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Abstract

Let K be a global field and S be a finite set of places of K which
includes all those of archimedean type. Let G be an algebraic group
over K and GK be its K-rational points. The authors provide a de-
tailed proof of a lemma of Raghunathan which states that (under fairly
weak restrictions) the closure of a subgroup of GK normalized by an S-
arithmetic subgroup in the S-congruence topology is also open. This
leads to a significant simplification in the proof of one of the principal
results in a recent joint paper of the authors.
By applying the lemma to S-arithmetic lattices in K-rank one G we
can provide a lower estimate for the number of subgroups of a given
index in such a lattice which are not S-congruence. This extends pre-
vious results of the first author and Andreas Schweizer.
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Introduction

Let K be a global field and let S be a finite nonempty set of places of K
which contains all the archimedean places. Let G be an algebraic group over
K. This note is motivated by the following result [R, 4.3 Lemma].

Raghunathan’s Lemma Suppose that G is connected, simply-connected
and K-simple with strictly positive S-rank. Let Γ be an S-arithmetic sub-
group of GK, the K-rational points of G. If N is any noncentral subgroup
of GK which is normalized by Γ then the closure of N in the S-congruence
topology is also open.

Our attention was first drawn to this result because it provides a signifi-
cant simplification in the proof of one of the principal results in a recent
paper [MPSZ]. A result involving a subgroup which is clopen with respect to
the S-congruence topology is central to Weisfeiler’s celebrated work [W] on
the Strong Approximation Theorem. (Pink [P] has extended these to include,
for example, global fields of all positive characteristic.) Weisfeiler’s starting
point is a subgroup of GK which is both finitely generated and Zariski dense.
As we shall see the hypotheses on N ensure that it is Zariski dense. How-
ever Raghunathan’s Lemma does not follow from [W] since in general such
an N is not finitely generated. In fact we will apply the Lemma to such
subgroups. The proof [R, 4.3 Lemma] provided by Raghunathan is merely
a sketch. Given the importance of this result (and the fact that the likely
readership of this note will include group-theorists who are not experts in
algebraic groups) it seems appropriate to provide a detailed version.
We apply this theorem to the classical case of an S-arithmetic lattice, Λ, in
GKv , where G has K-rank one, v is fixed and S = {v}. We prove a result
on the ubiquity of finite index subgroups of Λ which are not S-congruence.
This extends results [MS] of the second author and Andreas Schweizer for
the special case where Λ is a so-called Drinfeld modular group.
The proof of Raghunathan’s Lemma is not elementary. It involves, for exam-
ple, the Inverse Function Theorem from Lie theory. We conclude by showing
that for some special (and important) cases the Lemma can be proved using
only elementary methods.

1. Raghunathan’s lemma
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We will use throughout the following notation.

K a global field;
S a finite non-empty set of places of K including all archimedean places;
O(S) the ring of all S-integers in K;
Kv the completion of K with respect to a nonarchimedean place v;
Ov the valuation ring of Kv;
pv the maximal ideal of Ov;
Fv the residue field of Ov;
G an algebraic group over K;
GF the group of F -rational points of G, where F ≥ K;
GO(S) the group of S-integral points of G.

We note that Kv is a local field and that Ov is a local ring whose residue field
Fv is finite. By definition

O(S) =
⋂

v 6∈S

(K ∩ Ov).

After Margulis [Mar, p.60] we will assume that G is a K-subgroup of GLn,
for some n and we will use this embedding as a standard way of representing
G, including its S-congruence subgroups. For each non-zero O(S)-ideal a we
define

G(a) = {X ∈ GK : X ≡ In (mod a)}.
The subgroups G(a), where a 6= {0}, form the basis of a topology on G
called the S-congruence topology. The group GKv inherits another (more
“natural”) topology from that of Kv. For this topology the principal congru-
ence subgroups, G(pt

v), where t ≥ 1, provide a base of neighbourhoods of the
identity in GKv ; see [PR, p. 134]. Let X be the restricted topological product
[PR, p.161] of GKv with respect to the distinguished (open, compact) sub-
sets, G(Ov), where v /∈ S. By definition X is the set of all sequences {xv},
where v /∈ S, such that

(i) xv ∈ GKv , for all v /∈ S,

(ii) xv ∈ G(Ov), for all but finitely many v.
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Then X is a topological group with a base of neighbourhoods of the identity
consisting of all subgroups of the form

∏

v 6∈S

Mv,

where each Mv is an open subgroup of GKv and Mv = G(Ov), for all but
finitely many v /∈ S. Now GK embeds, via the “diagonal map”, in X. It is
clear that the S-congruence topology on GK coincides with that induced on
its embedding by the topology on X. Let H be any subgroup of G. Then
we can identify the closure of H in X with the (profinite) completion of H
with respect to its S-congruence topology. We begin by providing a detailed
version of the proof of [R, 4.3. Lemma].

