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Abstract

In this article we present an example of a random oriented tree model on Z
d, that

is a forest in d = 3 with positive probability. This is in contrast with the other random
tree models in the literature which are a forest only when d ≥ 4.

1 Introduction

In this note we consider the 3-dimensional lattice Z
3 where each vertex is ‘open’ or

‘closed’. The choice of being open or closed is prescribed by a measure µ (defined
in the next section). An open vertex v is connected by an edge to the closest open
vertex w such that the 3rd coordinates of v and w satisfy w(3) = v(3) − 1. In case of
non-uniqueness of such a vertex w, we choose any one of the closest vertices with equal
probability. The random graph so constructed has no loops. Also it is easy to see that
if any two paths intersect at a certain level (3rd-coordinate) then they stay together
for all levels below.

Our main result (Theorem 2.1) is that under the correlation structure provided
by µ, this graph is a random oriented forest (i.e. consists of infinitely many random
oriented trees) with positive probability. In order to prove that the collection of all
paths yields a forest, it suffices to prove that the paths, as described above, starting at
two nodes which are sufficiently far apart, do not meet with positive probability.

This result is in contrast to tree-forest dichotomies that usually occur at d = 4
rather than d = 3. We refer the reader to the uniform spanning tree model in [5], the
minimal spanning tree model in [6], and the river network considered in [1]. In [1],
each vertex is assumed open or closed with probability p independent of each other.
The notations and methodology of the proving of the main result are borrowed entirely
from [1]. In the next section we state our model precisely along with the main result.
Our proof involves a coupling with a system of independent random walks and the idea
is borrowed from the proof presented in [1], this is done in Section 3.

2 Model and main result

Let Ω = {0, 1}Z
3

be the configuration space of our model and F be the corresponding
σ-algebra generated by the finite dimensional cylindrical sets.

Let Ω2 = {0, 1}Z
2

and F2 be the corresponding σ-algebra generated by finite di-
mensional cylinderical sets. For k ≥ 1, Let

Ak = {ω ∈ Ω2 : ω(z) = 1 iff z1 + z2 = 0 mod k}
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i.e., it is the configuration corresponding to having 1’s at the four vertices of the l1-ball
of radius k centred at the origin of Z

2 and replication this throughout the lattice Z
2.

We define a probability measure µ(2) on (Ω2,F2) as follows:

µ(2)(Ak) = µ(2)(T i,j(Ak)) = c
k−β

g(k)
,

where T i,j is the shift operator with i steps in left and j steps in upward direction
for i, j ∈ Z, β > 1 to ensure summability, c is the normalizing constant, and g(k) =
1 + 2k(k + 1) is the number of transformations of Ak, by translations alone, that
are different from each other. Note that this measure puts zero mass on all other
configurations.

Following [1], we shall use the notation: u ∈ Z
3, be represented as

u = (u(1), u(2), u(3)) = (u, u(3)).

We replicate µ(2) independently over all the Z
2 layers of Z

3 to get a measure on
(Ω, F) so that for ω ∈ Ω we set

µ(ω(u) = 1) = p (say).

Let {Uu,v : u,u ∈ Z
3, v(3) = u(3) − 1} be i.i.d. uniform (0, 1] random variables on

some probability space (Ξ,G, ν).
Consider the product space (Ω × Ξ,F × G,P := µ × ν). For (ω, ξ) ∈ Ω × Ξ let

V(= V(ω, ξ)) be the random vertex set defined by

V(ω, ξ) = {u ∈ Z
3 : ω(u) = 1}.

Note that if u ∈ V(ω, ξ) for some ξ ∈ Ξ then u ∈ V(ω, ξ′) for all ξ′ ∈ Ξ and thus we
say that a vertex u is open in a configuration ω if u ∈ V(ω, ξ) for some ξ ∈ Ξ.

For u ∈ Z
3 let

Nu = Nu(ω, ξ) =
˘

v ∈ V(ω, ξ) : v(3) = u(3) − 1 and
3

X

i=1

|v(i) − u(i)| =

min{
P3

i=1 |w(i) − u(i)| : w ∈ V(ω, ξ), w(3) = u(3) − 1}
¯

.

