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1 Introduction

Two celebrated theorems from classical analysis dealing with translation invari-

ant subspaces are the Wiener-Tauberian theorem and the Schwartz theorem. Let

f ∈ L1(IR) and f̃ be its Fourier transform. Then the celebrated Wiener-Tauberian

theorem says that the ideal generated by f is dense in L1(IR) if and only if f̃ is a

nowhere vanishing function on the real line.

1The first author was supported in part by a grant from UGC via DSA-SAP

2The second author was supported by IISc Mathematics Initiative
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The result due to L. Schwartz says that, every closed translation invariant subspace

V of C∞(IR) is generated by the exponential polynomials in V. In particular, such

a V contains the function x → eiλx for some λ ∈ C. Interestingly, this result fails

for IRn, if n ≥ 2. Even though an exact analogue of the Schwartz theorem fails for

IRn n ≥ 2, it follows from the well known theorem of Brown-Schreiber-Taylor [BST]

that, if V ⊂ C∞(IRn) is a closed subspace which is translation and rotation invariant

then V contains a ψs for some s ∈ C where

ψs(x) =
Jn

2
−1(s|x|)

(s|x|)
n
2
−1

=
∫

Sn−1
eisx.w dσ(w).

Here Jn
2
−1 is the Bessel function of the first kind and order n/2−1 and σ is the unique,

normalized rotation invariant measure on the sphere Sn−1. It also follows from the

work in [BST] that V contains all the exponentials ez.x, if z = (z1, z2, . . . zn) ∈ Cn

satisfies z2
1 + z2

2 + · · ·+ z2
n = s2.

Our aim in this paper is to prove analogues of these results in the context of non

compact semisimple Lie groups.

Notation and preliminaries: For any unexplained terminology we refer

to [H]. Let G be a connected non compact semisimple Lie group with finite center

and K a fixed maximal compact subgroup of G. Fix an Iwasawa decomposition G =

KAN and let a be the Lie algebra of A. Let a∗ be the real dual of a and a∗
C its

complexification. Let ρ be the half sum of positive roots for the adjoint action of a

on g, the Lie algebra of G. The Killing form induces a positive definite form < .,>

on a∗×a∗. Extend this form to a bilinear form on a∗
C. We will use the same notation

for the extension as well. Let W be the Weyl group of the symmetric space G/K.

Then there is a natural action of W on a, a∗, a∗
C and < ., . > is invariant under this

action.

2



For each λ ∈ a∗
C, let ϕλ be the elementary spherical function associated with λ.

Recall that ϕλ is given by the formula

ϕλ(x) =
∫

K
e(iλ−ρ)(H(xk)) dk x ∈ G.

See [H] for more details. It is known that ϕλ = ϕλ′ if and only if λ
′
= τλ for some

τ ∈W. Let l be the dimension of a and F denote the set (in C l )

F = a∗ + iCρ where Cρ = convex hull of {sρ : s ∈W}.

Then it is a well known theorem of Helgason and Johnson that ϕλ is bounded if and

only if λ ∈ F.

Let I(G) be the set of all complex valued spherical functions on G, that is

I(G) = {f : f(k1xk2) = f(x) : k1, k2 ∈ K, x ∈ G}.

Fix a Haar measure dx on G and let I1(G) = I(G) ∩ L1(G). Then it is well known

that I1(G) is a commutative Banach algebra under convolution and that the maximal

ideal space of I1(G) can be identified with F/W.

For f ∈ I1(G), define its spherical Fourier transform, f̂ on F by

f̂(λ) =
∫

G
f(x) ϕ−λ(x) dx.

Then f̂ is a W invariant bounded function on F which is holomorphic in the interior

F 0 of F, and continuous on F. Also ̂f ∗ g = f̂ ĝ where the convolution of f and g is

defined by

f ∗ g(x) =
∫

G
f(xy−1) g(y) dy.

