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Abstract. Consider a sequence X, = Z;’;O ci€k—j, k > 1, where ¢;, j > 0, are
constants and §;, —oo < j < oo, are iid random variables belonging to the domain
of attraction of a strictly stable law with index 0 < o < 2. Let S; = Z?ﬂ X;. Under
certain conditions on the constants c¢; and on the distribution of £;, it has been established
elsewhere that for a suitable slowly varying function ; (n) and for a suitable constant 0 <
H < 1, the sequence n~ k) (n)Y°7_, f(Sk, Sks1, .-, Skir) converges in distribution
to LY [% f. (z)dy where f, (z) = E[f(z,z+ S1,...,x+5,)] and LY is the local time
at 0 of the Linear Fractional Stable Motion. The assumptions imposed on the function
f(zo, ..., xz,) included the assumption that f(xq, ..., z,) itself is Lebesgue integrable. This
assumption does not hold in important situations such as when f (zg,z1) is such that
Yoy f1(Si, Sit1) gives the number of times S;, 1 < I < n, crosses the level 0. In this paper
the above convergence result is obtained in such situations but the result is restricted
either to the case @« = 2 (with 0 < H < 1) or to the case H = 1/a, 1 < a < 2 (in
the later situation the Fractional Stable Motion reduces to the a-stable motion ). The
reasons for these restrictions are indicated, and they appear to be largely intrinsic to
the situations under consideration. The results have motivation in large sample theory
for certain nonlinear time series models where functions of the form f(Sk, Ski1, .-y Sktr)

occur as regressions.



1 Introduction

Consider the linear process
o
Xy = Zijk—j, k>1, (1)
§=0

where c¢;, 7 > 0, are constants and §;, —oo < j < 00, is a sequence of iid random variables

belonging to the domain of attraction of a strictly stable law with index 0 < a < 2.

This last statement means that, for a suitable slowly varying function « (n), the finite
)

dimensional distributions of the process ¢ — (néﬁ(n)) Zgﬂ &, —o0o < t < oo,

converge in distribution to those of the a-stable Levy motion Z, (t), that is,
X 1 [nt] rdd
t— (nenm) Y& 25 2., 2)
7j=1

see for example Samorodnitsky and Taqqu (1994) for the definition of a-stable Levy
motion. Without further mentioning we shall assume that E [§] =0 when 1 < oo < 2.
Let

Sk = i X;. (3)

Under suitable conditions (see Section 2 below) on the constants ¢; it is known that for
a suitable H, 0 < H < 1, and for a suitable normalizing constant v, = n”k; (n) with

k1 (n) slowly varying,
_ dd
Vo i) 25 Ao (1), ()

where the limiting process {Aq (%), t > 0} is a Linear Fractional Stable Motion (LFSM).
Here, by definition,

Aentt) = a/O {(t= 0™ = (<)) Zy(au) + a/ot (t— )% Z,(du),

—00

where Z,(t) is the a-stable Levy motion introduced in (2), a is a non-zero constant. By
convention, when H = 2,1 < a < 2, Ay g(t) = A, 1(t) is taken to be Z,(t). When
a = 2, the LFSM reduces to the Fractional BrownianaMotion. See Samorodnitsky and
Taqqu (1994) and Maejima (1989) for the details of LFSM.

In J(2004, Statement (ii), Theorem 3) (where J(2004) = Jeganathan (2004)), it is
shown that if

/ |E [e741] ‘p d\ < oo for some p > 0, (5)



then for any f (z) such that [ (|f(z)] + f*(z))dz < oo,

Y f(s) = 18 [ f @, (6)

where LY is the local time of the LFSM A, () at 0 upto the time ¢ = 1. (See J(2004)
for the details of the local time of the LFSM.) Further, under certain mild additional
restriction on f(z) (see J(2004, Theorem 2)), the same convergence (6) holds if instead
of (5), the weaker Cramér’s condition

lim sup |E [¢™]] <1 (7)

[A| =00

is assumed. (Note that (5) entails (7).)
Furthermore, it is shown in Jeganathan (2006, Theorem 3) that, corresponding to a

function f(zo, ..., z,),

073 Sk Sipr) = L8 / £ () da, (8)
k=1 >

for all 0 < H < 1, where
fi (@) =E[f(z,z + Si..z + 5;)]

with f.(x) Lebesgue integrable. The conditions imposed there on f(zy, ..., z,) are

2
/\f TQy ey T \ dzy...dr, < oo, 1=1,2, /</|f TQy ey T | dxr) dzg...dx, 1 < 00.

