϕ,L1ϕ⟩q = ⟨ϕ,L1ϕ⟩q + ⟨L1ϕ, ϕ⟩q

≤

(∑
i

|bi|∥T∂∥q

)
∥ϕ∥2q .........(∗) (3.2)
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Now consider,

2⟨ϕ,L2ϕ⟩q = a⟨ϕ, ∂2ϕ⟩q
= −a⟨∂ϕ, ∂ϕ⟩q + a⟨T∂ϕ, ∂ϕ⟩q, (using Theorem (2.1))

But a =
r∑

k=1

σ2
k.

∴ −a⟨∂ϕ, ∂ϕ⟩q = −
r∑

k=1

⟨σk∂ϕ, σk∂ϕ⟩q

= −
r∑

k=1

⟨Aϕ(ek), Aϕ(ek)⟩q

= −∥Aϕ∥2HS(q)

∴ 2⟨ϕ,L2ϕ⟩q + ∥Aϕ∥2HS(q) = a⟨T∂ϕ, ∂ϕ⟩q. (3.3)

By Lemma (2.4), we have

|a⟨T∂ϕ, ∂ϕ⟩q| ≤ C∥ϕ∥2q, ∀ϕ ∈ S (3.4)

for some constant C > 0.
Combining (*) and (**), proof is complete.

Remark 3.2. From inequalities (3.2) and (3.4), it is clear that the constant
C in the Monotonicity Inequality actually depends on the upper bound of |σij |
and |bi|.

4 The Case of Variable Coefficients

Let α be a C∞ Rd-valued function on Rd with bounded derivatives satisfying
the linear growth condition, i.e.

∥α(x)∥ :=

(
d∑
i=1

|αi(x)|2
) 1

2

≤M(1 + |x|), ∀x ∈ Rd. (4.1)

Let Mα : S → S denote the multiplication operator defined by ϕ 7→ αϕ. By
duality, we can extend this operator to Mα : S ′ → S ′ as follows: for ψ ∈ S ′,

⟨Mαψ, ϕ⟩ := ⟨ψ,Mαϕ⟩ = ⟨ψ, αϕ⟩, ∀ϕ ∈ S. (4.2)

Unless specifically mentioned, we shall take q to be an integer.

Following the proof of Proposition (3.2) in [8], one can show the following:

∥Mαψ∥q ≤ ∥ψ∥q+1, ∀ψ ∈ Sq+1.

Therefore, Mα : Sq+1 → Sq is a bounded linear operator. Since S ⊂ Sq, Mα :
Sq → Sq is a densely defined closed linear operator, with Dom(Mα) ⊃ Sq+1.
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Let M∗
α denote the Hilbert space adjoint of Mα : Sq → Sq. Then, M∗

α :
Dom(M∗

α) ⊂ Sq → Sq with

Dom(M∗
α) := {ψ ∈ Sq : ϕ 7→ ⟨ψ,Mαϕ⟩q is a continuous linear operator on Dom(Mα)}.

Note that S ⊂ Dom(M∗
α).

We list a few known results regarding the Monotonicity Inequality for variable
coefficients, which is stated below.
Suppose σ = (σij), i = 1, .., d, j = 1, .., r and b = (b1, .., bd), where σij and bi
are C∞ functions on Rd with bounded derivatives satisfying

∥σ(x)∥+ ∥b(x)∥ : =

 d∑
i=1

r∑
j=1

|σij(x)|2
 1

2

+

(
d∑
i=1

|bi(x)|2
) 1

2

(4.3)

≤M(1 + |x|) ∀x ∈ Rd

for some M > 0 and |x|2 :=
∑d
i=1 x

2
i .

Let E ′ denote the space of distributions with compact support.