Next, we define the L1- Schwartz space of K-biinvariant functions on G which will

be denoted by S(G). Let x ∈ G. Then x = k expX, k ∈ K, X ∈ p, where g = k + p
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is the Cartan decomposition of the Lie algebra g of G. Put σ(x) = ‖X‖, where ‖.‖ is

the norm on p induced by the Killing form. For any left invariant differential operator

D on G and any integer r ≥ 0, we define for a smooth K-biinvariant function f

pD,r(f) = sup
x∈G

(1 + σ(x))r |ϕ0(x)|
−2 |Df(x)|

where ϕ0 is the elementary spherical function corresponding to λ = 0. Define

S(G) = {f : pD,r(f) <∞ for all D, r}.

Then S(G) becomes a Fréchet space when equipped with the topology induced by

the family of semi norms pD,r.

Let P = P (a∗
C) be the symmetric algebra over a∗

C. Then each u ∈ P gives rise

to a differential operator ∂(u) on a∗
C. Let Z(F ) be the space of functions f on F

satisfying the following conditions:

(i) f is holomorphic in F 0 (interior of F ) and continuous on F,

(ii) If u ∈ P and m ≥ 0 is any integer, then

qu,m(f) = sup
λ∈F 0

(1 + ‖λ‖2)m |∂(u)f(λ)| <∞,

(iii) f is W invariant .

Then Z(F ) is an algebra under pointwise multiplication and a Fréchet space when

equipped with the topology induced by the seminorms qu,m.

If a ∈ Z(F ) we define the “wave packet” ψa on G by

ψa(x) =
1

|W |

∫

a∗
a(λ) ϕλ(x) |c(λ)|−2 dλ,

where c(λ) is the well known Harish-Chandra c-function. By the Plancherel theorem

due to Harish-Chandra we also know that the map f → f̂ extends to a unitary map
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from L2(K\G/K) onto L2(a∗, |c(λ)|−2dλ). We are now in a position to state a result

of Trombi-Varadarajan [TV].

Theorem 1.1 (i) If f ∈ S(G) then f̂ ∈ Z(F ).

(ii) If a ∈ Z(F ) then the integral defining the “wave packet” ψa converges absolutely

and ψa ∈ S(G). Moreover, ψ̂a = a.

(iii) The map f → f̂ is a topological linear isomorphism of S(g) onto Z(F ).

The plan of this paper is as follows: in the next section we prove a Wiener-

Tauberian theorem for L1(K\G/K) assuming more symmetry on the generating

family of functions. In the final section we establish a Schwartz type theorem for

complex semisimple Lie groups. As a corollary we also obtain a Wiener-Tauberian

type theorem for compactly supported distributions on G/K.

2 A Wiener-Tauberian theorem for L1(K\G/K)

In [EM], Ehrenpreis and Mautner observed that an exact analogue of the Wiener-

Tauberian theorem is not true for the commutative algebra of K-biinvariant functions

on the semisimple Lie group SL(2, IR). Here K is the maximal compact subgroup

SO(2). However, in the same paper it was also proved that an additional “not too

rapidly decreasing condition” on the spherical Fourier transform of a function suf-

fices to prove an analogue of the Wiener-Tauberian theorem. That is, if f is a K-

biinvariant integrable function on G = SL(2, IR) and its spherical Fourier transform

f̂ does not vanish anywhere on the maximal ideal space (which can be identified with

a certain strip on the complex plane) then the function f generates a dense subalge-

bra of L1(K\G/K) provided f̂ does not vanish too fast at ∞. See [EM] for precise

statements.
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There have been a number of attempts to generalize these results to L1(K\G/K)

or L1(G/K) where G is a non compact connected semisimple Lie group with finite

center. Almost complete results have been obtained when G is a real rank one group.

We refer the reader to [BW], [BBHW] [RS98] and [S88] for results on rank one case.

See also [RS97]for a result on the whole group SL(2, IR).