Nu is non-empty almost surely and that Nu is defined for all u, irrespective of it being
open or closed. For u ∈ Z

3 let

h(u) ∈ Nu(ω, ξ) be such that U
u,h(u)(ξ) = min{Uu,v(ξ) : v ∈ Nu(ω, ξ)}. (1)

Again note that for each u ∈ Z
3, h(u) is open, almost surely unique and (h(u))(3) =

u(3)− 1. On V(ω, ξ) we assign the edge set E = E(ω, ξ) := {< u, h(u) >: u ∈ V(ω, ξ)}.
Consider that graph G = (V, E) consisting of the vertex set V and edge set E . For a

vertex u ∈ V(ω, ξ), there is exactly one edge ‘going down’ from u, i.e., there is a unique
edge < u,v > with v(3) = u(3)−1. Clearly, the edge that is ‘going down’ is identically
distributed irrespective of the initial vertex u, and has only two random components
since v(3) = u(3) − 1. Therefore, we shall denote this edge by a generic, Z

2 valued
random variable ξ. That is, for the edge < u,v >, which is going down with the origin
u, we shall define ξ as the Z

2 valued random variable (u − v), whose distribution is
given by

P (|ξ| > k) = c
∞

X

m=k+1

g(m)− g(k) − 3

g(m)
m−β

= O(
1

kα
),
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where | · | denotes the l1 norm on Z
2, and α = β − 1.

Now the uniqueness of the edge < u,v > implies that the graph G contains no loops
almost surely. Hence, the graph G consists of only trees. Our main result is

Theorem 2.1

P(G is a forest consisting of infinitely many disjoint trees ) > 0.

Remark 2.2

• The model can be constructed on Z
d for d ≥ 2. Imitating the proof in [1], one can

show that it is a tree with positive probability in d = 2 when 1 < α < 2.

• If the measure µ was ergodic as well then result stated in Theorem 2.1 would hold
with probability 1. However we were not able to construct such a measure that
provides the necessary correlation structure.

• The proof presented in [1] can be applied to our model to prove the non-existence
of bi-infinite paths in this model as well.

3 Proof of Theorem 2.1

We begin by constructing a coupling of our random oriented tree with a system of
independent random walks.

Let {X1,X2, . . .} and {Y1, Y2, . . .} be two independent collections of i.i.d. copies
of the random variable ξ. Consider a path {0 + (

Pn
i=1Xi,−n)} starting at 0 ∈ V0.

Next take a vertex v = (v1, v2, 0). If the l1-ball B = {u ∈ Z
2 : ‖u‖l1 ≤ ‖X1‖l1} is

disjoint from the l1-ball B′ = {u ∈ Z
2 : ‖u− (v1, v2)‖l1 ≤ ‖Y1‖l1}, then we fix h1(v) =

{v+(Y1,−1)}, else we shall define h1(v) taking into account the configuration inside the
ball B. Repeating this procedure at every step, we shall obtain the pair {(hi(0), hi(v)) :
0 ≤ i ≤ n}. It is easy to see that {(hi(0), hi(v)) : 0 ≤ i ≤ n} is stochastically equivalent
to the pair of independent random walks {0 + (

Pn
i=1Xi,−n),v + (

Pn
i=1 Yi,−n)}.

Next we start with two vertices u = (u, 0) and v = (v, 0) in Z
3 with u, v ∈ Z

2. Let
ωu and ωv be two independent realizations of the {0, 1} configurations on the infinite
lattice Z

2, and let {Uu : u ∈ Z
2} and {Uv : u ∈ Z

2} be two independent collections of
i.i.d. U([0, 1]) random variables.

Let us define

ku = min{k : ωu(z) = 1 for some z ∈ (u + ∆k)},

lv = min{l : ωv(z) = 1 for some z ∈ (v + ∆l)},

where (w + ∆m) is to be interpreted as the l1-ball in Z
2 of radius m around w. Conse-

quently define mv as

mv = min{m : eitherωv(z) = 1 for some z ∈ (v + ∆m)\(u + ∆ku)

orωu(z) = 1 for some z ∈ (v + ∆m) ∩ (u + ∆ku)}.

