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STINESPRING’S THEOREM FOR MAPS ON HILBERT C∗-

MODULES

B. V. RAJARAMA BHAT, G. RAMESH, AND K. SUMESH

Abstract. We strengthen Mohammad B. Asadi’s analogue of Stinespring’s
theorem for certain maps on Hilbert C∗-modules. We also show that any two
minimal Stinespring representations are unitarily equivalent. We illustrate the
main theorem with an example.

1. Introduction

Stinespring’s representation theorem is a fundamental theorem in the theory of
completely positive maps. It is a structure theorem for completely positive maps
from a C∗-algebra into the C∗-algebra of bounded operators on a Hilbert space.
This theorem provides a representation for completely positive maps, showing that
they are simple modifications of ∗-homomorphisms ( see [9] for details). One may
consider it as a natural generalization of the well-known Gelfand-Naimark-Segal
thoerem for states on C∗-algebras (see [2, Theorem 4.5.2, page 278] for details).
Recently, a theorem which looks like Stinespring’s theorem was presented by Mo-
hammad B. Asadi in [1] for a class of unital maps on Hilbert C∗-modules. Here we
strengthen this result by removing a technical condition of Asadi’s theorem [1]. We
also remove the assumption of unitality on maps under consideration. Further we
prove uniqueness up to unitary equivalence for minimal representations, which is
an important ingredient of structure theorems like GNS theorem and Stinespring’s
theorem. Now the result looks even more like Stinespring’s theorem.

1.1. Notations and Earlier Results. We denote Hilbert spaces by H, H1, H2

etc and the corresponding inner product and the induced norm by 〈., .〉 and ‖ · ‖
respectively. Our inner products are conjugate linear in the first variable and linear
in the second variable. The space of bounded linear operators from H1 to H2 is
denoted by B(H1, H2) and if H1 = H2 = H , then B(H1, H2) = B(H). The C∗-
algebra of all n×n matrices with entries from a C∗-algebra A is denoted by Mn(A).
If L is a subset of a Hilbert space, then [L] := span(L).

Now we consider maps on Hilbert C∗-modules. Let E be a Hilbert C∗-module
over a C∗-algebra A (see [4] for details of Hilbert C∗-modules). Let φ : A →
B(H) be linear. Then φ is said to be a morphism if it is a ∗ homomorphism

and nondegenerate (i.e., φ(A)H = H). We remind the reader that B(H1, H2) is
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a Hilbert B(H1)-module with respect to the inner product 〈T, S〉 = T ∗S. A map
Φ : E → B(H1, H2) is said to be a

(1) φ-map if 〈Φ(x), Φ(y)〉 = φ(〈x, y〉) for all x, y ∈ E;
(2) φ-morphism if Φ is a φ-map and φ is a morphism;
(3) φ-representation if Φ is a φ-morphism and φ is a representation.

Note that a φ-morphism Φ is linear and satisfies Φ(xa) = Φ(x)φ(a) for every x ∈ E

and a ∈ A. Several module versions of Stinespring theorem can be found in the
literature. Typically they are structure theorems for completely positive maps in
more general contexts ([3, 5, 6]). The result we are going to consider here are for φ-
maps. M. Skeide has informed us that φ-morphisms are also known as φ-isometries
in the literature (See [8] for further references). He has also remarked that as in
the case of Stinespring’s theorem the result below can be generalized further using
the language of Hilbert modules.

Theorem 1.2. (Mohammad B. Asadi [1]). If E is a Hilbert C∗-module over a
unital C∗-algebra A, φ : A → B(H1) is a completely positive map with φ(1) = 1
and Φ : E → B(H1, H2) is a φ-map with the additional property Φ(x0)Φ(x0)

∗ = IH2

for some x0 ∈ E, where H1, H2 are Hilbert spaces, then there exist Hilbert spaces
K1, K2, isometries V : H1 → K1, W : H2 → K2, a ∗-homomorphism ρ : A →
B(K1) and a ρ-representation Ψ : E → B(K1, K2) such that

φ(a) = V ∗ρ(a)V, Φ(x) = W ∗Ψ(x)V for all x ∈ E, a ∈ A.