(9)

The convergence result (8) is well known for the random walk case Sy = Z?Zl &,
where &; are as earlier but with 1 < a < 2, see Borodin and Ibragimov (1995, Section 6
of Chapter III). (When 0 < o < 1, the local time of Z,(t) does not exist.) The later work
also contains references to the earlier important works, especially Skorokhod (1961). In
this case the requirements in (9) are stronger than actually needed. Specifically, the

requirements

/|f* (z)|dz < o0, /E[fQ(x,x+Sl...,x+S,«)} dr < 0o (10)

are sufficient. (Note that [ E[f*(z,x + Sy...,x + S,)]dz < oo implies [ |f. (z)]>dz <
00.) We shall briefly recall in Section 2 below the method of this random walk case,
which consists of reducing the convergence (8) to that of (6) with f(z) = f.(z), in

order to indicate that they are not directly applicable, and hence the relevance of the
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conditions in (9) in the situation (3), though the method of the present paper itself will
also in some form consist of reducing the convergence (8) to (6).

Unfortunately the integrability conditions in (9) are not satisfied in situations such
as f (20, 21) = Loy (Tox1) OF f(70,71) = |20 — 71| [(—o0,0) (ZoZ1), Where in addition
suitable moment restrictions are intrinsically involved (see below) when the conditions
in (10) are required to be satisfied. In addition the method employed in Jeganathan
(2006, Theorem 3) under (9) is not applicable for these situations. In the present paper
we obtain the convergence (8) that will include the above situations. However, we shall
restrict either to the case H = =, 1 < o < 2 or to the case o = 2 (0 < H < 1) with
additional moment restrictions. (This is in contract to the situation under (9) where no
further restrictions are involved.) These restrictions appear to be largely intrinsic to the
situations dealt with, as we shall explain below in Section 2.

In Section 2, we state the assumptions and the main results, together with the mo-
tivations for the stated assumptions. Section 3 contains the proof, which mainly consist
of reducing the present situation to that treated in J(2004).

The results have motivation in some current research in large sample theory for certain
nonlinear time series models where functions of the form f(Sk, Sk+1, ..., Sk+r) Will occur
as regressions, see for instance Park and Phillips (2001) for a specific situation where
f(Sk) is used as regressions.

Notations: In addition to the notation 2% used earlier with regard to the convergence
in distribution of ransom processes (see (2), = stands as usual the convergence in
distribution of a sequence of random vectors, Z denotes the equivalence in distribution
(in law). Throughout below we let ¢ (A) = E [¢*¢1]. Both I5(X) and I (X € B) will
stand for the indicator function of {X € B}. The notation C stands for generic constants

that may differ even within the same expression.

2 Assumptions and the main result
To begin with, let us indicate that in the situations of the present particular interest,

appropriate moment restrictions are intrinsically involved. First consider the situation

f(@,9) = Lo (2Y) = [coo0) () Li0,00) () + L(0,00) () T(—o0,0) (¥) 5

where the corresponding > ' | f(Si, Si+1) gives the number of times S;, 1 < | < n,
changes its sign. If we take fi (2,7) = L(_oo0] (2) L(0,00) (¥) + Ijp,00) (%) L(—o0,0) (¥), then
the corresponding Y, f1(S;, Si+1) gives the number of times S;, 1 <1 < n, crosses the
level 0, and the treatment of which is the same as that for f (z,y) in addition to the fact
that the limiting distributions of both cases will coincide.

In this case, we have
fi(@) =E[f (z, 2+ X1)] = [ () P (X1 > —2) + Lo,00) () P (X1 < —7)
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and hence, assuming that E [| X|] < oo,
/ f. (@) dz = / P (X1 > 7)da = E[|X4]] < oo.
—00 0

Further, noting that E [f? (z,z + X1)] < f. («), we also have [°° E[f? (z,z + X1)]dz <
Ef1X1]].

The requirement F [|X;|] < oo is implied by the requirements F [|£]] < oo and
> e lej| < oo, where E[|¢]] < oo holds when o > 1.

Next, consider the situation

f(z,y) =2 —y| T o) (zy) -

It can be checked as in the first example that when E [|X1|3} < 00,

/00 fi(x)dx=F [|X1|2} , /oo E [f2 (x,a:—l—Xl)} de =F [|X1|3] )

Thus in this example the requirement £ [\51\3] < 00 is required.

Another example of related interest is f (z,y) = |y| L(_co,0) (zy), where [*° [, (z) dz =
SE[|X1)°] and [ E[f?(z,z + X1)]dz = CE [| X:]].

