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Abstract. Consider the arrays { X,k = 1,2,...} and {Yu; k£ = 1,2,...} adapted to
the same array {An.;k=0,1,2,...} of o-fields such that A, ;1 C Ay for all £ > 1,
n > 1. Further, for each n > 1 and ¢t € [0,1], let k, (), k, (0) = 0, be integer val-
ued, non-decreasing and right- continuous stopping times adapted to {A,x; £k =0,1,2,...}.
Conditions are given under which (Z Xnk, Zk"(t (Zk ! Xnj) Ynk> ), for a suitable
function ¢ (u,v) (in particular for g (u, v) = v), converges in distribution to (S (¢), R (%))
in the Skorokhod space Dg: [0, 1], such that S (¢) is an additive process and, condition-
ally on (S (u),0 <wu <1), the process R (t) is (conditionally) additive, that is, R (¢)
will be a suitable mixture of an additive process. The same convergence holds for
( s ank, Z nk) ( ’;’;(f) Xk, ZEZ]I Ynk) also. The results are motivated by
several apphcatlons, some of which are indicated here, and some are presented elsewhere.

1 INTRODUCTION

Let {Xuk; k=1,2,...} and {Y,;k =1,2,...} be arrays of random variables and let
{Ank; k=0,1,2,...} be an array of o-fields such that A, ;1 C Ay forallk > 1, n > 1.
Assume, throughout this paper, that both { X,k =1,2,..} and {Y; k = 1,2,...} are
adapted to {A,x; £ =0,1,2,...}, that is, both X, and Y,,; are A, measurable for each
k>1,n>1.

Further, for each n > 1 and ¢t € [0,1], let k, (t) be stopping times adapted to
{Aur; k=0,1,2,...}, that is, the event {k, (t) =1} € Ay, [ = 0,1,2,... In addition,
the sample paths of k, (t) are integer valued, non-decreasing and right-continuous with
k, (0) = 0.

Let,
kn(t)

Z Xor, t€[0,1].



The conditions under which S,, (t) 14 5 (t), in the sense of convergence in distribution

of all finite dimensional distributions, or S,, () = S (¢) in the Skorokhod space Dg [0, 1],
where S (t) is an additive process, have been studied in several places, see for example
Durrett and Resnick (1978) and Jeganathan (1983), Liptser and Shiryayev (1989, Chs 5
- 7) and Jacod and Shiryayev (1987, Ch. VIII). (See below for the notations 4 and
= in Dg|0,1].) Here, an additive process is by definition a stochastically continuous

process with independent increments, see for example Gikhman and Skorokhod (1969,

Ch. 6).
Now let
kn (t) kn(t)
=Y Y, Rt)=D g (ZXW,YM>
k=1 k=1

for a suitable function g (u,v) (as specified in Theorem 2 in Section 2 below).

In this paper we study the conditions under which (S, (¢), R, (t)) = (S (t), R (%))
in Dg:[0,1], such that S(¢) is an additive process as before and, conditionally on
(S (u),0 <wu<1), the process R(t) is (conditionally) additive, that is, R (¢) will be
a suitable mixture of an additive process. Results of the same form are obtained for the
sequence (S, (t), R (t)) also. The same convergence holds for ( Ec":t]l Xk, Zi":(f) Ynk)

or ( Zl(f) Xnk,zgcn:t]l Ynk) also.

In the important special case in which one of limits S (¢) or R (¢) has only the jump
component and the other has no jump component, the required conditions will involve
the arrays { X,k = 1,2,...} and {Y,k; k£ = 1,2,...} only separately. In the general case
we shall also require a condition to the effect that certain point processes associated with
the limits S (¢) and R (¢) do not jump simultaneously.

It may be noted that the present results may not be confused with those in for
example Jeganathan (1983) or Liptser and Shiryayev (1989, Chs. 5 - 7) or Shiryayev
(1987, Ch. VIII, Section 5) where also mixtures of additive processes occur as limits but
the conditions involved there are in terms of the convergence in probability, whereas in
the present situations such conditions will not be satisfied.

In Section 2 we state the conditions and the main results. In Section 3 some illus-
trative examples are presented which partly motivated the present investigation, but the
applications that will require the full force of the present results to certain network traffic
models are presented separately (Jeganathan (2006b)), in view of the importance of the
contexts of those models. (Another application is given in Jeganathan (2006a, Lemma
4).) Proofs are presented in Sections 4 and 5.

Notations and terminologies. Ij;<,} stands for the indicator function of the
interval [—7, 7] of the real line. The indicator function of an event such as {|X,;| < 7}

will be denoted by Iyx,;<r}. a A b and a Vb stand respectively for min {a,b} and
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max {a, b}. The real line will be denoted by R, and R — {0} = (—o00,0) U (0, o0).

Convergence in distribution of a sequence of random vectors (of the same order)
will be denoted by =L Also, &, SN & as n — oo first and then € — 0 means that
lim, 0 lim,, o0 p (€ne, €) = 0 where p (&6, €) is the Lévy distance between the distribution
functions of &, . and &. (See for instance Loeve (1963, page 215) for the Lévy distance.)