Definition 4.1 (L∗, A∗). Define A∗ : E ′ → L(Rr, E ′) and L∗ : E ′ → E ′ by
A∗ϕ = (A∗

1ϕ, .., A
∗
rϕ),

A∗
iϕ = −

∑d
k=1 ∂k(σkiϕ),

L∗ϕ = 1
2

∑d
i,j=1 ∂

2
ij ((σσ

t)ijϕ)−
∑d
i=1 ∂i(biϕ)

(4.4)

Note that in [8], it was shown that under the linear growth condition on σ, b
we have the following: given a positive real number p, for any q ∈ R satisfying
q > [p]+4, the operators L∗ : S−p∩E ′(K) → S−q∩E ′(K) and A∗ : S−p∩E ′(K) →
L(Rr,S−q ∩E ′(K)) are bounded operators, where E ′(K) ⊂ E ′ denotes the space
of distributions whose support is contained in a compact set K.
Consider the following linear stochastic partial differential equation:{

dYt = L∗Yt dt+A∗Yt dBt,

Y0 = ψ
(4.5)

where ψ ∈ E ′. It was shown in [8] that the explicit solutions for such equa-
tions when supp(ψ) is contained in some compact set, can be constructed by
considering the flow corresponding to{

dXt = σ(Xt) dBt + b(Xt) dt,

X0 = x
(4.6)

It was also shown in [8] that ψt = EYt solves the initial value problem:{
∂ψt

dt = L∗ψt,

ψ0 = ψ
(4.7)

Assuming that the pair of operators L∗, A∗ satisfy the Monotonicity Inequal-
ity, i.e. ∃ a constant C = C(p, d, (σij), (bj)) > 0, such that

2⟨ϕ,L∗ϕ⟩−q + ∥A∗ϕ∥2HS(−q) ≤ C∥ϕ∥2−q (4.8)
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for all ϕ ∈ S−p ∩ E ′, one can prove the uniqueness of the solutions of equations
(4.5) and (4.7) (see [1], [8]).

Note that when σ = Id, bi(x) = xi ∀i, 1 ≤ i ≤ d, the associated diffusion is the
Ornstein-Uhlenbeck diffusion.

We are now going to prove the Monotonicity Inequality for the pair of operators
L∗, A∗ for specific σ, b. We prove the one dimensional version of the result.

Theorem 4.2. Let σ = (σi) be a constant function. Let b(x) := b0 + b1x
for fixed b0, b1 ∈ R. Fix any positive real number q. Then the monotonicity
inequality for L∗, A∗ holds, i.e. ∃ a positive constant C = C(q, σ, b), such that

2⟨ϕ,L∗ϕ⟩−q + ∥A∗ϕ∥2HS(−q) ≤ C∥ϕ∥2−q (4.9)

for all ϕ ∈ S.

For the proof of Theorem (4.2), we need the following Lemma:

Lemma 4.3. Let q ∈ R. If b(x) = x, ∀x ∈ R, then we have

⟨ϕ,Mbψ⟩q = ⟨Mbϕ, ψ⟩q + ⟨Txϕ, ψ⟩q, ∀ϕ, ψ ∈ S

where Tx = (ÃU−1 − B̃U+1) is a bounded operator on (Sq, ∥ · ∥q), with the

operators Ã, B̃, U+1, U−1 as in Lemma (2.1). This also shows

M∗
b =Mb + Tx on S.

Proof. Note that bhn =
√

n
2hn−1 +

√
n+1
2 hn+1 for all n ≥ 0. The proof follows

as in the case of T∂ in Theorem (2.1).

Using the recurrence relations for xhn(x), it is easy to check that ∂Mb :
Sq+1 → Sq (where b(x) ≡ x and q ∈ R) is a bounded linear operator and hence
using density arguments we have

Corollary 4.4. Under the assumptions of Theorem (4.2), equation (4.9) holds
for all ϕ ∈ S−q+1.

Proof of Theorem (4.2). We use the same approach as in Theorem (3.1). We
shall denote
L∗
2ϕ := 1

2∂
2(aϕ) and L∗

1ϕ := −∂(bϕ), where a =
∑r
k=1 σ

2
k.

Observe that if we take σ, b to be constants, the inequalities

2⟨ϕ,L∗
2ϕ⟩−q + ∥A∗ϕ∥2HS(−q) ≤ C.∥ϕ∥2−q, ∀ϕ ∈ S (4.10)

2⟨ϕ,L∗
1ϕ⟩−q ≤ C.∥ϕ∥2−q, ∀ϕ ∈ S (4.11)

follows from Theorem (3.1).
Combining the inequalities involving L∗

1, L
∗
2, A

∗ we get the result.