Some of the steps of the method of the present paper will in part consist of reducing
the convergence (8) to essentially a form of the convergence (6). This is the method
employed in the random walk case S, = Z?Zl ;- We next recall it in order to indicate
the further conditions, especially on f(zg,...,z,), that will be needed in the present
situation (3) in order to effect this reduction. For convenience consider the case f(z,y),
in which case we have f, (z) = E[f (z,z + &)]. Then noting that

f« (Sk) = E[f (Sk, Sk+1)| S1, -+, Sk] (11)

in the present random walk case Sy = Zle ¢, the differences na ' (n) (f (S, Sk1) — fx (Sk)),
1 < k < n, form a martingale difference array, and the sum of their conditional variances

is given by

Siveesi] < (40 )" S s 5

S8 [ (04K ) 5 (5 ) = £ (50)
=GP

where f,. (Sx) = E[f? (Sk, Sk+1)| S, ---, Sk]- Note that f.. (z) = E[f? (z,z + &)]. When
[ fur (z) dz < 00, the expected value of na~1k (1) S37_, f.. (Sk) is bounded (see J(2004)
or the proof of the Lemma 4 below). Therefore (12) is of order O, (né_ln (n)), in
particular it converges to 0 in probability, because 1 < a < 2. This implies

n

na"r (1) D (f (Sky Skn) = £ (Sk)) 5> 0.

k=1



Because na~'x (n) Yp_, fu (Sx) = LI [ f. (z)dx (see (6)), this gives the required
convergence for na 'k (n) vt [ (Sks Sk41)-

It is clear that the preceding arguments use (11) in an essential manner, which is a
consequence of the Markov structure for the sequence S; = Zé‘:l &, I > 1. Under the
integrability conditions in (9), some approximate form of such a property for the case
(3) may be considered to be implicit in the arguments in Jeganathan (2006, Theorem 3),
though the arguments used there are different from the above. Because now we do not
have the conditions in (9), we need to obtain the property in a different manner, which
will require further appropriate conditions.

With these preliminaries, we now state the conditions. We first recall the conditions
for the convergence (4). Assume that the coefficients ¢;, where ¢y = 1, of the process
(1) satisfy (without further mentioning) one of the following two mutually exclusive

requirements.

(A1): (The case H=2,0< H < 1).

. cj| < oo with ooc-;éO.
> lejl > ¢
=0

J=0

(A2): (The case H # 1,0 < H <1). ¢; = FE1=Gu(y), with H # L0<H«<I,
where u(3) is slowly varying at infinity, satisfying

o0

1
chz(]whenH——<0. (13)
§=0 @
Now let
nflu(n)k (n if (A1) is satisfied
(ijo cj) nak (n) if (A2) is satisfied,

where « (n) is as in (2) and u(n) as in (A2). Then under (Al) or (A2), v, Sy J4¢
Ao m(t). See, for example, Kasahara and Maejima (1988, Theorems 5.1, 5.2 and 5.3.).
Here it is to be understood that under (A1) the limit is Z,(¢) with 1 < a < 2. Recall
our convention that Z,(t) = A, 1(f) when H=11<a <2

Next, in order to introduce tfle restrictions on the f(zo, ..., z,), define,

fie(o, ooy ) = sup{ f(@o, Uy ty) = |y —us| <e,1<i<r}, €>0,

f (@, coyzy) = inf {f (0, ureey ) £ [ — i SE, 1< <1}, €>0.



(Here note that the first argument z; is left unaffected when the sup is taken.) Further,

for a function h(xy, ..., z,), define, letting

CjZO 1fj<0,

h (:c, T+ chgj, N Z (cj+ ... +¢jort1) @-)] :
=0

J=0

Mh,,n (.I) = E

Here the integers v, will be taken to be as defined in (15) below. Note that, because

Vn T 00,
(Zijj,...,Z(Cj+...+Cj_7-_|_1) §J> ﬂ) (chgj?“WZ(cj+"‘+Cj—7"+1)§j> = (Sl,...,S,,-).
7=0 7=0 j=0 j=0

We impose the following restrictions on the function f(zo, ..., z,). (These restrictions

are verified below for the motivating examples indicated earlier.)
(BO): Thereisan>0and a0 <6 <1— H, such that

max ]E [ £(St, Sig1yer Sigr)|] < O,

1<i<[n"

(Here note that the max is restricted only to 1 < I < [n"] where > 0 can be

chosen arbitrarily small.)
(B1): For some &9 > 0, sup,, gcccey My, 2, () < 00 for each x.
(B2): For some &g > 0, SUP,, geecey [ o (M|fi,5‘7n (@) + My, 20 (:L')) dx < C.
(B3): lim,_,olimsup,,_,o, [*o, My, .0 (z)dz = [7 FE|[f(z,z+ S1,....,z + 5,)] dz.
(B4): There is an €y > 0 and functions hy (2o, ..., z,) such that, for all 0 < & < &,
\frel <hse and My, ,(z) = Elhs, (2, 2+ S1,...,0+5;)]
for almost all z and

/ My, . (x)de — / Elhie(z,2+ 851, ..., +5,)]de < 0.