Next, let us define the sets

Nu = {z ∈ (u + ∆ku) : ωu(z) = 1},

N1
v = {z ∈ (v + ∆lv) : ωv(z) = 1},

N2
v = {z ∈ (v + ∆mv)\(u + ∆ku) : ωv(z) = 1}

∪{z ∈ (v + ∆mv) ∩ (u + ∆ku) : ωu(z) = 1}.

Now define
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• φ(u) ∈ Nu such that Uu(φ(u)) = min{Uu(z) : z ∈ Nu},

• ζ(v) ∈ N1
v such that Uv(ζ(v)) = min{Uv(z) : z ∈ N1

v},

• ψ(v) ∈ N2
v such that Uv(ψ(v)) = min{Uv(z) : z ∈ N2

v}.

Finally, writing φ0(u) = u, φn(u) = φ(φn−1(u)), and similarly ζn(v) and ψn(v), one
can observe that

{((φn(u),−n), (ζn(v),−n)) : n ≥ 0}
d
= {((u +

n
X

i=1

Xi,−n), (v +
n

X

i=1

Yi,−n)) : n ≥ 0}.

Moreover,

{((φn(u),−n), (ψn(v),−n)) : n ≥ 0}
d
= {(hn(u, 0), hn(v, 0)) : n ≥ 0}.

Note that the above described procedure gives rise to trees originating from (u, 0) and
(v, 0). Also, observe that {(φn(u),−n)} describes both the random walk and the tree
with (u, 0) as the origin, and if ∆ku ∩ ∆mv = ∅, then mv = lv, hence ζv = ψv.
Therefore, the random and the tree from originating from (u, 0) are coupled and so are
the random walk and the tee originating from (v, 0). In particular, mv = lv when both
ku < ‖u − v‖l1/2 and mv < ‖u − v‖l1/2. Assume k0 = ‖u − v‖l1/2. Writing P for the
measure generated by ζ and ψ, we shall have

P ({ζ(v) 6= ψ(v)}) ≤ P ({ωu(z) = 0, ∀z ∈ (u + ∆k0)}

∪{ωv(z) = 0, ∀z ∈ (v + ∆k0)})

≤ 2P (ωu(z) = 0, ∀z ∈ (u + ∆k0))

≤
c

kα
0

,

Using c as a generic constant, we shall have

P ({ζ(v) = ψ(v)}) ≥ 1 −
c

‖u − v‖α
l1

. (2)

Now we shall list few estimates related to the two independent random walks defined
in the previous section, with the understanding that u = 0 without loss of generality.

Now for some fixed δ > 0, define

Bn,ǫ(v) = {ζn1/α

(v) ∈ φn1/α

(0) + (∆
n

1
α2 (1+ǫ)\∆

n
1

α2 (1−ǫ) ),

‖ζi(v) − φi(0)‖l1 ≥ nδ , ∀i = 1, . . . , n1/α},

En,ǫ(v) = {‖ζi(v) − φi(0)‖l1 ≤ nδ, for some i = 1, . . . , n1/α},

Fn,ǫ(v) = {ζn1/α

(v) /∈ φn1/α

(0) + ∆
n

1
α2 (1+ǫ)},

Gn,ǫ(v) = {ζn1/α

(v) ∈ φn1/α

(0) + ∆
n

1
α2 (1−ǫ)}.

Clearly,
(Bn,ǫ(v))c ⊆ En,ǫ(v) ∪ Fn,ǫ(v) ∪Gn,ǫ(v). (3)

In order to prove that the trees emerging from (0, 0) and (v, 0) do not meet, we first
prove that the corresponding independent random walks do not meet if the starting
points are far enough, and consequently, using the coupling argument, we can easily
deduce that the trees do not merge.

