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Abstract

In this note, we give an original convergence result for products of indepen-

dent random elements of motion group. Then we consider dynamic random

walks which are inhomogeneous Markov chains whose transition probability of

each step is, in some sense, time dependent. We show, briefly, how Central

Limit theorem and Local Limit theorems can be derived from the classical case

and provide new results when the rotations are mutually commuting. To the

best of our knowledge, this work represents the first investigation of dynamic

random walks on the motion group.
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1 Introduction

The motion group G = SO(d) ⋉ Rd is the semi-direct product of SO(d), the group
of rotations in the space Rd, and Rd. This group plays a special role in the study of
random walks on Lie groups [8]. A Central Limit Theorem on motion groups has been
proved by Roynette [10] and Baldi, Bougerol, Crepel [1] gave a Local Limit Theorem
on Motion groups. Random walks on homogeneous spaces of the motion group have
been studied by Gallardo and Ries [2]. The main novelty of this paper is in the
dynamic model of random walks which we define on the motion group. The theory
of dynamic random walks has been done by Guillotin-Plantard in a commutative
setting [4, 5, 6]. So far, dynamic random walks have been considered on Heisenberg
groups, the dual of SU(2) [7] and Clifford algebras [12]. Needless to say, there is much
work to do. This paper is another (small) step/attempt in extending this theory to
non-commutative algebraic structures. Recently, random walks on the motion group
have been proposed as algorithmic ingredients for searching in peer-to-peer wireless
networks [3]. The organization is as follows: Section II contains basic definitions,
known limit theorems, as well as a new convergence theorem for product of random
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elements of the motion group. Dynamic random walks are considered in Section III,
we recall known results, show how to derive some limit theorems from the classical
case and investigate more deeply when the rotations form an abelian group. It may
be noted that these are the first examples of non-discrete dynamic random walks.
Section IV provides some concluding remarks and further research aspects.

2 Motion group

2.1 Basic definitions and known results

The composition law of the motion group G = SO(d) ⋉ Rd is given by:

(R1, T1).(R2, T2) = (R1 ◦ R2, T1 + R1(T2))

Remember that R1◦R2 is the rotation of angle Θ1+Θ2 if Θ1 (resp. Θ2) is the rotation
angle of R1 (resp.R2). More generally:

(R1, T1)(R2, T2)...(Rn, Tn) = (R1◦R2 . . .◦Rn, T1+R1(T2)+R1◦R2(T3)+...+R1◦R2 . . .◦Rn−1(Tn))

where (Ri, Ti) are G-valued random variables. Let

Sn = T1 + R1(T2) + R1 ◦ R2(T3) + ... + R1 ◦ R2 . . . ◦ Rn−1(Tn)

Sn gives the position after n steps. Sn is the sum of n (not necessarily independent)
random variables.
The following Central Limit Theorem has been proven in [10]:

Theorem 2.1 Assume that Ri, (resp. Ti), i ∈ {1, 2, . . . , n, . . .} are n independent
random variables with common law µ (resp ν), that the support of µ generates SO(d)
and that ν has a second order moment. Then Sn√

n
converges in law to the Gaussian

distribution N(0, θId) when n goes to infinity. Id stands for the d × d dimensional
identity matrix and θ is a positive constant.

Remark: This theorem tells us, intuitively, that Sn√
n

becomes rotation invariant

when n goes to infinity and that Sn behaves asymptotically as a random walk on Rd

which is rotation invariant. In other words:

Sn ∼n→∞ Y1 + Y2 + . . . + Yn

where Yi, i ∈ {1, 2, . . . , n} are n independent and identically distributed random
variables.

The following Local Limit Theorem has been proven in [1], we formulate it below
in a simple way:
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Theorem 2.2 Let Pn(O, M) be the probability that the random walks on G reaches
the point M of Rd in n steps when staring from the point O, then::

Pn(O, M) = P (Sn = M) ∼n→∞
K

nd/2

where K is a positive constant (independent of n).

2.2 A convergence theorem

Let O(d) be the group of orthogonal linear transformations on Rd (d ≥ 1) and K be
a compact subgroup of O(d) and G = K ⋉ Rd be a group of motions of Rd. Let Yi =
(Ri, Ti) be independent random variables. Let Sn = T1+R1T2+ . . .+R1R2 . . . Rn−1Tn

and Xn = R1R2 . . . Rn−1Tn with R0 = 1.

Theorem 2.3 Assume the following:

1. R1 . . . Rn converges in law to ωK, the normalized Haar measure on K;

2. Rd has no non-zero K-invariant vectors;

3. Xn has second moment;

4. E(Tn) is bounded.

Then
Sn

bn
→ 0 a.s

for any sequence (bn) such that
∑ E(||Xn−E(Xn)||2)

b2
n

< ∞.