Notation. Let H be a subgroup of GK . We denote the S-closure of H
in GK (or X) by H̄ and the Zariski closure of H in G by Ĥ.

Theorem 1.1 (Raghunathan) Suppose that G is connected, simply-connected
and K-simple with strictly positive S-rank. Let Γ and N be subgroups of GK

for which:

(i) Γ is S-arithmetic, i.e. commensurable with GO(S);

(ii) N is noncentral and normalized by Γ .

Then N̄ is also open in the S-congruence topology on GK.

Proof. It suffices to prove that N̄ is open in X. We begin by showing that
N is Zariski dense in G. Now Γ̂ normalizes N̂ . But Γ̂ = G by [Mar, 3.2.10,
p.64] and N̂ is defined over k by [Mar, 2.5.3, p.56]. Hence N̂ = G.

The closure of Γ in GK in the S-congruence topology is open and so Γ̄ (in
X) contains a subgroup of the type

∏

v/∈S

Γ̄v,

where
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(i) each Γ̄v is open in GKv ,

(ii) Γ̄v = G(Ov), for all but finitely many v.

Then, since N̄ is normalized by Γ̄ , N̄ contains
∏

v/∈S

[N̄v, Γ̄v],

where N̄v is the projection of N̄ into Gv. It suffices therefore to prove that,
for all v /∈ S,

(a) [N̄v, Γ̄v] is open in GKv ,

(b) [N̄v, Γ̄v] ≥ G(Ov), for all but finitely many v.

Part (a). Here the approach is based on Lie theory as in Section 9 of [BT].
Let L = L(G) be the Lie algebra of G and let

L0 =
∑

n∈N̄v

(Ad(n)− 1)L.

Now L0 is invariant under Ad(N̄v). From the above N̄v is Zariski dense in G
(since it contains N) and so

(i) L0 is invariant under Ad(G),

(ii) (Ad(g)− 1)x ∈ L0, for all g ∈ G, x ∈ L.

We now make use of use of the hypothesis that G is simply-connected to
conclude that L0 = L. (See [BT, 3.6].) Since L is a finite dimensional vector
space of dimension d = dim G over the algebraic closure K̃ of K, there exist
n1, · · · , nd ∈ N̄v such that

d∑
i=1

(Ad(ni)− 1)L = L.

Now consider the morphism of Kv-manifolds

φ : GKv × · · · ×GKv −→ GKv ,
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defined by

φ((g1, · · · , gd)) =
d∏

i=1

[ni, gi].

Let Lv be the Lie algebra of (the Kv-manifold) GKv . Then the derivative of
φ at the identity (e, · · · , e),

dφ : Lv × · · · × Lv −→ Lv,

is given by

dφ((l1, · · · , ld)) =
d∑

i=1

(Ad(ni)− 1)li.

Now from the above and [PR, Lemma 3.1, p.113]

d∑
i=1

(Ad(ni)− 1)Lv = Lv.

It follows that dφ is surjective in which case we may apply the Inverse Func-
tion Theorem [Se, LG, Chapter III, Section 9]. Then there exist open neigh-
bourhoods of the identities U, V in Gv × · · · × GKv and GKv , respectively,
and a restriction φr of φ such that

φr : U −→ V

is a homeomorphism. Restricting φr further to (the open set) U ∩ (Γ̄v×· · ·×
Γ̄v) we conclude that [N̄v, Γ̄v] is open (in GKv).

Part (b). We may assume without loss of generality that N is generated by
the Γ -conjugates of finitely many of its elements. It follows that there exists
a finite set S ′, containing S, such that, for all v /∈ S ′,

(i) Γ ≤ G(Ov),

(ii) Γ̄v = G(Ov),

(iii) N ≤ G(Ov).

Let Ñv = [N̄v, Γ̄v]. Then from the above, for all v /∈ S ′,
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(i) Ñv ∩G(Ov) E G(Ov),

(ii) [Γ, N ] ≤ Ñv ∩G(Ov).