In [S80], it is proved that under suitable conditions on the spherical Fourier trans-

form of a single function f an analogue of the Wiener-Tauberian theorem holds for

L1(K\G/K), with no assumptions on the rank of G. Recently, the first named author

improved this result to include the case of a family of functions rather than a single

function (see[N]). One difference between rank one results and higher rank results has

been the precise form of the “not too rapid decay condition”. In [S80] and [N] this

condition on the spherical Fourier transform of a function is assumed to be true on the

whole maximal domain, while for rank one groups it suffices to have this condition on

a∗ (see [BW] and [RS98] (An important corollary of this is that, in the rank one case

one can get a Wiener- Tauberian type theorem for a wide class of functions purely

in terms of the non vanishing of the spherical Fourier transform in a certain domain

without having to check any decay conditions, see [MRSS], Theorem 5.5). In the first

part of this paper we show that such a stronger result is true for higher rank case as

well provided we assume more symmetry on the generating family of functions, and

again as a corollary we get a result of the type alluded to in the parenthesis above.

If dima∗ = l, then a∗
C may be identified with C l and a point λ ∈ a∗

C will be

denoted λ = (λ1, λ2, . . . λl). Let BR denote the ball of radius R centered at the origin

in a∗ and FR denote the domain in a∗
C defined by

FR = {λ ∈ a∗
C : ‖Im(λ)‖ < R}.
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For a > 0, let Ia denote the strip in the complex plane defined by

Ia = {z ∈ C : |Imz| < a}.

Now, suppose that f is a holomorphic function on FR and f depends only on (λ2
1 +

λ2
2 + · · · + λ2

l )
1
2 . Then it is easy to see that

g(s) = f(λ1, λ2, . . . λl)

where s2 = λ2
1 + λ2

2 + · · · + λ2
l defines an even holomorphic function on IR and vice

versa.

We will need the following lemmas. Let A(Ia) denote the collection of functions

g with the properties:

(i) g is even, bounded and holomorphic on Ia,

(ii) g is continuous on Īa,

(iii) lim|s|→∞ g(s) = 0.

Then A(Ia) with the supremum norm is a Banach algebra under pointwise multi-

plication.

Lemma 2.1 Let {gα : α ∈ I} be a collection of functions in A(Ia). Assume that

there exists no s ∈ Īa such that gα(s) = 0 ∀α ∈ I. Further assume that there exists

α0 ∈ I such that gα0 does not decay very rapidly on IR, i.e,

lim sup
|s|→∞

|gα0(s)| e
ke|s| > 0

on IR for all k > 0. Then the closed ideal generated by {gα : α ∈ I} is whole of A(Ia).

Proof: Let ψ be a suitable biholomorphic map which maps the strip Ia onto the

unit disc (see [BW]). Let hα(z) = gα(ψ(z)). Then hα ∈ A0(D), where A0(D) is the
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collection of even holomorphic functions h on the unit disc, continuous up to the

boundary and h(i) = h(−i) = 0. The not too rapid decay condition on IR is precisely

what is needed to apply the Beurling-Rudin theorem to complete the proof. We refer

to [BW] (see the proof of Theorem 1.1 and Lemma 1.2) for the details.

Let pt denote the K-biinvariant function defined by p̂t(λ) = e−t〈λ,λ〉. It is easy to

see that pt ∈ S(G).

Lemma 2.2 Let J ⊂ L1(K\G/K) be a closed ideal. If pt ∈ J for some t > 0, then

J = L1(K\G/K).

Proof: This follows from the main result in [N] or [S80].

Before we state our main theorem we define the following: We say that a function

f ∈ L1(K\G/K) is radial if the spherical Fourier transform f̂(λ) is a function of

(λ2
1 + λ2

2 + · · ·λ2
l )

1
2 . Notice that, if the group G is of real rank one, then the class of

radial functions is precisely the class of K-biinvariant functions in L1(G). When the

group G is complex, it is possible to describe the class of radial functions (see next

section). The following is our main theorem in this section:

Theorem 2.3 Let {fα : α ∈ I} be a collection of radial functions in L1(K\G/K).