Proof We recall that a random vector T in Rd is said to have finite expectation if
there is a vector v ∈ Rd such that < v, u >= E(< T, u >) for any u ∈ Rd and in
this case we write E(T ) = v. Also if R is a random rotation on Rd, then E(R) is a
operator on Rd defined by

< E(R)u, v >= E(< Ru, v >)

for any two vectors u, v ∈ Rd.
It follows that E(Xn) = E(R1R2 . . . Rn−1)E(Tn) for all n ≥ 1. For u, v ∈ Rd,

< E(R1R2 . . . Rn)u, v >=

∫
< R1R2 . . . Rnu, v > dω =

∫
< T (u), v > ρn(dT )
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where ρn is the distribution of R1R2 . . . Rn. Since R1R2 . . . Rn converges in law to
ωK , we get that E(R1R2 . . . Rn−1) → PK where PK is the projection onto K-fixed
vectors.

We first claim that E(Xn) → 0. Since Rd has no K-invariant vectors, PK = 0.
Now since E(Tn) is bounded, if v is a limit point of E(Tn), let E(Tkn

) → v. Then since
E(R1R2 . . . Rn−1) → 0 in the operator topology, E(Xkn

) → 0. Thus, E(Xn) → 0.
Let u ∈ Rd. Take Zn =< Xn−E(Xn), u >. Then E(Zn) = 0. Zn are independent

real random variables with finite second moments. Then

1

bn

n∑

i=1

Zi → 0 a.s.

for any constant (bn) such that
∑∞

0
V ar(Zn)

b2
n

< ∞ (cf. [13]). This implies that

1

bn

n∑

i=1

(Xi − E(Xi)) → 0 a.s.

We have shown that E(Xn) → 0 and hence 1
bn

∑n
i=1 E(Xi) → 0. Thus,

1

bn

n∑

i=1

Xi → 0 a.s.

The conditions in Theorem 2.3 are verified if we take Ri to be iid with the support
of the common law is aperiodic (that is, support is not contained in a coset of a proper
normal subgroup) and Ti to be dynamic random walk with bn = 1

nα
for any α > 1

2
.

Thus, under these assumptions we get that

1

nα
(T1 + R1T2 + . . . + R1R2 . . . Rn−1Tn) → 0 a.s.

3 Dynamic random walks

3.1 Preliminaries and known results

Let S = (E,A, ρ, τ) be a dynamical system where (E,A, ρ) is a probability space and
τ is a transformation defined on E. Let d ≥ 1 and h1, . . . , hd be functions defined
on E with values in [0, 1

d
]. Let (Ti)i≥1 be a sequence of independent random vectors

with values in Zd. Let x ∈ E and (ej)1≤j≤d be the unit coordinate vectors of Zd. For
every i ≥ 1, the law of the random vector Ti is given by

P (Ti = z) =





hj(τ
ix) if z = ej

1
d
− hj(τ

ix) if z = −ej

0 otherwise
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We write

S0 = 0, Sn =
n∑

i=1

Ti for n ≥ 1

for the Zd-random walk generated by the family (Ti)i≥1. The random sequence (Sn)n≥0

is called a dynamic Zd-random walk.
It is worth remarking that if the functions hj are constant then we have the

classical random walks but if these functions are all not constant, (Sn)n∈N is a non-
homogeneous Markov chain.

Let C1(S) denote the class of functions f ∈ L1(E, µ) satisfying the following
condition (H1): ∣∣∣∣∣

n∑

i=1

(
f(τ ix) −

∫

E

f(x)dρ(x)
)∣∣∣∣∣ = o

( √
n

log(n)

)

Let C2(S) denote the class of functions f ∈ L1(E, µ) satisfying the following
condition (H2):

sup
x∈E

∣∣∣∣∣

n∑

i=1

(
f(τ ix) −

∫

E

f(x)dρ(x)
)∣∣∣∣∣ = o

(√
n
)

A Central Limit Theorem:

Theorem 3.1 Asssume that for every j, l ∈ {1, . . . , d}, hj ∈ C2(S), hjhl ∈ C2(S) and∫
E

hjdρ = 1
2d

. Then, for every x ∈ E, the sequence of processes ( 1√
n
S[nt])t≥0 weakly

converges in the Skorohod space D = D([0,∞[) to the d-dimensional Brownian motion

Bt = (B
(1)
t , . . . , B

(d)
t )

with zero mean and covariance matrix At.

The proof of this theorem is in [7].