The proof of this Theorem as given in [1] is erroneous as the sesquilinear form
defined there on E ⊗ H2 is not positive definite. This can be fixed by inter-
changing the indices i, j in the definition of this form. However such a modification
yields a ‘non-minimal’ representation. Moreover, the technical condition to have
Φ(x0)Φ(x0)

∗ = IH2
for some x0 ∈ E is completely unnecessary.

2. Main Results

In this Section we strengthen Asadi’s theorem for a φ-map Φ and discuss the
minimality of the representations.

Theorem 2.1. Let A be a unital C∗-algebra and φ : A → B(H1) be a completely
positive map. Let E be a Hilbert A-module and Φ : E → B(H1, H2) be a φ-map.
Then there exists a pair of triples (ρ, V, K1) and (Ψ, W, K2), where

(1) K1 and K2 are Hilbert spaces;
(2) ρ : A → B(K1) is a unital ∗-homomorphism and Ψ : E → B(K1, K2) is a

ρ-morphism;
(3) V : H1 → K1 and W : H2 → K2 are bounded linear operators;
(4) φ(a) = V ∗ρ(a)V, for all a ∈ A and Φ(x) = W ∗Ψ(x)V, for all x ∈ E.

Proof. We prove the theorem in two steps. Step I: Existence of ρ, V and K1: This is
the content of Stinespring’s theorem [7, Theorem 4.1, page 43]. In fact we can choose
a minimal Stinespring representation (ρ, V, K1) for φ. That is K1 = [ρ(A)V H1].
Step II: Construction of Ψ, W and K2: Let K2 := [Φ(E)H1]. For x ∈ E, define
Ψ(x) : K1 → K2 by

Ψ(x)
( n∑

j=1

ρ(aj)V hj

)
:=

n∑

j=1

Φ(xaj)hj , aj ∈ A, hj ∈ H1, j = 1, . . . , n, n ≥ 1.
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Since

||Ψ(x)
( n∑

j=1

ρ(aj)V hj

)
||2 =

n∑

i,j=1

〈hj , V
∗ρ(a∗

j 〈x, x〉ai)V hi〉

≤ ‖ρ(〈x, x〉)‖ ‖

n∑

j=1

ρ(aj)V hj‖
2

≤ ‖x‖2 ‖

n∑

j=1

ρ(aj)V hj‖
2,

Ψ(x) is well defined and bounded. Hence it can be extended to whole of K1. This
gives the required Ψ. To prove that Ψ is a ρ-morphism, let x ∈ E, aj ∈ A, hj ∈
H1, j = 1, 2, . . . , n, n ≥ 1. Then

〈Ψ(x)∗Ψ(y)
( n∑

j=1

ρ(aj)V hj

)
,

n∑

i=1

ρ(ai)V hi〉 =

n∑

i,j=1

〈φ(〈xai, yaj〉)hj , hi〉

= 〈ρ(〈x, y〉)
( n∑

j=1

ρ(aj)V hj

)
,

n∑

i=1

ρ(ai)V hi〉.

Thus Ψ(x)∗Ψ(y) = ρ(〈x, y〉) on the dense set span(ρ(A)V H1) and hence they are
equal on K1. Note that K2 ⊆ H2. Let W := PK2

, the orthogonal projection onto
K2. Then W ∗ : K2 → H2 is the inclusion map. Hence WW ∗ = IK2

. That is W

is a co-isometry. Now for x ∈ E and h ∈ H1, we have W ∗Ψ(x)V h = Ψ(x)V h =
Ψ(x)(ρ(1)V h) = Φ(x)h. �

Definition 2.2. Let φ and Φ be as in Theorem 2.1. We say that a pair of triples(
(ρ, V, K1), (Ψ, W, K2)

)
is a Stinespring representation for (φ, Φ) if the con-

ditions (1)-(3) of Theorem 2.1 are satisfied. Such a representation is said to be
minimal if

(a) K1 = [ρ(A)V H1] and (b) K2 = [Ψ(E)V H1].

