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Abstract

Consider a tensor product H = H1⊗H2⊗· · ·⊗Hk of finite dimensional Hilbert
spaces with dimension of Hi = di, 1 ≤ i ≤ k. Then the maximum dimension
possible for a subspace of H with no non-zero product vector is known to be
d1d2 . . . dk−(d1+d2+ · · ·+dk)+k−1. We obtain an explicit example of a subspace
of this kind. We determine the set of product vectors in its orthogonal complement
and show that it has the minimum dimension possible for an unextendible product
basis of not necessarily orthogonal product vectors.
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Let Hi, l ≤ i ≤ k be finite dimensional complex Hilbert spaces with dim(Hi) = di, 1 ≤
i ≤ k. To avoid trivialities we assume that di ≥ 2 for every i. A state ρ on the tensor

product space H = H1 ⊗ . . .⊗Hk is said to be separable if it is a convex combination of

product states. Otherwise it is said to be entangled. Entangled states play an important

role in quantum computation and quantum coding theories. However in general it is

not easy to decide whether a state is entangled or not. It is a result of Horodecki [2]

that if a state is separable then its support is spanned by product vectors (vectors of

the form y1 ⊗ . . .⊗ yk) in the support. In this context K.R. Parthasarathy [5] defines a

subspace S ⊂ H as completely entangled if it does not contain a single non-zero product

vector. This in particular means that any state ρ with its support in S is automatically

entangled. So the construction of entangled states becomes easy if we have explicit

completely entangled subspaces at our disposal.

The notion of completely entangled subspaces is very closely connected with notions

of unextendible product bases and uncompletable product bases introduced earlier by

D. P. Vincenzo et al. [3] (This paper is also a good source for other references on

this topic). We say that a linearly independent subset B of prodcut vectors H forms

an unextendible product basis (UPB) if B⊥ is completely entangled. If in addition the

vectors in B are mutually orthogonal we call it an orthogonal UPB. It is to be noted that

in [3] only orthogonal bases are considered. This difference is crucial (In this respect see

also Pittenger [6] ). Through some interesting combinatorics and number theory it was

shown by Alon and Lovász [4] that the minimum dimension possible for an orthogonal

UPB is N + 1, where N =
∑

i(di − 1), unless either (i) k = 2 and 2 ∈ {d1, d2}; or (ii)

N +1 is odd and at least one di is even. In each of these two special cases, the minimum

dimension possible for an orthogonal UPB is strictly larger than N + 1. In contrast to

this here in Corollary 4 we show that the minimum dimension possible for an UPB (of

not necessarily orthogonal vectors) is always N + 1. We make use of the basic result

from Parthasarathy [5] that the maximal dimension possible for a completely entangled

subspaces is d1d2 . . . dk − (N + 1).

Parthasarathy obtains an explicit example of a completely entangled subspace of maximal

dimension and exhibits an orthonormal basis for it only in the very special case of k = 2

and d1 = d2 = n. Even in this specail case the basis he obtains is quite complicated. In

this short note we give a very simple construction of a completely entangled subspace of

maximal dimension. Further we show that the orthogonal complement of this space is

spanned by product vectors.

To simplify notation we fix an infinite dimensional Hilbert space K with orthonor-
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mal basis {e0, e1, . . . , } and identify Hi with span{e0, e1 . . . , edi−1
}, so that for each

i, {e0, e1, . . . , edi−1
} is an otho-normal basis for Hi. Now take S as the linear span

of ei1 ⊗ . . .⊗ eik − ej1 ⊗ . . .⊗ ejk
:

k∑
r=1

ir =
k∑

r=1

jr,
0 ≤ ir, jr ≤ dr − 1,

1 ≤ r ≤ k


We claim that S is a completely entangled subspace of maximal dimension. In order to

analyze the structure of S we first identify S⊥. Note thatH decomposes asH =
N⊕

n=0
H(n),

where

H(n) = span {ei1 ⊗ . . .⊗ eik :
k∑

r=1

ir = n}.

Further observe that if M is a Hilbert space with orthonormal basis {x1, . . . , xp} and

N = span {xi − xj : 1 ≤ i, j ≤ p}, then N⊥ = Cu, where u = x1 + . . . + xp. Now it is

easy to see that each H(n) decomposes as H(n) = S(n) ⊕ T (n), where

T (n) = Cun, un =
∑

i1+...+ik=n

ei1 ⊗ . . .⊗ eik ;

S(n) = span {ei1 ⊗ . . .⊗ eik − ej1 ⊗ . . . ejk
:

k∑
r=1

ir =
k∑

r=1

jr = n}.

S(0) = S(N) = {0}. Moreover S =
N⊕

n=0
S(n), and S⊥ =

N⊕
n=0

T (n).

Theorem 1: S is a completely entangled subspace of H1⊗ . . .⊗Hk, of maximal dimen-

sion.