A Local Limit Theorem:

Theorem 3.2 Let hj ∈ C1(S), hjhl ∈ C1(S) and
∫

E
hjdρ = 1

2d
. Then, for almost

every x ∈ E, P (S2n = 0), the probability that starting from the point O, the random
walks comes back to O in 2n steps, has the following asymptotic behavior:

P (S2n = 0) ∼ 2√
det(A)(4πn)d/2

as n → ∞
The proof of this theorem is also in [7].
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3.2 Dynamic random walks on the motion group

Recall that we consider the random walk

Sn = T1 + R1(T2) + R1 ◦ R2(T3) + ... + R1 ◦ R2 . . . ◦ Rn−1(Tn)

where Ti, i ∈ N are dynamic random variables as defined above and we now define
dynamic random rotations Ri.

If the rotations are classical random variables and translations are dynamic ran-
dom variables then one can adapt the result in [10] and prove a Central Limit Theorem
and a Local Limit Theorem [1] for Sn thanks to the Central Limit Theorem and the
Local Limit Theorem for dynamic random walks [7] given in the above section. We
do not write explicitely these theorems because these formulation is almost the same
as in [1], [10]. Similar Central Limit Theorem and Local Limit Theorem hold true
under Lindenberg condition on the translations Ti.

If both rotations and translations are dynamic random walks the problem is still
open.

We consider now the 2-dimensional case. It is a known that SO(2) is a compact
abelian group (isomorphic to U(1)) and for any irrational number θ ∈ R, e2πiθ gen-
erates a dense subgroup of SO(2). Using this fact we prove that the convolution
product µ1 ∗ µ2 ∗ . . . ∗ µn of dynamic measures corresponding to dynamic rotations
R1,. . . , Rn converges weakly to the Haar measure of SO(2).

Let θ be an irrational number and Rj be random rotations on R2 defined by

P (Rj = z) =





f(τ jx) if z = e2πiθ

1 − f(τ jx) if z = e−2πiθ

0 otherwise

and f : E → [0, 1] satisfies f(1 − f) ∈ C2(S) where E and C2(S) are as in 3.1 with
d = 1.

If f is an indicator function taking values 0 and 1, then it can be easily seen that
Ri degenerate and hence the product R1 . . . Rn does not converge (in law) as the set
{e2πikθ | k ≥ 1} is dense in SO(2). This forces us to assume that f is not a indicator
function. In this case, we have the following:

Theorem 3.3 Almost surely R1R2 . . . Rn converges in law to the Haar measure on
SO(2).
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In order to prove the above result we need to recall some details on the dual of
compact abelian groups and Fourier transform of probability measures on compact
groups.
Dual of compact groups: For a compact abelian group K, continuous homomor-
phisms from K into SO(2) are known as characters and characters form a (locally
compact abelian) group which is denoted by K̂ and is called the dual group of K: cf.
[9] for details on duality of locally compact abelian groups. For each integer n, the
map z 7→ zn defines a character on SO(2) and defines an isomorphism between the
group Z of integers with the dual of SO(2) (cf. 23.27 (a) of [9]). It is known that if
K1, . . . , Kd are compact abelian groups, then the dual of K1 × . . .×Kd is isomorphic
to K̂1 × . . . × K̂d (cf. 23.18 of [9]).
Fourier transform: Let K be a compact abelian group and µ be a probability
measure on K. Then the Fourier transform of µ, denoted by µ̂ is a function on K̂

and is defined by

µ̂(χ) =

∫
χ(x)dµ(x)

for all χ ∈ K̂. It is known that µ is the normalized Haar measure on K if and only if

µ̂(χ) =

{
0 if χ is non − trivial
1 if χ is trivial

and if Xn are K-valued random variables with Fourier transform fn, then Xn con-
verges in law to a K-valued random variable X if and only if fn converges to the
Fourier transform of X pointwise (cf. [11]).

Proof of Theorem 3.3 Let k be any non-zero integer. It is sufficient to claim that

n∏

j=1

|
∫

e2πikxdµj| → 0

as n → ∞.

|
∫

e2πikxdµj|2 = |e2πikθf(τ jx) + e−2πikθ(1 − f(τ jx))|2
= | cos(2πkθ) + i sin(2πkθ)(f(τ jx) − 1 + f(τ jx))|2
= cos2(2πkθ) + sin2(2πkθ)(1 − 2f(τ jx))2

= 1 − 4 sin2(2πkθ)f(τ jx)(1 − f(τ jx))

Suppose f(τ jx)(1−f(τ jx)) 6→ 0. Then 1−4 sin2(2πkθ)f(τ jx)(1−f(τ jx)) 6→ 1 and
hence

∏n
j=1 |

∫
e2πikθdµj| → 0. Thus, it is sufficient to show that f(τ jx)(1−f(τ jx)) 6→

0.
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If f(τ jx)(1 − f(τ jx)) → 0, then

1

n

n∑

1

f(τ jx)(1 − f(τ jx)) → 0 =

∫
f(x)(1 − f(x))dρ(x)

and hence f is an indicator function. This is a contradiction. Thus proving the result.