Throughout below, the sequences k, and v, stand for integers such that

(1-#) n T
mn:[n2 }, Vnzl ] (15)

logn




Note that = — 0.

We now state the main result of this paper in which the first statement deals with
the case |f(zo,...,2,)| < C and the second one deals with the case where f(z, ..., z,) is
not necessarily bounded. Third statement relaxes the restriction (5) to (7) under some
further mild restrictions on M)y, ,|» () defined earlier.

Theorem 1. Assume that f(xo, ..., z,) is such that the conditions (B0) - (B4) are
satisfied. In addition, in the Statements (I) and (II) below assume that (5) holds.

(I):  Suppose that |f(zxo,...,x,)| < C. Suppose in addition that either one of the
following two requirements hold, for a vy, of the form (15).

(a): 1<a<2 H=21 andthereisal <7 <« such that > lel" =0 (n=H).

(b): 0 < H <1 and E[|&[] < oo for p > 3. When H # % assume in addition that

p= %f and when H =  assume in addition that Z;iun 2=o (n—%>

Then the convergence (8) holds.

(II): (Here f(xo,...,x,) is not necessarily bounded.) Suppose that

()0 < H <1 and E[|&"] < oo for p > 3. When H #  assume in addition that

p > max { (I_ZH)Q, 1432;12{1212 }, and when H = % assume in addition that Z;’;Un c? =

)

Then the conclusion of the statement (I) holds, that is, (8) holds.

(III). The preceding Statements (II) and (III) hold also if instead of (5) the weaker
condition (7) is assumed, provided that in addition My, ., (x) is locally Riemann inte-
grable and there is are d > 0 and g9 > 0 such that sup,, .., ffooo (SUP\u—x|g(5 Mp, in (u)) dr <
0.

Remark. The proof of Theorem 1 will also give

[nt] [’}
WY (S Siar) 24 22 [ 1 (@) d (16)
k=1 e

This can be strengthened to the convergence in the Skorokhod space Dg [0, 1] as follows.
First suppose that f(zo,...,z,) > 0. Then the left hand side in (16) is nondecreasing in
t. In such a case the convergence in Dg [0, 1] is a consequence (see Jacod and Shiryayev
(1987, Theorem 3.37 (Statement (a)), page 318 and Corollary 3.33 (Statement (b)), page
317)) of the fact that the limit is continuous in ¢, that is, almost all trajectories ¢ — L2

are continuous. The continuity of ¢ — L{ is well known in the case H = £ or in the
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case H = 2, which are the cases involved in Theorem 1. (In the general case 0 < o < 2,
0 < H < 1, the continuity of ¢t — LY is a consequence of the inequality (see J(2004,
Remark 8 at the end of the paper)).) E [(L? — L(S))Ql} <Clt—s/""" forall 1 > 1.

To remove the above restriction f(zy, ..., ;) > 0, the proof below also gives

[nt] [nt]

n- 7n2f+ Sky ooy Skar)y M %Zf (Sky -y Skr)

fdd (LO/ f+ ) dz, LO/ o ( >’

where f* and f~ are respectively the positive part and the negative part of f. This
convergence can be strengthened to that in Dge [0, 1] using the same result in Jacod and
Shiryayev (1987) mentioned above. This will strengthen the convergence (16) to that in
Dgr0,1]. W

Some further comments on the statements of Theorem 1 are in order. As noted
earlier, when (9) holds the conclusion of Theorem 1 holds without any of the further
restrictions (a) - (c). Regarding the restrictions (a) - (c), first note that the case H # 1,
o # 2, is excluded in (a) of the Statement (I), whereas the case H # £, o = 2 is 1ncluded
in the Statement (II). The reason is that for the former case we do not know of any
estimate analogous to the sharp bound (21) below invoked in the later case.