Remark 2.3. Let φ and Φ be as in Theorem 2.1. The pair
(
(ρ, V, K1), (Ψ, W, K2)

)

obtained in the proof of Theorem 2.1, is a minimal representation for (φ, Φ).

Theorem 2.4. Let φ and Φ be as in Theorem 2.1. Assume that
(
(ρ, V, K1), (Ψ, W, K2)

)

and
(
(ρ′, V ′, K ′

1), (Ψ
′, W ′, K ′

2)
)

are minimal representations for (φ, Φ). Then there
exists unitary operators U1 : K1 → K ′

1 and U2 : K2 → K ′
2 such that

(1) U1V = V ′, U1ρ(a) = ρ′(a)U1, for all a ∈ A and
(2) U2W = W ′, U2Ψ(x) = Ψ′(x)U1, for all x ∈ E.

That is, the following diagram commutes, for a ∈ A and x ∈ E :

H1
V
- K1

ρ(a)
- K1

Ψ(x)
- K2

�
W

H2

K ′
1

U1

?

ρ′(a)
-

V ′ -

K ′
1

U1

?

Ψ′(x)
- K ′

2

U2

? W ′

�

Proof. Define U1 : span(ρ(A)V H1) → span(ρ′(A)V ′H1) by

U1(

n∑

j=1

ρ(aj)V hj) :=

n∑

j=1

ρ′(aj)V
′hj , aj ∈ A, hj ∈ H1, j = 1, . . . , n, n ≥ 1,
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which can be seen to be an onto isometry and the unitary extension of this is the
required map U1 : K1 → K2 ([7, Theorem 4.2, page 46]).

Now define U2 : span(Ψ(E)V H1) → span(Ψ′(E)V ′H1) by

U2(

n∑

j=1

Ψ(xj)V hj) :=

n∑

j=1

Ψ′(xj)V
′hj, xj ∈ E, hj ∈ H1, j = 1, 2, . . . , n, n ≥ 1.

Consider

‖

n∑

j=1

Ψ′(xj)V
′hj‖

2 =

n∑

i,j=1

〈hj , V
′∗ρ′(〈xj , xi〉)V

′hi〉

=
n∑

i,j=1

〈hj , V
∗ρ(〈xj , xi〉)V hi〉

= ‖

n∑

j=1

Ψ(xj)V hj‖
2.

Thus U2 is well defined and an isometry and can be extended to whole of K2, call
the extension U2 itself, and being onto it is a unitary.

Since
(
(ρ, V, K1), (Ψ, W, K2)

)
and

(
(ρ′, V ′, K ′

1), (Ψ
′, W ′, K ′

2)
)

are representations
for (φ, Φ), it follows that Φ(x) = W ∗Ψ(x)V = W ′∗Ψ′(x)V ′ = W ′∗U2Ψ(x)V and
hence (W ∗−W ′∗U2)Ψ(x)V = 0. Since [Ψ(E)V H1] = K2, it follows that U2W = W ′.
As Ψ is a ρ-morphism and Ψ′ is a ρ′-morphism, it can be shown that

U2Ψ(x)
( n∑

j=1

ρ(aj)V hj

)
= Ψ′(x)U1

( n∑

j=1

ρ(aj)V hj

)
,

for all x ∈ E, aj ∈ A, hj ∈ H1, 1 ≤ j ≤ n, n ≥ 1, concluding U2Ψ(x) = Ψ′(x)U1.
�

Remark 2.5. Let
(
(ρ, V, K1), (Ψ, W, K2)

)
be a Stinespring representation for (φ, Φ).