Let K be a compact connected abelian subgroup of SO(d), for instance one may
take K to be the maximal torus in SO(d). In this situation one can define dynamic
random walks in many ways and we will now consider two forms of dynamic random
walks on K. The first one is the following: a ∈ K is such that the closed subgroup
generated by a is K (see 25.15, [9] for existence of such a) and Rj are random variables
taking values in K defined by

P (Rj = x) =





f(τ jx) if x = a

1 − f(τ jx) if x = a−1

0 otherwise

and f : E → [0, 1] satisfies f(1 − f) ∈ C2(S) where E and C2(S) are as in Section 3.
In the situation we have the following as a consequence of Theorem 3.3.

Theorem 3.4 Almost surely R1R2 . . . Rn converges in law to the Haar measure on
K.

Proof For any non-trivial character χ on K, the element χ(a) in SO(2) corresponds
to an irrational rotation, hence we get from Theorem 3.3 that χ(R1R2 . . . Rn) con-
verges in law to the Haar measure on SO(2) which is χ(ωK). This implies that
(R1R2 . . . Rn) converges in law to the Haar measure on K

Remark The Corollary 3.4 could be proved for any monothetic compact connected
abelian group in a similar way but for simplicity and for the purpose of the article we
restrict our attention to compact connected abelian subgroups of SO(d): a topological
group K is called monothetic if K contains an element a such that the closed subgroup
generated by a is K itself (cf. 9.2 of [9] for monothetic compact groups).

We will now consider the second form of dynamic random walks on K. Let
v1, · · · , vr be a basis for the Lie algebra of K and exp be the exponential map of the
Lie algebra of K into K. Let ek = exp(vk) 1 ≤ k ≤ r. Let Rj be the random variables
taking values in K defined by

P (Rj = x) =





fk(τ
jx) if x = ek

1
r
− fk(τ

jx) if x = e−1
k

0 otherwise
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and fk are functions from E taking values in [0, 1
r
] where E is as in Section 3. We

further assume that k-the coordinate of vk is irrational so that ek is an irrational
rotation by an angle θk and all other coordinates of vk are 0. We further assume that
1 and θk are independent over Q.

In this situation also we have the following which could be proved as in Theorem
3.4

Theorem 3.5 Almost surely R1R2 . . . Rn converges in law to the Haar measure on
K.

As an application of the results proved in the previous section and the above
results on compact groups we get the following:

Theorem 3.6 Let (Rj, Tj) be dynamic random walk on K ⋉ Rd where Rj is the
dynamic random walk on K given in Theorem 3.4 or Theorem 3.5 and Tj is dynamic
random walk on Rd defined in 3.1. Then for α > 1

2
,

1

nα
(T1 + R1T2 + . . . + R1R2 . . . Rn−1Tn) → PK(v0) a.s

where PK is the projection onto the K-invariant vectors in Rd and v0 = (2E(hj |I)−
1
d
)1≤j≤d.

Proof We first assume that Rd has no non-zero K-invariant vectors. Condition (1)
of Theorem 2.3 follows from Theorems 3.4 and 3.5. Let Xn = R1R2 . . . Rn−1Tn. Then
E(< Xn, u >2) =

∫
< R1R2 . . . Rn−1Tn, u >2 dω is finite as Tn takes only finitely

many values and rotations preserve the norm. Thus, Condition (3) of Theorem 2.3 is
verified and condition (4) is easy to verify. Hence

1

nα
(T1 + R1T2 + . . . + R1R2 . . . Rn−1Tn) → 0 a.s

In general, let V be the space of K-invariant vectors in Rd. Let PK be the orthog-
onal projection onto V and Q be the projection onto the orthogonal complement of
V . Then for any v ∈ Rd, v = PK(v) + Q(v) and Q(Rd) has no non-zero K-invariant
vector. Since both V and Q(Rd) are K-invariant, we get that PK(R(v)) = PK(v)
Q(R(v)) = R(Q(v)) for any v ∈ Rd and R ∈ K. Now the result follows from the
previous case and Theorem 2.1 of [7]

4 Concluding remarks

We have proved a new convergence result for classical random walks on the motion
group. Our results for the dynamic case are still partial and we are planning to
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characterize recurrent and transient random walks (in this model) on the motion
group and the corresponding homegeneous spaces. So far, dynamic random walks
have only been considered on Heisenberg groups, the dual of SU(2) [7], the motion
group and Clifford algebras [12]. A more general study of dynamic random walks on
Lie groups, homogeneous spaces and quantum groups is still to be done. This is a
challenging research project.
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