Also note that the condition on ¢;’s for the case H = 3 in the requirement (b) is
much weaker than that in (a) for the case o = 2, but in (a) no extra moment condition
is assumed. Further note that in each of the requirements (b) and (c), the rate of decay
of the constants c; for the case H = % is tied to an appropriate extra moment condition.
In applications this rate of decay can often be identified. A related context in which a
similar restriction is required for a similar reason is Davydov (1970), where the functional
CLT for the process v, 'Spy (=2, H # %) is dealt with and where the severity of the
moment restriction is tied to the closeness of H to 0. (The form E[|& "] < oo with
p > max {2, % appears to a best possible one available presently; note v, = nfu (n).)
In the present context (where note that n~'y, = n~0~Hy(n)k (n) is the normalizing
factor) the severity of the moment restrictions are tied to the closeness of 1— H to0 H

We now verify (B0) - (B4) for the case f (z,y) = I(_w,0) (#y). (Essentially the same
arguments apply also for the other examples.) The condition (B0) is obvious. For (B4),
we choose

hie(@,y) = |fre (@ 9)] = Licooo) (%) Lo,y (¥ £ &) 4 Lg,00) (%) L(—o0,0) (¥ F €) -

Letting

Vn

Xvn = Z &),

=0
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My, n (@) = E[|fee (@ 2+ x0)|] = Lcoo0) (2) P(S1 > —2 F €)+],00) () P (S1 < —z % €)

for all = (because x,, = S; and y — P (S; < y) is continuous.) Further

/M|fi,s|," (x)dz = E [(xs, £6)" )|+ E [(xn F&) | = E[(Si L&) ]|+ E[(S1 Fe)].

This verifies (B4), and implicitly (B2) is also verified. Because |fi .| = fi. and
E[(S o)+ E[(SiFe) ] = B[S = /E[f(x,x—i—Sl)] dr  ase— 0,

(B3) is also verified.
3 Proof of Theorem 1

For simplicity we present the proof for the case r = 1, that is, to the case f(zo, 1), and
the required modifications needed for the general case f(zg, ..., ;) are mostly essentially
notational. Also, for convenience, we shall restrict below to the situation where « (n) in
(1) and u (n) in (A2) are such that x (n) =1 = u (n), so that we can take y, = n”.

We have .

Si=> (g(l—5)—g(1—j) €J+Zg )&,

j=—0o0 j=1

where we let

Define for v, < [l and | > k,,

0 l—vn
Su= > (gl—45) —g(1—1j) fﬂrz )&
j=—00
0 l—vn
= > (gl +1=5)—g(1=3)&+ D gl +1- 5.
j=—00 j=1

Note that Sy, ; and S;,; depend on v,
In the Lemmas 2 and 3 below we shall use the following four inequalities. First, if
E[&]=0and E[|& "] < oo, p > 2, we have (Whittle (1960))

00 p/2
< CE[l& ) (Z d?) (17)

e 0d32<c>o

for constants d; such that ) -
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Second, if 0 < a < 2, then (see for instance Avram and Taqqu (1986, Lemma 1,
Section 3, page 408))

> dig
j=v

for constants d; such that Y 22 |d;|" < oo.
To state the next two inequalities, note that, with g(k) as before (and when u (n) =1
in (A2))

T

< CE[|&]] Z |d;|" forall0<7<aandv >0 (18)

i=v

E

k
g(k)=> ¢~ Ck"2 under (A2). (19)
s=0

Then, as the third inequality, we have for any 0 < 7 <, 0 < o < 2,

v—1
v ()4
§=0

T

E <. (20)

This inequality follows using the arguments in for example Borodin and Ibragimov (1995,
page 9).

Fourth, suppose that F[§;] = 0 and E [|&|°] < oo for s > 3 . Then, noting (19), we
have (using Bhattacharya and Ranga Rao (1976, Corollary 17.13, 179)),

v—1

vy " g(i)4

Jj=0

— 90

VHi

14

<Cv 7a (21

v

(M

P >a,| =P &

> a,

polm| ~—

1
=0
for every sequence a, of real numbers such that a, > C (s — 2 + §) /log v for any 6 > 0.
Recall that the constants v, and &, are as in (15). Also, in all the statements below,
appropriate conditions of Theorem 1 are assumed to hold.
Lemma 2. Assume that either one of the requirements (a) and (b) of Theorem 1

(with S}, | and Sy, corresponding to v,). Then when kv, — 0 suitably slowly,

1 n
7 2 AP (IS0 = Sul > ) + P (In " (Si = S3)| > )} =~ 0.

l=Kkn

Similarly under the requirement (c) of Theorem 1,

S (P

l=Kkn

>¢e)+P (‘n_H (Si—S)

>5)}—>O.