Proof : As each T (n) is one dimensional, we see that dim(S) = d1d2 . . . dk − dim(S⊥) =

d1d2 . . . dk− (N +1). Now suppose x1⊗ . . .⊗xk is a non-zero product vector in S. Then

for any λ ∈ C, 〈x1 ⊗ . . .⊗ xk,
N∑

n=0
λnun〉 = 0. However,

N∑
n=0

λnun =
N∑

n=0

∑
i1+...+ik=n

λi1+...+ikei1⊗. . .⊗eik = yλ
1⊗. . .⊗yλ

k , where yλ
r =

dr−1∑
j=0

λjej, for 1 ≤

r ≤ k. So we get
k∏

r=1
〈xr, yλ

r 〉 = 0 for all λ ∈ C.

Now fix r, take any distinct complex numbers {λ(j) : 0 ≤ j ≤ dr − 1} and consider the

van der Monde matrix

A = [(λ(j))i]0≤i,j≤dr−1.

It is well-known [1] that det(A) = Π0≤m<n≤dr−1(λ(n)−λ(m)) 6= 0. Therefore the columns

of A are linearly independent. This shows that the family {yλ(j)
r : 0 ≤ j ≤ dr − 1} is

linearly independent and forms a basis for Hr. So #{λ : 〈xr, y
λ
r 〉 = 0} ≤ dr − 1 < ∞ for
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every r. Hence #{λ :
k∏

r=1
〈xr, y

λ
r 〉 = 0} must be finite. This is a contradiction. Therefore

S has no non-zero product vector.

Usually for computational purposes one needs an explicit orthonormal basis for the

entangled space under consideration. Obtaining simple orthonormal bases for our S is

not difficult as it suffices to get orthonormal bases for each S(n). As S(n) is the space

orthogonal to un in H(n), there are many ways we can obtain a basis for it. All we need to

do is obtain a basis for H(n) where un is one of the vectors. For instance we get one such

basis by considering non-trivial characters of an abelian group of order an(d1, . . . , dk)

(the trivial character gets identified with un), where an(d1, . . . , dk) is the dimension of

H(n).

From the definition of H(n) it is clear that

an(d1, . . . , dk) = #{(i1, . . . , ik) : i1 + . . . + ik = n, 0 ≤ ir ≤ dr − 1}.

In other words, an(d1, . . . , dk) is the coefficient of xn in the polynomial

p(x) =
k∏

r=1

(1 + x + x2 + . . . + xdr−1).

In particular if k = 2, and d1 ≤ d2, then

an(d1, d2) =


n + 1 if 0 ≤ n ≤ d1 − 1,

d1 if d1 − 1 < n ≤ d2 − 1,

d1 + d2 − (n + 1) if d2 − 1 < n ≤ d1 + d2 − 2.

(1.1)

And in the case of qubits i.e., if di ≡ 2, 1 ≤ i ≤ k, then

an(d1, . . . , dk) =

 k

n

 , 0 ≤ n ≤ k. (1.2)

When k = 2, by identifying vectors from H1 ⊗ H2 with d1 × d2 matrices in the usual

way (identify ei⊗ej with matrix unit Eij) and noting that in this identification non-zero

product vectors correspond to rank one matrices we arrive at the following Example.

Example 1: Consider the vector space Md1,d2 of d1×d2 complex matrices. If a subspace

of Md1,d2 has no rank one element then it has dimension at most (d1 − 1)(d2 − 1). One

such subspace of maximal dimension is given by:[aij] :
∑

i+j=n

aij = 0 ∀n

 .
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Now we determine product vectors of S⊥.

Theorem 2: The set of product vectors in S⊥ is {czλ : c ∈ C, λ ∈ C ∪ {∞}}, where

zλ =
k⊗

r=1

(e0 + λe1 + . . . + λdr−1edr−1) λ ∈ C;

z∞ =
k⊗

r=1

edr−1.

Proof: Consider arbitrary vectors yr =
dr−1∑
i=0

ar
i ei, inHr for 1 ≤ r ≤ k. If y1⊗y2⊗. . .⊗yk ∈

S⊥, we obtain

a1
i1
a2

i2
. . . ak

ik
= a1

j1
a2

j2
. . . ak

jk
, (1.3)

whenever
∑

ir =
∑

jr.

Case(i): a1
0a

2
0 . . . ak

0 6= 0. In this case we may take ar
0 = 1, for 1 ≤ r ≤ k. Take

λ = a1
1. Now (1.3) applied to k-tuples of the form (1, 0, 0, . . . , 0), (0, 1, 0, . . . 0),

i.e, those k-tuples with
∑

ir =
∑

jr = 1, gives ar
1 = λ, ∀r. Then by considerting

k-tuples with
∑

ir =
∑

jr = 2 we get ar
2 = λ2,∀r. Continuing this way we finally obtain

y1 ⊗ . . .⊗ yk = zλ.

Case (ii): a1
0a

2
0 . . . ak

0 = 0. Now for 1 ≤ r ≤ k, let jr be the smallest j such that ar
j 6= 0.

So a1
j1

a2
j2

. . . ak
jk
6= 0. Now if for some r 6= s, jr > 0 and js < ds − 1. By (1.3) we get

a1
j1

a2
j2

. . . ar
jr−1 . . . as

js+1 . . . ak
jk

= a1
j1

a2
j2

. . . ak
jk
6= 0. But this is not possible as ar

jr−1 = 0.