Next we show that taking b(x) = x, L∗
1 inequality works out.

For ϕ, ψ ∈ S,

⟨ϕ, ∂(bψ)⟩−q = ⟨(b+ Tx)(−∂ + T∂)ϕ, ψ⟩−q,
= −⟨b∂ϕ, ψ⟩−q + ⟨bT∂ϕ, ψ⟩−q − ⟨Tx∂ϕ, ψ⟩−q + ⟨TxT∂ϕ, ψ⟩−q
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But, ∂(bϕ) = ϕ+b∂ϕ, T ∗
x = −Tx and ⟨bT∂ϕ, ψ⟩−q = ⟨T∂ϕ, bψ⟩−q+⟨T∂ϕ, Txψ⟩−q.

Therefore,

⟨ϕ, ∂(bψ)⟩−q = ⟨ϕ, ψ⟩−q − ⟨∂(bϕ), ψ⟩−q + ⟨T∂ϕ, bψ⟩−q + ⟨∂ϕ, Txψ⟩−q.

Taking ϕ = ψ gives,

2⟨ϕ, ∂(bϕ)⟩−q = ∥ϕ∥2−q + ⟨T∂ϕ, bϕ⟩−q + ⟨∂ϕ, Txϕ⟩−q. (4.12)

To verify the L∗
1 inequality, we only need to check

⟨T∂ϕ, bϕ⟩−q ≤ C∥ϕ∥2−q (4.13)

⟨∂ϕ, Txϕ⟩−q ≤ C∥ϕ∥2−q (4.14)

The proofs of (4.13) and (4.14) are completed as in Lemma (2.4), noting that
both the operators T∂ , Tx may be written in terms of Ã, B̃, U+1, U−1, except for
a possible change of sign.
Checking the inequality for b(x) := b0 + b1x for fixed b0, b1 ∈ R is routine.

Remark 4.5. For the multi dimension case, we have the following:
Given ϕ ∈ S(Rd), observe that for i ̸= j, ∂i(xjϕ) = xj(∂iϕ) and hence we have
a relation similar to (4.12):

2⟨ϕ, ∂i(xjϕ)⟩−q = ⟨T∂iϕ, xjϕ⟩−q + ⟨∂iϕ, Txjϕ⟩−q, (4.15)

where Txj = ÃjU−fj −B̃jU+fj , with operators on right hand side as in Theorem
(2.5).
From this we conclude that we can take any permutation of x1, · · · , xd as the
functions b1, · · · , bd and the result is still true. Furthermore, even if we take
linear combinations of xj ’s as our bi’s, the bounds work out.

Multi dimensional version of the Theorem (4.2) is as follows:

Theorem 4.6. Let σ be a constant function. Let b = (b1, · · · , bd) with each

bi(x) := di +
∑d
j=1 cijxj for fixed di, cij ∈ R. Fix any positive real number q.

Then the monotonicity inequality for L∗, A∗ holds, i.e. ∃ a positive constant
C = C(q, d, (σij), (bj)), such that

2⟨ϕ,L∗ϕ⟩−q + ∥A∗ϕ∥2HS(−q) ≤ C.∥ϕ∥2−q (4.16)

for all ϕ ∈ S−q+1(Rd).
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[3] K. Itō, Foundations of stochastic differential equations in infinite-
dimensional spaces, CBMS-NSF Regional Conference Series in Applied
Mathematics, vol. 47, Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 1984. MR 771478 (87a:60068)

[4] G. Kallianpur and J. Xiong, Stochastic differential equations in infinite-
dimensional spaces, Institute of Mathematical Statistics Lecture Notes—
Monograph Series, 26, Institute of Mathematical Statistics, Hayward, CA,
1995, Expanded version of the lectures delivered as part of the 1993 Barrett
Lectures at the University of Tennessee, Knoxville, TN, March 25–27, 1993,
With a foreword by Balram S. Rajput and Jan Rosinski. MR 1465436
(98h:60001)
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