% o *
nl,1 nl

Proof. First assume that (a) holds, in which case recall that H = é, l<a<?2
Note that

l—vpy 00

* * — 2

il — Spi = E & = E ¢i&;.
j=—00 J=Vn

11



Hence, using (18), for any 7 for which 1 < 7 < ¢,

P ([Sp—Sm| >¢) < CZ [

Jj=vn

and hence —L Y1 P (|Sh, — Syl >¢€) < COn” > e, lej|” — 0 when 7 is such that
(a) of Theorem 1 holds.
Next, note that

vn—1
2
= 9(y

3=0

Hence, using (20), for any 1 < 7 < «,

Vn—1 T
r(1-H)
n Y g()g| | < Onttemu < onf 0
=0
because 1—T+T(12—H) ;(1+H)+1<0, by choosing o > 7 > 2z = £ (Note
that because o > 1, 1 < fTa < «.) Hence nl—H len ‘n (S, — Sz, )| > 6) — 0.

This proves the first part of the lemma under the requirement (a).

Now suppose that the requirement (b) of Theorem 1 holds. We have, using (17),

c 00 p/2
Plls-sil>9 <5 (Y4

J=vn

H#1/2,then 3322 3 ~Cy 22 D71~ Cvi™=Y_ Hence in view of (1) (recall
SeEV

n~ 2 vy~ kv, ~logn ),

1-H

Z P (|S:Ll’1 N S:Ll| > 8) S CnHV’IIIJ(H_l) = O (n_2l/n>p(H_1) n g(H 1) +H — O;

l=Kkn

nl—H

because H — £ (1 - H ) < 0 is equivalent to p > which is an assumption. This

(1- H)Z’
o 2)1)/2

convergence holds when H = 1/2 also because (Zj:,/n 7

= o (n™") by assumption.
H
n
(Vn) >

-2
1-a \PH-55= a4mpr _ (-m)(p-2)
vy, n 2 4 .

~ (n—T

Next, we have using (21),
vp—1

1o 9(4)
vt Z VH—1/2€j > €

j=0 Vn

P(n "t (S,—5y)|>¢e) = P (

Cl/n 2

IA
|
53
&
N
S
N——
é
S

(22)
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(1+H)pH 2(1+H)
2

Here + (I_Hi(p =2 > His equivalent to p > m, which is always true because

% <2andp > 3. Thus =7 >/, P (|n™# (S, — S;,)| > &) — 0. This completes

the proof of the first part of the lemma.

The proof of the second part under (c) is essentially the same as the preceding proof
(Ut+HpH | (A-H)(E=2)
2 4
which is the assumption in the case H # 1/2. In
2(3—H)
1+H+2H? "

under the requirement (b). Note that in using (22), we now require
2(3—H)

THHT2l

the case H = 1/2, noting that p > 3, we always have p > 3 >

1, which is equivalent to p >
This completes
the proof of the lemma. W

In view of Lemma 2, we obtain

Lemma 3. The difference between nl%H Z?:Kn f(S;, Siy1) and

1 n
l—H Z FOSLS)L(|Sn0 — Si| <& |n " (S —5y)| <e)

l=Kkn

converges to 0 in probability.
Proof. This is clear in the case of the second statement of Lemma, 2, because its con-
clusion implies sup,, <<, (‘521,1 — 82|+ |n7H (Si— S5)|) — 0. In the case of the first
statement of Lemma 2, the expected value of the difference in the statement is bounded

in absolute value by nl% Z?:nn {P (‘S;;l,l - S:Lz‘ > 8) + P (|n_H (St —=Sx)| > 5) }, be-
cause |f(z,y)| < C. N
Now, using
St+1 = Spp + Si41 — Spa + Sng — S (23)
we have
f (St Sl (‘ nl| <e¢, |n (S = Sp)| <e)

< f-l—,e (Sl’ Snl + 5’H-l Snl 1) I (‘ B (Sl S* ) )
> [ (SlaS:u + Si41 — nll) (‘ 11 nl‘ <e, |” (81— )‘ < 5)

Hence, by invoking Lemma 2 again,

ni(liH) Z?:nn f(Sl’ Sl-l-l)
p <n UHNT  Fre (S Siy + Sier = Sy ) T(jn 7 (S Syy)
> p~ (=1 Z?:nn foe (Sl: Spi+ Si41 — 521,1) I (| (S —Sy)

<eg) | =1L
<e)

Then the idea of the proof of Theorem 1 will consist of completing the steps: (i) the
bounds in the preceding statement converge in distribution, as n — oo first and then

£ — 0, to one and the same limit, and (i) the remaining part n=0=#) 3" £(S, S, 1) 5
0.
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Lemma 4. There is a g > 0 such that for all 0 < & < &y,

-0 ZE (Sts Spy + Seer = Syp1)] < C when he (2,9) = |fare (2,9)] o1 [fre (2,9)]

l=Kn

nl’