In other words if jr > 0, then js = ds − 1 for all s 6= r. Interchanging the role of r and s

we see that jr = dr − 1 for all r. This shows that y1 ⊗ . . .⊗ yk = cz∞, for some c ∈ C.

It may be noted that lim
|λ|→∞

zλ

(λ)N = z∞. This justifies the notation used in Theorem 2.

Theorem 3: Any different N +1 non-zero product vectors in S⊥ span whole of S⊥ and

hence form an unextendible product basis.

Proof: Consider B ⊂ C ∪ {∞}, with #B = N + 1. Let x =
N∑

n=0
cnun, be an arbitrary

vector in S⊥ such that 〈x, zλ〉 = 0 ∀λ ∈ B. We need to show that x = 0.

Case (i): B ⊂ C. Note that

q(λ) := 〈x, zλ〉 = 〈∑ cnun, z
λ〉 =

N∑
n=0

c̄nan(d1, . . . , dk)λ
n.
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So q is a polynomial in λ of degree at most N . Therefore if q(λ) = 0 ∀λ ∈ B, as

#B = N + 1, we get q = 0. In other words cn ≡ 0, or x = 0.

Case (ii): ∞ ∈ B. Note that z∞ = uN . Therefore 0 = 〈x, z∞〉 = c̄N . So for λ ∈
C, q(λ) = 〈x, zλ〉 is a polynomial of degree at most (N − 1). Now we can argue as in

Case(i).

It is to be noted that S⊥ may not contain any unextendible product basis consisting

of orthogonal product vectors. This can be seen by taking simple examples such k =

2, d1 = 2, d2 = 3, or by making use of beautiful results of Alon and Lovász[4], where the

minimum dimension of an unextendible product basis consisting of orthogonal vectors is

seen to be strictly larger than (d1 + . . . + dk − k + 1) in some special cases.

Corollary 4: The minimal dimension of unextendible product bases (of not necessarily

orthogonal vectors) in H1 ⊗ . . .⊗Hk is d1 + d2 + . . . + dk − k + 1.

Proof: If B is an unextendible product basis, then B⊥ is completely entangled. Hence

by Parthasarathy [5], dim(B⊥) ≤ d1 . . . dk − (N + 1), or dim( span B) ≥ N + 1. Further

we have shown that there exists an unextendible basis of dimension (N + 1).

Now it is a natural question as to what are the possible dimensions of unextendible bases.

We do not have the answer in general. But here is the answer when k = 2.

Theorem 5: Suppose k = 2. Then for any m with d1 + d2− 1 ≤ m ≤ d1d2, there exists

an unextendible product basis of dimension m.

Proof : Consider the decomposition H =
N⊕

n=0
H(n) =

N⊕
n=0

(S(n) ⊕ T (n)). We know that

S is completely entangled, so any subspace of it is also completely entangled. S⊥ has a

product basis, and also by the definition of H(n),S(n)⊕T (n), also has a product basis for

every n. Therefore S⊥ ∪ S(n) = S⊥ ∪ (S(n) ∪ T (n)) also has a product basis. Similarly

S⊥ ⋃
(

⋃
n∈M

S(n)) also has a product basis for any subset M of {0, 1, . . . , d1 + d2 − 1}.

As dim(
⋃

n∈M
S(n)) =

∑
n∈M

dim (S(n)) =
∑

n∈M
(an(d1, d2)−1), and the formula for an(d1, d2)

is as in (1.1), we may choose a suitable set M such that dim (
⋃

n∈M
S(n)) = m−(d1+d2−1).

Now it should be clear that any product basis of S⊥ ∪ (
⋃

n∈M
S(n)) does the job.

Here is an example to show that in general even if a subspace M is completely entangled
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M⊥ may not be spanned by product vectors. In such strange cases neither M nor M⊥

are spanned by their product vectors. So by the result of Horodecki [2], states with

support equal to M⊥, as well as states with support equal to M are entangled states!

Example 2: Take k = 2, d1 = d2 = 4, and identify vectors from H1 ⊗ H2 with 4 × 4

matrices as in Example 1. Now take

M = {[aij]0≤i,j≤3 : 0 = a00 = a01 + a10 = a02 + a11 + a20 = a03 + a12

= a21 + a30 = a13 + a22 + a31 = a23 + a32 = a33}

Then

M⊥ = {[aij]0≤i,j≤3 : a01 = a10, a02 = a11 = a22, a03 = a12,

a21 = a30, a13 = a22 = a31, a23 = a32 }

It is easily seen that the set of rank one elements in M⊥ is given by

R = {c[λi+j]0≤i,j≤3 : c ∈ C, λ ∈ C} ∪ {c[aij] : a33 = 1, aij = 0 otherwise } and R does

not span M⊥. Here M is completely entangled (so it has no non-trivial product vector)

and though M⊥ has product vectors it is not spanned by them.

Note that R⊥ = {[aij] :
∑

i+j=n
aij = 0 ∀n} = S, which is completely entangled. So R

still forms an unextendible product basis in H1 ⊗H2.
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