We shall start with calculating some estimates on the probabilities of the sets
En,ǫ(v), Fn,ǫ(v) and Gn,ǫ(v).
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P (En,ǫ(v)) = P
˘

‖
i

X

j=1

Xj − (v +
i

X

j=1

Yj)‖l1 ≤ nδ , for some i = 1, . . . , n1/α¯

= P
˘

i
X

j=1

(Xj − Yj) ∈ (v + ∆nδ ), for some i = 1, . . . , n1/α
¯

≤ P
˘

i
X

j=1

(Xj − Yj) ∈ (v + ∆nδ ), for some i ≥ 1
¯

= P
˘

[

z∈(v+∆
nδ )

(

i
X

j=1

Xj −

i
X

j=1

Yj = z, for some i ≥ 1)
¯

Now,
Pi

j=1(Xj − Yj) is aperiodic, isotropic, symmetric random walk with i.i.d.
steps. Therefore, using Green’s function analysis for stable random walks (cf [3]) we
get,

P (En,ǫ(v)) ≤
X

z∈(v+∆
nδ )

P
`

i
X

j=1

(Xj − Yj) = z, for some i ≥ 1
´

≤
X

z∈(v+∆
nδ )

c l(z)

‖z‖2
l1

∼
X

z∈(v+∆
nδ )

c ‖z‖α
l1
t(z)

‖z‖2
l1

≤
X

z∈(v+∆
nδ )

c ‖z‖α+δ∗

l1

‖z‖2
l1

≤
c

n(2−α−δ∗)γ−2δ
,

where δ∗ is defined as |t(z)| < ‖z‖δ∗

l1
and assuming v to be in ∆

n(1+ǫ)/2α2 \∆
n(1−ǫ)/2α2

and z ∈ v+∆nδ , we conclude that ‖z‖ > n(1−ǫ)/α2

−nδ > nγ for some γ thereby defining
γ. Note that ǫ > 0 is arbitrary and can be chosen as small as we wish. Moreover the fact
that δ∗ > 0 can also be chosen arbitrarily small, ensures that β1 = (2−α−δ∗)γ−2δ > 0.
Hence, we shall have

sup
v∈∆

n(1+ǫ)/2α2 \∆
n(1−ǫ)/2α2

P (En,ǫ(v)) ≤
c

nβ1
. (4)

Repeating similar arguments for the set Fn,ǫ(v) we get,

P (Fn,ǫ(v)) = P
˘

v +

n1/α
X

j=1

(Xj − Yj) /∈ ∆
n

1
α2 (1+ǫ)

¯

= P
˘

‖v +
n1/α
X

j=1

(Xj − Yj)‖l1 > n
1

α2 (1+ǫ)¯

.
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Now by reinforcing the assumption that v ∈ ∆
n(1+ǫ)/2α2 \∆

n(1−ǫ)/2α2 we obtain,

P (Fn,ǫ(v)) ≤ P
˘

‖
n1/α
X

j=1

(Xj − Yj)‖l1 > K n
1

α2 (1+ǫ)¯

≤ P
˘

2
[

i=1

(|v +

n1/α
X

j=1

(Xj − Yj)(i)| > K
n

1
α2 (1+ǫ)

4
)
¯

≤ 2 P
˘

(|v +
n1/α
X

j=1

(Xj − Yj)(1)| > K
n

1
α2 (1+ǫ)

4
)
¯

.

Applying Markov’s inequality to the above expression with exponent (α− δ∗∗) we get,

P (Fn,ǫ(v)) ≤
d E|

Pn1/α

j=1 (Xj − Yj)(1)|
α−δ∗∗

(K/4)α−δ∗∗(n(1+ǫ)/α2)α−δ∗∗

=
c n(α−δ∗∗)/α E

˛

˛

˛

Pn1/α

j=1 (Xj−Yj)(1)

n1/α

˛

˛

˛

α−δ∗∗

n(1+ǫ)(α−δ∗∗)/α2

≤
c n(α−δ∗∗)/α E

“

1

n1/α

Pn1/α

j=1 |(Xj − Yj)(1)|
α−δ∗∗

”

n(1+ǫ)(α−δ∗∗)/α2

≤
c n(α−δ∗∗)/α E|Z

′

(1)|α−δ∗∗

n(1+ǫ)(α−δ∗∗)/α2 .