Recall that Fv is the (finite) residue field of Ov (i.e. Ov/pv). For each s ≥ 0,
let

G(ps
v) = {Y ∈ G(Ov) : Y − In ∈ Mn(ps

v)}.
It is known [PR, Proposition 3.20, p.146] that

G(Ov)/G(pv) ∼= G(Fv).

It is also known [PR, Proposition 7.5, p.406] that, if |Fv| ≥ 4, then G(Fv)
has no nontrivial, noncentral normal subgroups. We wish to prove that, for
all but finitely many v /∈ S ′, the normal subgroup Ñv ∩ G(Ov) does not
map into the centre of G(Fv). Suppose to the contrary that Ñv ∩G(Ov) is
central (modG(pv)), for infinitely many v. Then, for all these v, [[N, Γ ], Γ ]
is contained in G(pv). It follows that

[[N,Γ ], Γ ] = 1.

Now N and Γ are Zariski dense and so by [B, Proposition, p.59]

[[G,G],G] = 1.

This contradicts the fact that [G,G] = G. [B, Proposition, p.181]. We
deduce that there exists a finite set S ′′, containing S ′, for which

(i) (Ñv ∩G(Ov)).G(pv) = G(Ov),

(ii) G(Ov) is perfect.

For (ii) see [PrRag, Section 2.3].1 For each, v /∈ S ′′, it follows that

G(Ov)/Ñv ∩G(Ov) ∼= G(pv)/Ñv ∩G(pv).

Now [G(ps
v),G(pt

v)] ≤ G(ps+t
v ) and so, by part (a), G(Ov)/Ñv ∩ G(Ov) is

solvable. By (ii) then Ñv ∩G(Ov) = G(Ov). This completes the proof. ¤

1The authors are indebted to Professor Rapinchuk for providing this reference.
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The following consequence is immediate.

Corollary 1.2. With the notation of the Theorem 1.1, there exists q0 6= {0}
such that

N̄ =
⋂

q6={0}
N.G(q) = N.G(q0).

The ideal q0 is, of course, not unique. It is clear that if Corollary 1.2 holds
for q0 then it also holds for any nonzero ideal q′0 contained in q0. In practise
it is convenient to choose q0 so that the index |G(OS) : G(q0)| is minimal.
In the final section we will show in some detail how N and q0 are related in
some special cases.

Theorem 1.1, of course, holds trivially for the case where N is commensurable
with Γ . For a nontrivial example of N to which it applies consider the
case of the classical modular group, i.e. G = SL2, K = Q, S = {∞′} and
Γ = SL2(Z). Let M be a normal subgroup of finite index in Γ . Then with
finitely many exceptions M is a free nonabelian group of finite rank. For
such an M take N = [M, M ]. Then N is free of infinite rank and hence is
not S-arithmetic.

2. Arithmetic lattices in rank one groups

Throughout this section we assume that the characteristic of K is nonzero.
We fix a (nonarchimedean) place v of k and let S = {v}. (The simplest
example of such an O(S) is the polynomial ring Fq[t], where Fq is the finite
field of order q.) In addition to the hypotheses in the statement of Theorem
1.1, we assume that G is absolutely almost simple and that the Kv-rank of
G is 1.

Let Λ be a nonuniform, S-arithmetic lattice in (the locally compact group)
GKv . By definition

(i) Λ is a discrete subgroup of G(kv) ;

(ii) µ(G(Kv)/Λ) is finite, where µ is a Haar measure on G(Kv) ;

(iii) G(Kv)/Λ is not compact;

(iv) Λ is commensurable with GO(S).
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For our purposes, it suffices to assume that Λ is a (finite index) subgroup of
GO(S).

Notation. For each nonzero OS ideal q let

UΛ(q) = 〈u ∈ Λ ∩G(q) : u, unipotent〉.

An immediate application of Theorem 1.1 is the following.

Lemma 2.1. The closure of UΛ(q) in GK in the S-congruence topology is
also open.

N.B. It is well-known that in this case SL2(O(S)) and hence UΛ(q) are not
finitely generated. (This extends a classical result for SL2(Fq) due to Nagao.)

One important consequence of Lemma 2.1 is that Lemma 5.7 in [MPSZ] is
true for all q so that, in the terminology of [MPSZ], the principal result al-
ways holds. This leads to a significant simplification in the proofs of [MPSZ].
Specifically Zel’manov’s solution [Z] of the restricted Burnside problem for
topological groups is no longer required.