If φ is unital, then V is an isometry. If the representation is minimal, then W is a
co-isometry by the proof of Theorem 2.1 and (2) of Theorem 2.4.

Example 2.6. Let A = M2(C), H1 = C2, H2 = C8 and E = A ⊕ A. Let

D =

(
1 1

2
1
2 1

)
. Define φ : A → B(H1) by φ(A) = D ◦ A, for all A ∈ A, here ◦

denote the Schur product. As D is positive, φ is a completely positive map (see [7,

Theorem 3.7, page 31] for details). Let D1 =

(
1√
2

0

0 1√
2

)
and D2 =

(
1√
2

0

0 − 1√
2

)
.

Define Φ : E → B(H1, H2) by

Φ
(
A1 ⊕ A2

)
=
(√

3√
2

A1D1

√
3√
2

A2D1
1√
2

A1D2
1√
2

A2D2

)tr

, A1, A2 ∈ A.

It can be verified that Φ is a φ-map.
Let K1 = C4 and K2 = H2. In this case ρ : A → B(K1), V : H1→K1 and

Ψ : E → B(K1, K2) are given by

V =

(√
3√
2

D1
1√
2

D2

)
, ρ(A) =

(
A 0
0 A

)
, Ψ
(
A1 ⊕ A2

)
=

(
A1 A2 0 0
0 0 A1 A2

)tr

.
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A, A1, A2 ∈ A. Clearly Ψ is a ρ-morphism and Φ(A1 ⊕ A1) = W ∗Ψ(A1 ⊕ A2)V ,
where W = IH2

. This example illustrates Theorem (2.1). Note that in this example
there does not exists an x0 ∈ E with the property that Φ(x0)Φ(x0)

∗ = IH2
, which

is an assumption in Theorem 1.2.

References

1. Mohammad B. Asadi, Stinespring’s theorem for hilbert c∗-modules, J. Operator Theory 62

(2008), no. 2, 235–238.
2. Richard V. Kadison and John R. Ringrose, Fundamentals of the theory of operator algebras.

Vol. I, Graduate Studies in Mathematics, vol. 15, American Mathematical Society, Providence,
RI, 1997, Elementary theory, Reprint of the 1983 original. MR MR1468229 (98f:46001a)

3. G. G. Kasparov, Hilbert C∗-modules: theorems of Stinespring and Voiculescu, J. Operator
Theory 4 (1980), no. 1, 133–150. MR MR587371 (82b:46074)

4. E. C. Lance, Hilbert C∗-modules, London Mathematical Society Lecture Note Series, vol.
210, Cambridge University Press, Cambridge, 1995, A toolkit for operator algebraists.
MR MR1325694 (96k:46100)

5. Gerard J. Murphy, Positive definite kernels and Hilbert C∗-modules, Proc. Edinburgh Math.
Soc. (2) 40 (1997), no. 2, 367–374. MR MR1454031 (98e:46074)

6. William L. Paschke, Inner product modules over B∗-algebras, Trans. Amer. Math. Soc. 182

(1973), 443–468. MR MR0355613 (50 #8087)
7. Vern Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Ad-

vanced Mathematics, vol. 78, Cambridge University Press, Cambridge, 2002. MR MR1976867
(2004c:46118)

8. Michael Skeide, Generalised matrix C∗-algebras and representations of Hilbert modules, Math.
Proc. R. Ir. Acad. 100A (2000), no. 1, 11–38. MR MR1882195 (2002k:46155)

9. W. Forrest Stinespring, Positive functions on C∗-algebras, Proc. Amer. Math. Soc. 6 (1955),
211–216. MR MR0069403 (16,1033b)

Stat Math Unit, I. S. I. Bangalore, Bangalore, India-560 059.

E-mail address: bhat@isibang.ac.in,ramesh@isibang.ac.in,sumesh@isibang.ac.in