Here, we used Jensen’s inequality to get the third line from the second, implicitly
assuming that (α− δ∗∗) > 1, implying α > 1. Now to get the required result, we need

β2 =
(1 + ǫ)(α− δ∗∗)

α2
− (α− δ∗∗/α) > 0.

This is true only if
1 < α < 1 + ǫ, (5)

assuming which, we get,

sup
v∈∆

n(1+ǫ)/2α2 \∆
n(1−ǫ)/2α2

P (Fn,ǫ(v)) ≤
c

nβ2
. (6)

Now we shall estimate the probability corresponding to the set Gn,ǫ(v), for any
v ∈ ∆

n(1+ǫ)/2α2 \∆
n(1−ǫ)/2α2 .
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P (Gn,ǫ(v)) = P
“

v +
n1/α
X

j=1

(Xj − Yj) ∈ ∆
n

1
α2 (1−ǫ)

”

= P
“

‖v +

n1/α
X

j=1

(Xj − Yj)‖l1 < n
1

α2 (1−ǫ)
”

≤ P
“

‖
n1/α
X

j=1

(Xj − Yj)‖l1 < ‖v‖l1 + n
1

α2 (1−ǫ)
”

≤ P
“

‖

n1/α
X

j=1

(Xj − Yj)‖l1 < K n
1

α2 (1−ǫ)
”

≤ P
“

2
[

i=1

˘

|
n1/α
X

j=1

(Xj − Yj)(i)| < K n
1

α2 (1−ǫ)
/2

¯

”

≤ 2 P
“ 1

n
1

α2

|

n1/α
X

j=1

(Xj − Yj)(i)| < K
n

1
α2 (1−ǫ)

n
1

α2

”

.

In order to get an upper bound on the above probability, we shall use the stable central
limit theorem1:

Theorem 3.1 1

n1/α

Pn
i=1 Zi converges in distribution to a stable law with character-

istic exponent α (0 < α < 2) if and only if the distribution function F of Zi’s satisfies
the following conditions

• F (−x)
1−F (x)

→ c1
c2

,

• for every constant k > 0

1 − F (x) − F (−x)

1 − F (kx) − F (−kx)
→ kα

Clearly, in our case

P (|(Xi − Yi)| > k) = k−α L1(k) + k−α L2(k),

where L1(·) and L2(·) are slowly varying functions, where L1(·) + L2(·) ↓ as k ↑ ∞.
In particular L1(k) ↓ C and L1(k) ↓ 0 for some constant C. These slowly varying
functions determine the rate of convergence to the stable law. Therefore, we have

P (Gn,ǫ(v)) ≤ L(n1/α2 k

nǫ/α2 ) + PSαS(
−k

nǫ/α2 ,
k

nǫ/α2 )

≤ L∗(n), (7)

where L(·) is a slowly varying function determined by the rate of convergence of the
α-stable central limit theorem and PSαS is the probability distribution corresponding
to a symmetric α-stable random variable.

1We refer the reader to [2] for the proof of the result and on limit distributions of sums of independent
random variables.
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Now for u ∈ Z
3 writing hn(u) = (gn(u), u3 − n), consider the set

An,ǫ(v) =
˘

gn1/α

(v) ∈ gn1/α

(0) + (∆
n

1
α2 (1+ǫ)\∆

n
1

α2 (1−ǫ) ),

gi(v) 6= gi(0) for all i = 1, . . . , n1/α
¯

, (8)

where v = (v, 0) and 0 = (0, 0, 0).
Clearly,

An,ǫ(v) ⊇ Bn,ǫ(v) ∩ {gi(0) =
i

X

j=1

Xj , g
i(v) = v +

i
X

j=1

Yj ∀ 1 ≤ i ≤ n1/α}.