Associated with GKv is its Bruhat-Tits building which in this case is a tree T
(since the Kv-rank of G is 1). Bass-Serre theory shows how a presentation
for Λ can be inferred from its action on T , via the structure of the quotient
graph Λ\T . In confirming a conjecture of Serre, Lubotzky has shown [L,
Theorem 7.5] that Λ contains infinitely many finite subgroups which are not
S-congruence, i.e. so-called S-noncongruence subgroups. Our results can be
used to provide information on the ubiquity of the S-noncongruence sub-
groups of Λ.

It is known [L, Theorem 6.1] that the first Betti number of Λ\T , b1(Λ\T ),
is finite.

Theorem 2.2. Let Fr be the free group on r generators, where r = b1(Λ\T )
and let f(r, n) denote the number of index n subgroups of Fr. Let nc(Λ, n) be
the number of S-noncongruence subgroups of index n in Λ. Then there exists
a constant n0 = n0(Λ) such that, if n > n0, then

nc(Λ, n) ≥ f(r, n).
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Moreover, if r ≥ 1, then for all n > n0, there exists at least one normal,
S-noncongruence subgroup of index n in Λ.

Proof. Let Λ(q) = Λ ∩G(q). Then by Corollary 1.2 and Lemma 2.1

Λ(q0) ≤
⋂

q6={0}
UΛ(OS).Λ(q),

for some nonzero q0. We choose q0 so that n0 = |Λ : Λ(q0)| is minimal.

Now let ΛV be the subgroup of Λ generated by all the stabilizers in Λ of
the vertices of T . By standard Bass-Serre theory we have

Λ/ΛV
∼= Fr.

In addition, since UΛ(O(S)) is generated by elements of finite order,

UΛ(O(S)) ≤ ΛV .

Suppose Λc is a congruence subgroup of Λ containing ΛV . Then by the above

Λ(q0) ≤ Λc,

which implies that |Λ : Λc| ≤ n0. The first part follows.

For the second part note that when r ≥ 1 there exists an epimorphism

θ : Λ/ΛV ³ Z.

¤
Notes.

(i) In many cases b1(Λ\T ) is nonzero. More precisely it is known [MPSZ,
Lemma 3.7] that in this situation every arithmetic S-arithmetic lat-
tice contains lattices of the same type with arbitrarily large first Betti
numbers.

(ii) The Drinfeld modular group. For the case where G = SL2 (with as
above S = {v}) the group SL2(O(S)) is a nonuniform S-arithmetic
lattice in GKv . It plays a fundamental role [G] in the theory of Drinfeld
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modular curves, analogous to that of the modular group SL2(Z) in the
classical theory of modular forms. It is known [MS, Theorem 2.10] pre-
cisely when b1(SL2(O(S))\T ) is zero. (This happens in only 4 cases.)
In addition when Λ = SL2(O(S)) it is known [MS, Theorem 1.2] that
Theorem 2.1 holds for all n ≥ 1, i.e. n0 = 1, equivalently, q0 = O(S).

3. The case G = SL2

In the final section we show in some restricted circumstances it is possible
prove an explicit version of Raghunathan’s Lemma in an elementary way
which does not involve any Lie theory. We revert here to K of any charac-
teristic and any S.

Definition. Let H be a subgroup of SL2(O(S)). The order of H, o(H), is
the O(S)-ideal generated by all h12, h21, h11 − h22, where (hij) ∈ H.

Definition. For each O(S)-ideal q let

φ(q) =

{
12q , char(K) = 0
q4 , char(K) 6= 0

Lemma 3.1. Let N be a noncentral normal subgroup of SL2(O(S)), with
o(N) = n(6= {0}). Let q be any nonzero O(S)-ideal q. If n′ = n + q, then

SL2(φ(n′)) ≤ N.SL2(q).

Proof. Since M = N.SL2(q) is an S-congruence subgroup whose level

o(M) = n + q,

we can apply [Mas, Theorems 3.6, 3.10, 3.14]. ¤
Theorem 3.2. Let N be a noncentral normal subgroup of SL2(O(S)). Then

N̄ =
⋂

q6={0}
N.SL2(q) = N.SL2(φ(n)),

where n = o(N).
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Under further restrictions Theorem 3.2 can be improved. For example, from
the results of [Mas] it follows that, if o(N) is prime to 6, then

N̄ =
⋂

q 6={0}
N.SL2(q) = N.SL2(n).

In particular, if o(N) = O(S), then N̄ = SL2(O(S)).
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