Proof. S, and (S S S — S:Lm) are independent, so that we can write

E [hs (Sl, Sp1+ Sip1 — S;:l,l)} = Elp (Sy)]

with
¢n (@) =FE [he (x+ S — S}, x4+ S0 — Sia)] -

Now

Upn—1 Vn
(S St St41 — 521,1) = (Z 9(vn — 1= )&, Zg(Vn - j)@')
j=0

=0
and 37" g(vn — )& — Yoy g(vn — 1= §)& = 30" €, —i&;. Hence (see (23))

on(2) = Elhe (@ + T, 2+ T + X)]

where
vn—1 Vn
T =Y gn—1-0&  Xo.=_ & (24)
j=0 Jj=0
First suppose that (5) holds. Then, noting that ¢, (z) = 5= [ e @, (A) dA, where

©n (A) is the Fourier transform of ¢, (), and taking x = we have

o | E [ (S —lH/‘E )

nl’

A
(3l

sup |72 )] < [ on@)do= [ Blh oo+ x.)ldr<C. by (B2),

where

and, noting that S¥, = ZJ . 9(7)¢; and v, < [£] when [ > &y,

/‘E anl‘d/\ /H‘w(ng )‘d/\< I ( )‘d)\<0

see for instance J(2004, Lemma 17). Thus |E [¢ (S;;)]| < . Hence, noting 0 < H < 1,

l=vp, =1

14



The same holds under (7) and under the further restrictions of the statement (III) of
Theorem 1, see J(2004, Section 6). This completes the proof of the lemma. W
Lemma 5. Let

Gne (V) = E [foe W+ T, y+T), +x,) L (|n7"T,| <e)]
with (T, , Xv,) as defined in (24). Then the difference
1 < -
i Z Jie (Sla Spr+ Si1 — 521,1) I (|n_H (S — ;:l)| < 5) T i Z Gne (Sn1) 2 0.

=k, I=Kknp,

nl
Proof. Let E; denote the conditional expectation given {; : ¢ < j}. Further let

Gr = fre (S, S+ S — Spya) I (‘"_H (St = Sp)

< 5) .
Then note that (similar to ¢, (x) in the proof of Lemma 4)

Ei_y, [Gi] = e ( ;l) .

Now for k < Kk, and [ > k,,,

a = E (Z Gy — By [Gl])”

l=Kkn

= K (Z (G — Ej_p 41 [Gl])) +FE (Z (Bi—k1 [Gl] — B [Gl]))

l=Kn l=Kn

(Z (Gi = Bk [Gz])) (Z (Ej-r+1[Gj] — Ej- [Gﬂ))

l=Kn j:'ﬂn

+2F

The first term on the right hand side is ax—;. Because E;_x.1 [G)] — E;—x [G;] are mar-

tingale differences, the second term is, by Lemma 4, bounded by

Z E [G?] < Cnt=") = p,, say.

l=Knp,
Then the third term is (by Cauchy-Schwarz inequality) bounded by 24/ax_1b,. Hence
ar < g1+ by + 24/ag_1b, = (Va1 + \/IZ)Q, that is, \/ax < \/ax_1 + Vb, and hence

Vax < kv/b, because ag = 0. Hence a,, < v2b, so that n=2(1=H)q, < Cv2n=0-H) 0
by assumption (15). Thus

Ay, = E (i (Gl — El—un [Gl])> — 0.

I=Kkn,

15



Because E;_,, [G]] = gn: (S),), the proof is complete. W
Lemma 6. )
n N (81 S) 2 0.
=1

1-H
2

Proof. Recall that x, = [n—} Letting po, = n and p1, = [n'~7]

I

Pon

pon DT £ (S, Si1) = 0, (1)

l=pin

by Lemma 4 and by the remarks immediately prior to that lemma. Because this is true

also when the pair (pon, p1n) is replaced by (pin, p2n) With po, = [p17 7],

Plin

o D F(SLSi) =0, (1).

l:P2n

Hence
Pln

n~ N (S Sia) B 0.

l=p2n

Continuing this a finite number of times

Pln

n~0 N F (S, Sipr) B 0

=[]

for any S of the form 8 = (1 — H)™ for any integer m > 1. Now choose m such that
f < min (n,1 — H — 6), where 1 and 6 are as in (B0). Then

[°]
n N B (S, Sl < C [ e ) 0.
=1
This completes the proof of the lemma. M
Lemma 7. With ¢, (y) as in Lemma 5,

w0 S g (Si) = 18 [ 1. ) dy

=Ky,
as m — oo first and then ¢ — 0 where f, () = E[f (z,x + X1)].
Proof. Assume that (5) holds. According to J(2004, Statement (ii) of Theorem
3 and Remark 4 of Section 3), the convergence in the statement of the lemma holds
for n= = Y70 g, (S1) (that is, when gy (S;) is involved in place of g (Sy;) ) if the

following conditions hold (note n™'x, — 0).
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(i) SuP,ocecey S (|Gne ()] + [gne (2)[?) dz < 0o for some gy > 0,

(ii): lim,_,osup,, f{\z\>anH} |qne (x)| dz = 0 for every a > 0, and

(iii): lim. o sup, [ gne () dz = [ f. (z) dz.