Assume that the spherical transform f̂α extends as a bounded holomorphic function

to the bigger domain FR, where R > ‖ρ‖ with lim|λ|→∞ f̂α(λ) = 0 for all α and that

there exists no λ ∈ FR such that f̂α(λ) = 0 for all α. Further assume that there exists

an α0 such that f̂α0 does not decay too rapidly on a∗, i.e,

lim sup
|λ|→∞

|f̂α0(λ)| exp(ke|λ|) > 0

for all k > 0 on a∗. Then the closed ideal generated by {fα : α ∈ I} is all of

L1(K\G/K).
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Proof: Since fα is radial, each f̂α gives rise to an even bounded holomorphic function

gα(s) on the strip IR. If |ρ| < a < R, then the collection {gα(s), α ∈ I} satisfies the

hypotheses in Lemma 2.1 on the domain Ia. It follows that the family {gα} generates

A(Ia). In particular, we have a sequence

hn
1 (s)gα1(n)(s) + hn

2 (s)gα2(n)(s) + · · · + hn
k(s)gαk(n)(s) → e−

s2

2

uniformly on Īa, where gαj(n) are in the given family and hn
j (s) ∈ A(Ia).

Notice that each hn
j can be viewed as a holomorphic function on the domain Fa

contained in a∗
C which depends only on (λ2

1 + λ2
2 + · · ·+ λ2

l )
1
2 . Since hn

j are bounded

and |ρ| < a it can be easily verified that e−
〈λ,λ〉

2 hn
j (λ) ∈ Z(F ). Again, an application

of the Cauchy integral formula says that

e−
〈λ,λ〉

2 hn
1 (λ)f̂α1(n)(λ) + e−

〈λ,λ〉
2 hn

2 (λ)f̂α(n)(λ) + · · · e−
〈λ,λ〉

2 hn
k(λ)f̂αk(n)(λ)

converges to e−〈λ,λ〉 in the topology of Z(F ) (see the proof of Theorem 1.1 in [BW]).

By Theorem 1.1 this simply means that the ideal generated by {fα : α ∈ I} in

L1(K\G/K) contains the function p where p̂(λ) = e−〈λ,λ〉. We finish the proof by

appealing to Lemma 2.2.

Corollary 2.4 Let {fα : α ∈ I} be a family of radial functions satisfying the hy-

potheses in Theorem 2.3. Then the closed subspace spanned by the left G−translates

of the above family is all of L1(G/K).

Proof: Let J be the closed subspace generated by the left translates of the given

family. By Theorem 2.3, L1(K\G/K) ⊂ J. Now, it is easy to see that J has to be

equal to L1(G/K).
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Corollary 2.5 Let {fα : α ∈ I} be a family of L1−radial functions. Assume that

each f̂α extends to a bounded holomorphic function to the bigger domain FR for some

R > ‖ρ‖. Assume further that lim‖λ‖→∞ f̂α(λ) → 0. If there exists an α0 such that fα0

is not equal to a real analytic function almost everywhere, then the left G−translates

of the above family span a dense subset of L1(G/K).

Proof: This follows exactly as in Theorem 5.5 of [MRSS].

3 Schwartz theorem for complex groups

When G is a connected non compact semisimple Lie group of real rank one with

finite center, a Schwartz type theorem was proved by Bagchi and Sitaram in [BS79].

Let K be a maximal compact subgroup of G, then the result in [BS79] states the

following: Let V be a closed subspace of C∞(K\G/K) with the property that f ∈ V

implies w ∗ f ∈ V for every compactly supported K-biinvariant distribution w on

G/K, then V contains an elementary spherical function ϕλ for some λ ∈ a∗
C. This

was done by establishing a one-one correspondence between ideals in C∞(K\G/K)

and that of C∞(IR)even. This also proves that a similar result can not hold for higher

rank groups.