Therefore,

P (An,ǫ(v))

≥ P
n

Bn,ǫ(v) ∩ {gi(0) =
i

X

j=1

Xj , g
i(v) = v +

i
X

j=1

Yj ∀ 1 ≤ i ≤ n1/α}
o

= P
n

Bn,ǫ(v) ∩ {gi(0) =

i
X

j=1

Xj , g
i(v) = v +

i
X

j=1

Yj ∀ 1 ≤ i ≤ n1/α − 1}
o

×P
n

gn1/α

(0) =
n1/α
X

j=1

Xj , g
n1/α

(v) = v +
n1/α
X

j=1

Yj

˛

˛

˛

Bn,ǫ(v) ∩
˘

gi(0) =

i
X

j=1

Xj , g
i(v) = v +

i
X

j=1

Yj ∀ 1 ≤ i ≤ n1/α − 1
¯

o

≥ P
n

Bn,ǫ(v) ∩
˘

gi(0) =
i

X

j=1

Xj , g
i(v) = v +

i
X

j=1

Yj ∀ 1 ≤ i ≤ n1/α − 1
¯

o

×(1 −
c

(nδ)α
),

where the last inequality is the result of (2) after observing that, given Bn,ǫ(v), gi(0) =
Pi

j=1Xj and gi(v) = v+
Pi

j=1 Yj hold for all 1 ≤ i ≤ n1/α −1, we have ‖gn1/α−1(0)−

gn1/α−1(v)‖l1 ≥ nδ . This argument when used iteratively for i = 1, . . . , n1/α−1 yields,

P (An,ǫ(v)) ≥
`

1 −
c

(nδ)α

´n1/α

× P (Bn,ǫ(v))

≥
`

1 − c
n1/α

nδ α

´

× P (Bn,ǫ(v)).

Using the estimates from (4), (6), and (7), we obtain

P (An,ǫ(v)) ≥
`

1 − c
n1/α

nδ α

´`

1 − L∗(n)
´

,

as the rate of slowly varying function dominates all other polynomial rates. Now
choosing δ such that (δ α− 1/α) > 0, and arguing similarly we get

P (An,ǫ(v)) ≥ 1 − L∗(n).

Therefore we have proven that for large enough n,

inf
g0(v)∈∆

n(1+ǫ)/2α2 \∆
n(1−ǫ)/2α2

P (An,ǫ(v)) ≥ 1 − L∗(n). (9)
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Next, choose f(n, i) such that

∞
X

i=1

L∗(f(n, i)) <∞, (10)

and f(n, 0) = n.
Now for i ≥ 1 and a large enough n, take τ0 = 1 and τi(n) = 1 +

Pi−1
j=0(f(n, j))1/α,

and with a fixed v define

B0 = B0(v) = {g(v) ∈ g(0) + (∆
f(n,0)(1+ǫ)/2α2 \∆

f(n,0)(1−ǫ)/2α2 )},

and using it recursively define

Bi = Bi(v) = {gτi(v) ∈ gτi(0) + (∆
f(n,i)(1+ǫ)/2α2 \∆

f(n,i)(1−ǫ)/2α2 )

and gj(v) 6= gj(0) ∀ τi−1 + 1 ≤ j ≤ τi}.

Clearly,

P{gj(v) 6= gj(0) ∀ j ≥ 1} ≥ P
“

∞
\

i=0

Bi

”

= lim
i→∞

P
“

i
\

j=0

Bj

”

= lim
i→∞

i
Y

l=1

P
“

Bl

˛

˛

˛

l−1
\

j=0

Bj

”

P (B0).

Since P (B0) > 0, we have that P{gj(v) 6= gj(0) ∀ j ≥ 1} > 0 if
P∞

l=1

`

1 − P (Bl| ∩
l−1
j=0

Bj)
´

< ∞. Now using the fact that the tree processes generated by hn(·) are jointly
Markov, we have

P
“

Bl

˛

˛

˛

l−1
\

j=0

Bj

”

≥ inf
1
P

“

gf(n,l)1/α

(v1) ∈ gf(n,l)1/α

(u1) + (∆
f(n,l+1)(1+ǫ)/2α2 \∆

f(n,l+1)(1−ǫ)/2α2 );

gk(u1) 6= gk(v1) ∀ 1 ≤ k ≤ f(n, l)1/α
”

= inf
2
P (Af(n,l),ǫ(u))