Now, because S; — S, = Z_lj:l—un—f—l g(l — 7)&; with 2 — 0, it is easy to see that the
same arguments in J(2004) will give the same convergence for n~(!~) Y i, Gne (Si)
also. (Specifically, the arguments of the proof of the approximation in Proposition 6 of
J(2004) under (5) hold for n=(=#) 3" g, (S%) also.)

We now show that (i) - (iii) above follow from (B1) - (B4) (with 7 = 1). Recall that
Yo, 2 Yoo ci€j, see (24). We have

/ |Gne (2)|dz = E / fie (@ + Ty, 2+ Ty + x0)| L (|07, | <e)| do
{lz|>anH} {lz[>anf}

< / Ellfer (v, + )] d
{lz|>(a—eo)nt}

when 0 < € < g9 < a, so that (ii) follows from (B4) by an extended version (Young)
of Lebesgue dominated convergence theorem (see Loeve (1963, page 162)). In the same
way (i) follows from (B2). Now note that

/qm (x)dx = /E [fi,g (z, 2+ x0,) L (‘n_HT,,n‘ < 6):| dz,

and
/E [ fre @2+ x| T (07T, >¢)] de =0

by (B4) using the extended dominated convergence theorem as above because, in view
of P (|n~HT,,| >¢) — 0 and by (Bl), E [|fs. (z,2 + x0,)| L (|nT,,| > £)] — 0 for
each z. Hence (iii) follows from (B3). This completes the proof of the lemma when (5)
holds.

In the same way, now invoking an appropriate modification of Theorem 2 in J(2004)
(in the same way the modification of Theorem 3 in J(2004) is used above), the proof of
the lemma is obtained under (7) and other restrictions in the statement (III) of Theorem
1.

This completes the proof and hence the proof of Theorem 1 is completed. M

References

1. Avram, F. and Taqqu, M.S. (1986). Weak convergence of moving averages with
infinite variance. In Dependence in probability and statistics: A survey of recent
results, Editors: Eberlein, E. and Taqqu, M.S., 399 - 415. Birkhauser.

2. Bhattacharya, R.N. and Ranga Rao, R. (1976). Normal approzimation and asymp-
totic expansions. John Wiley, New York.

17



10.

11.

12.

13.

14.

Borodin, A.N. and Ibragimov, I.A. (1995). Limit theorems for functionals of ran-
dom walks. Proceedings of the Steklov Institute of Mathematics. 195(2), 258+viii

pages.

. Davydov, Yu.A. (1970). Invariance principle for stationary processes. Theory

Probab. Appl., 15, 487 - 498.

Jacod, J. and Shiryayev, A.N. (1987)). Limit theorems for stochastic processes.
Springer-Verlag, Berlin.

. Jeganathan, P. (2004). Convergence of functionals of sums of r.v.’s to local times

of fractional stable motions. Annals of Probab., 32, no. 3A, 1771-1795.

Jeganathan, P. (2006). Limit theorems for functionals of sums that converge to
fractional stable motions. Available at http://www.isibang.ac.in/ statmath /eprints/

Kasahara, Y. and Maejima, M. (1988). Weighted sums of i.i.d. random variables
attracted to integrals of stable processes. Probab. Theory Related Fields. T8,
75-96.

Loeve, M. (1963). Probability Theory. Third edition. Van Nostrand. New York.

Maejima, A. (1989). Self-similar processes and limit theorems. Sugaku Ezpositions.
2, 103-123.

Park, J.Y. and Phillips, P.C.B. (2001). Nonlinear regressions with integrated time

series. Econometrica. 69, 117-161.

Samorodnitsky, G. and Taqqu, M.S. (1994). Stable non-Gaussian random pro-

cesses: Stochastic models with infinite variance. Chapman and Hall, New York.

Skorokhod, A.V. (1961). Some limit theorems for additive functionals of a sequence
of sums of independent random variables. Ukrain. Mat. Zh. 13, 67-78. (English
Transl. in Selected Transl. Math. Statist and Prob., 9, 159-169, 1970, Amer. Math.
Soc., Providence, R.I.)

Whittle, P. (1960). Bounds for the moments of linear and quadratic forms in
independent variables. Theory Probab. Appl., 5, 302 - 305.

18