Going back to IRn, we notice that if f ∈ C∞(IRn) is radial, then the translation

invariant subspace Vf generated by f is also rotation invariant. It follows from [BST]

that Vf contains a ψs for some s ∈ C where ψs is the Bessel function defined in the

introduction. Our aim in this section is to prove a similar result for the complex

semisimple Lie groups. Our definition of radiality is taken from [VV] and it coincides

with the definition in the previous section when the function is in L1(K\G/K).
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Throughout this section we assume that G is a complex semisimple Lie group.

Let Exp : p → G/K denote the map P → (expP )K. Then Exp is a diffeomorphism.

If dx denotes the G−invariant measure on G/K, then

∫

G/K
f(x) dx =

∫

p

f(ExpP ) J(P ) dP, ( 3.1 )

where

J(P ) = det

(
sinh adP

adP

)
.

Since G is a complex group, the elementary spherical functions are given by a simple

formula:

ϕλ(ExpP ) = J(P )−
1
2

∫

K
ei〈Aλ,Ad(k)P 〉 dk, P ∈ p. ( 3.2 )

Here Aλ is the unique element in aC such that λ(H) = 〈A,Aλ〉 for all H ∈ aC.

Let E(K\G/K) be the dual of C∞(K\G/K). Then E(K\G/K) can be identified

with the space of compactly supported K-biinvariant distributions on G/K. If w is

such a distribution then ŵ(λ) = w(ϕλ) is well defined and is called the spherical

Fourier transform of w. By the Paley-Wiener theorem we know that λ → ŵ(λ) is

an entire function of exponential type. Similarly, E(IRl) will denote the space of

compactly supported distribution on IRl and EW (IRl) consists of the Weyl group

invariant ones. From the work in [BS79] we know that the Abel transform

S : E(K\G/K) → EW (IRl)

is an isomorphism and S̃(w)(λ) = ŵ(λ) for w ∈ E(K\G/K), where S̃(w)(λ) is the

Euclidean Fourier transform of the distribution S(w). We also need the following

result from [BS79].
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Proposition 3.1 There exists a linear topological isomorphism T from C∞(K\G/K)

onto C∞(IRl)W such that

S(w)(T (f)) = w(f)

for all w ∈ E(K\G/K) and f ∈ C∞(K\G/K). We also have,

S(w
′

) ∗ T (w ∗ f) = T (w
′

∗ w ∗ f)

for all w,w
′
∈ E(K\G/K) and f ∈ C∞(K\G/K). Moreover,

T (ϕλ) =
1

|W |

∑

τ∈W

exp(i〈τ.λ, x〉).

A K-biinvariant function f is called radial if it is of the form

f(x) = J(Exp−1x)−
1
2u(d(0, x)),

where d is the Riemannian distance induced by the the Killing form on G/K and u

is a function on [0,∞). Theorem 4.6 in [VV] shows that this definition of radiality

coincides with the one in the previous section if the function is integrable. That is,

f ∈ L1(K\G/K) has the above form if and only if the spherical Fourier transform f̂(λ)

depends only on (λ2
1 +λ2

2 · · ·+λ
2
l )

1
2 . We denote the class of smooth radial functions by

C∞(K\G/K)rad and C∞
c (K\G/K)rad will consists of compactly supported functions

in C∞(K\G/K)rad.

For f ∈ C∞(K\G/K) define

f#(ExpP ) = J(P )−
1
2

∫

SO(p)
J(σ.P )

1
2 f(σ.P ) dσ,

where SO(p) is the special orthogonal group on p and dσ is the Haar measure on

SO(p). Here, by f(P ) we mean f(ExpP ). Clearly, f → f# is the projection from

C∞(K\G/K) onto C∞(K\G/K)rad.
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Proposition 3.2 (a) The space C∞(K\G/K)rad is reflexive.