≥ 1 − L∗(f(n, l)),

where inf1 is denoted as the infimum over the set

{u1, v1 ∈ Z
3 : g0(v1) ∈ g0(u1) + (∆

f(n,l)(1+ǫ)/2α2 \∆
f(n,l)(1−ǫ)/2α2 )},

and inf2 is defined as the infimum over the set

{u : g0(u) ∈ +(∆
f(n,l)(1+ǫ)/2α2 \∆

f(n,l)(1−ǫ)/2α2 )},

and the last inequality follows from (9). Thus,
P∞

l=1

`

1−P (Bl|∩
l−1
j=0Bj)

´

<∞, thereby
proving that

P{gj(v) 6= gj(0) ∀ j ≥ 1} > 0. (11)
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This proves that if the original nodes are far enough then the resulting graphs emanating
from these nodes remain disjoint, thus forming two separate trees.

Now to complete the proof of Theorem2.1, we need to prove that there the re-
sulting graph composes of infinitely many trees. To prove that, we define, k ≥ 2

Dk(n, ǫ) = {(u1,u2, . . . ,uk) : ui ∈ Z
3 such that n(1−ǫ)/2α2

≤ ‖g0(ui) − g0(uj)‖ ≤

n(1+ǫ)/2α2

for all i 6= j}. Next, following the steps of [1] we define the event

A(n, ǫ,u1,u2, . . . ,uk) =

{n(1−ǫ)/α2

≤ ‖g0(ui) − g0(uj)‖ ≤ n(1+ǫ)/α2

and gl(ui) 6= gl(uj) for all i 6= j}.

Now repeating the calculations leading to the equation (9), we get

inf P
`

A(n, ǫ,u1,u2, . . . ,uk) : (u1,u2, . . . ,uk) ∈ Dk(n, ǫ)
´

≥ 1 − L∗(n), (12)

where the ǫ is the same as the one appearing in (9), and the L∗(·) appearing in the
above equation differs from the L∗ in (9) by a constant. Thereafter, again mimicing
the arguments used to obtain (11), we get

P{gl(ui) 6= gl(uj) for all l ≥ 1 and for 1 ≤ i 6= j ≤ k} > 0. (13)

Finally, by translation invariance of the underlying measure, we have that

P (G contains at least k trees) > 0,

which shows that G contains infinitely many trees almost surely.

Remark 3.2 It is easy to see that the set W = {gl(ui) 6= gl(uj) for all l ≥ 1 and for 1 ≤
i 6= j ≤ k} is an invariant set, but since the measure µ is non-ergodic, hence proving
P (W ) > 0 is not sufficient to prove that P (W ) = 1.

Acknowledgements: Research was supported in part by a CSIR Grant in Aid
scheme.

References

[1] S. Gangopadhyay, R. Roy and A. Sarkar. Random oriented trees: a model of
drainage networks. Ann. App. Probab.,14, 1242–1266, 2004.

[2] B. V. Gnedenko and A. N. Kolmogorov. Limit Distributions for Sums of Indepen-
dent Random Variables, Addison-Wesley, Reading, MA, 1968.

[3] J-F. Le Gall and J. Rosen. The range of stable random walks. Ann. Probab.,91,
650–705, 1991.

[4] A. D. Howard. Simulation of stream networks by headward growth and branching.
Geogr. Anal.,3, 29–50, 1971.

[5] R. Pemantle. Choosing a spanning tree for the integer lattice uniformly. Ann.
Probab., 19, 1559–1574, 1991.

[6] C. M. Newman and D. L. Stein. Ground-state structure in a highly disordered
spin-glass model. J. Statist. Phys.82, 1113–1132, 2002.

Siva Athreya, Stat-Math Unit, Indian Statistical Institute, 8th Mile Mysore Road,
Bangalore 560059. Email: athreya@isibang.ac.in

Sreekar Vadlamani, Department of Statistics–Sequoia Hall, 390 Serra Mall, Stanford
University, Stanford CA 94305–4065. Email: sreekar.vadlamani@gmail.com

10


	Introduction
	Model and main result
	Proof of Theorem ??