(b) The strong dual E(K\G/K)rad of C∞(K\G/K)rad is given by

{w ∈ E(K\G/K) : ŵ(λ) is a function of (λ2
1 + λ2

2 + · · ·λ2
l )

1
2}.

(c) The space C∞(K\G/K)rad is invariant under convolution by w ∈ E(K\G/K)rad.

Proof: (a) The space C∞(K\G/K)rad is a closed subspace of C∞(K\G/K) which is

a reflexive Fréchet space.

(b) Define Bλ = ϕ#
λ , the projection of ϕλ into C∞(K\G/K)rad. A simple computation

shows that

Bλ(ExpP ) = J(P )−
1
2

∫

SO(p)
ei〈Aλ,σ.P 〉 dσ.

It is clear that, Bλ as a function of λ depends only on (λ2
1+λ2

2+ · · ·λ2
l )

1
2 . Now, let w ∈

E(K\G/K). Define a distribution w# by w#(f) = w(f#). It is easy to see that w#

is a compactly supported K−biinvariant distribution. Clearly, if w ∈ E(K\G/K)rad,

then w = w#. It follows that ŵ(λ) = w(ϕλ) = w(Bλ). Consequently, ŵ(λ) is a

function of (λ2
1 + λ2

2 + · · ·+ λ2
l )

1
2 . It also follows that E(K\G/K)rad is reflexive.

(c) Observe that if w ∈ E(K\G/K)rad and g ∈ C∞
c (K\G/K)rad then w ∗ g ∈

C∞
c (K\G/K)rad. This follows from (b) above and Theorem 4.6 in [VV]. Next, if

g is arbitrary, we may approximate g with gn ∈ C∞
c (K\G/K)rad.

We are in a position to state our main result in this section. Let V be a closed

subspace of C∞(K\G/K)rad. We say, V is an ideal in C∞(K\G/K)rad if f ∈ V and

w ∈ E(K\G/K)rad implies that w ∗ f ∈ V.

Theorem 3.3 (a) If V is a non zero ideal in C∞(K\G/K)rad then there exists a

λ ∈ a∗
C such that Bλ ∈ V.
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(b) If f ∈ C∞(K\G/K)rad, then the closed left G invariant subspace generated by f

in C∞(G/K) contains a ϕλ for some λ ∈ a∗
C.

Proof: We closely follow the arguments in [BS79].

(a) Notice that the map

S : E(K\G/K)rad → E(IRl)rad

is a linear topological isomorphism. Using the reflexivity of the spaces involved and

arguing as in [BS79] we obtain that (as in Proposition 3.1)

T : C∞(K\G/K)rad → C∞(IRl)rad

is a linear topological isomorphism, where C∞(IRl)rad stands for the space of C∞

radial functions on IRl and

S(w)(T (f) = w(f) ∀w ∈ E(K\G/K)rad, f ∈ C∞(K\G/K)rad.

Another application of Proposition 3.1 implies that we have a one-one correspon-

dence between the ideals in C∞(K\G/K)rad and C∞(IRl)rad. Here, ideal in C∞(IRl)rad

means a closed subspace invariant under convolution by compactly supported radial

distributions on IRl. From [BS90] or [BST] we know that any ideal in C∞(IRl)rad

contains a ψs (Bessel function) for some s ∈ C. To complete the proof it suffices to

show that under the topological isomorphism T the function Bλ is mapped into ψs

where s2 = (λ2
1 + λ2

2 + · · · + λ2
l )

2.

Now, we have S(w)(T (Bλ)) = w(Bλ). Since w ∈ E(K\G/K)rad we know that

w(Bλ) is nothing but w(ϕλ) which equals ˜(Sw)(λ). Since S is onto, this implies that

T (Bλ) = ψs where s2 = (λ2
1 + λ2

2 + · · ·λ2
l )

1
2 .
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(b) From [BS79] we know that T (ϕλ) = ψλ where ψλ(x) = 1
|W |

∑
τ∈W exp(iτλ.x). Let

Vf denote the left G-invariant subspace generated by f. Then T (Vf) surely contains

the space

VT (f) = {S(w) ∗ T (f) : w ∈ E(K\G/K)}.

From Proposition 3.2, T (f) is a radial C∞ function on IRl. Hence, from [BST], the

translation invariant subspace XT (f), generated by T (f) in C∞(IRl) contains a ψs

for some s ∈ C and consequently all the exponentials eiz.x where z = (z1, z2, . . . zl)

satisfies z2
1 + z2

2 + · · · + z2
l = s2. Now, it is easy to see that the map g → gW where

gW (x) = 1
|W |

∑
τ∈W g(τ.x), from XT (f) into VT (f) is surjective. Hence, there exists a

λ ∈ C l such that ψλ ∈ VT (f). Since T (ϕλ) = ψλ, this finishes the proof.

Our next result is a Wiener-Tauberian type theorem for compactly supported

distributions. Let E(G/K) denote the space of compactly supported supported dis-

tributions on G/K. If g ∈ G and w ∈ E(G/K) then the left g−translate of w is the

compactly supported distribution gw defined by

gw(f) = w(g−1

f), f ∈ C∞(G/K)

where xf(y) = f(x−1y).

Theorem 3.4 Let {wα : α ∈ I} be a family of distributions contained in E(K\G/K)rad.

Then, the left G−translates of this family spans a dense subset of E(G/K) if and only

if there exists no λ ∈ a∗
C such that ŵα(λ) = 0 for all α ∈ I.

Proof: We start with the if part of the theorem. Let J stand for the closed span

of the left G−translates of the distributions wα in E(G/K). It suffices to show that

E(K\G/K) ⊂ J. To see this, let f ∈ C∞(G/K) be such that w(f) = 0 for all

15



w ∈ E(K\G/K). Since J is left G−invariant we also have w(fg) = 0 for all g ∈ G,

where fg is the K-biinvariant function defined by

fg(x) =
∫

K
f(gkx) dk.

It follows that fg ≡ 0 for all g ∈ G and consequently f ≡ 0.

Next, we claim that if E(K\G/K)rad ⊂ J then E(K\G/K) ⊂ J. To prove this it

is enough to show that

{g ∗ w : w ∈ E(K\G/K)rad, g ∈ C∞
c (K\G/K)}

is dense in E(K\G/K). Notice that, by Proposition 3.2 the map S from E(K\G/K)

onto E(IRl)W is a linear topological isomorphism which maps E(K\G/K)rad onto

E(IRl)rad isomorphically. Hence, it suffices to prove a similar statement for E(IRl)rad

and E(IRl)W which is an easy exercise in distribution theory!

So, to complete the proof of Theorem 3.4 we only need to show that

{g ∗ wα : α ∈ I, g ∈ C∞
c (K\G/K)rad}

is dense in E(K\G/K)rad. If not, consider

Jrad = {f ∈ C∞(K\G/K)rad : (g ∗ wα)(f) = 0 ∀g ∈ C∞
c (K\G/K), α ∈ I}.

The above is clearly a closed subspace of C∞(K\G/K)rad which is invariant under

convolution by C∞
c (K\G/K)rad. By Theorem 3.3 we have Bλ ∈ Jrad for some λ ∈ a∗

C.

It follows that ŵα(λ) = 0 for all α ∈ I which is a contradiction. This finishes the

proof.

For the only if part, it suffices to observe that if g ∈ C∞
c (G/K) then

g ∗ wα(ϕλ) = ĝ#(λ)ŵα(λ)

16



where g#(x) =
∫
K g(kx) dk.

Remark: A similar theorem for all rank one spaces may be derived from the results

in [BS90].
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