Convergence in probability will be denoted by 2. By Ene % 0 as n — oo first and
then € — 0, we mean that lim,_,o limsup, oo P [|&n| > 1] = 0 for every n > 0.

The notation 2% stands for the convergence in distribution of a sequence of random
processes in the sense of convergence in distribution of all finite dimensional distributions.
Also, if the index set of the processes involved is not clear from the context it will

be explicitly indicated; for example in the form S, (¢) X g (t), t € J, instead of

S, (t) £2 S (¢), where .J C [0, 1].

The notation = in Dge [0,1], ¢ > 1 means the convergence in distribution of a
sequence of random processes in the Skorokhod space Dgq [0,1]. (Dgq [0, 1] is by definition
the collection of all functions from [0, 1] to R? that are right continuous and admit left-
hand limits, equipped with the Skorokhod topology, see Billingsley (1968, Ch. 3) for
Dy [0,1] and Jacod and Shiryayev (1987, Ch. VI) for Dg. [0,1], ¢ > 1.)

The process S (t), t € [0, 1], will be abbreviated to S, which will also stand for the
trajectory of the process depending on the context.

We shall use the abbreviations

P, [ . ] - P[ . \An,k,l} , By 1 [ . } - E[ . |An,k,1]

for the conditional probability and the conditional expectation given A, ;.
In Section 5.2 below, we shall let F}Y | () = Py—1 [Yar < z], and in Sections 4 and 5,
we shall let Fffl (z) = P [XT(JC) < x} where X = X,p — ax,, (r) with ax,, (7) as

defined in (2) below. Similar notations such as Fkyfl (y) and F,CXL)I (z,y) will be defined
analogously later when their use arises.
Throughout the paper, we let k, = k, (1).

2 THE CONDITIONS AND THE MAIN RESULTS

We shall assume, throughout below, that the following Conditional Uniform Asymp-
totic Negligibility condition holds:

P
max Py [| Xnk| + | Yokl > €] = 0 for all € > 0. (1)

The conditions to be imposed for the array {Y,x; & = 1,2, ...} will involve the limiting
process {S (t);0 <t < 1} of the convergence S, (t) 4 g (t). For this reason we first

recall the conditions for this (known) convergence.
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2.1 CONDITIONS ON {X,;k =1,2,..} FOR S, (t) = S ().

We first introduce some notations. Let, for 7 > 0,
ax, (T) = B [Xaklgx,1<r] (2)
(recall that Ej [ : } =FE [ : \An,k,l] ) and

0%, () = Epoy [ X2 L x, 1<) — (ax,, (7))

(which is the conditional variance of Xyl x,,|<r} given Ay x_1.) Define

kn (t) kn (t)
By (1) =) 0%, (1), Ang (1) =) ax,, (7). (3)
k=1 k=1

Also, for x # 0, let

(4)

kn(t .
Lol = | B T M < al i <0
O Py [Xop > 2] if 2> 0.

Consider the following conditions.
(C1): There is a family L; (y) ,t € [0,1], of nonrandom, real valued functions defined
on R — {0} such that, for each ¢, L; (—o0) = 0 = L; (c0) and

Ly (z) & Ly (z) at all continuity point z # 0 of L.
(C2): There are nonrandom B, > 0,¢ € [0, 1], such that for each ¢,
lim,_, limsupy,_y00 P (|Bp (€) — By| > n) =0 for all n > 0.

(C3): For some 7 > 0 for which +7 are continuity points of L;, there are nonrandom

Ay (1),t €]0,1], such that
Any (1) B Ay (7).

(C4): A;(7) and By are continuous in ¢. In addition, for each ¢, Ly (z) — L;(x) as
t" — t for all continuity point z # 0 of L;.

Note that all the limits involved in (C1) - (C3), with the convergence in terms of %,
are non-random, and hence % is equivalent to =L

Now, (C1) and (C2) entail that the limit L; () in (C1) induces, for each ¢, a Lévy
measure L; on R such that L, ({0}) = 0 and [ (1 A 2?) L, (dz) < co. Then one can define

2

o (u) = iuA; (1) — EBt + / (e —1- zux]I{|$|§T}) L, (dz)
where B; is as in (C2) and A; (7) is the limit in (C3).
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Then, when (C1) - (C4) hold, S, (%) L4 S (t), where S (t) is an additive process
characterized by the family of triplets (Ay, By, Lt) in the sense that

log E [¢™® (t)] = ¢y (u) for all real u.

(Note that S (t) being an additive process, S = (S (t);0 <t <1) € Dg|0,1] a.s )
If in addition (C3) is strengthened to
sup |A,; (1) — Ay (1) 2 0,
0<t<1
then S, (t) = S (t) in Dr |0, 1].
Remark 1 For the case A;(7) = 0, B; = 0 and L; of the form that the process
S (t) has stationary increments, that is, L; (z,00) = tv (z,00),2 > 0, and Ly (—o0,z) =
tv (—oo, ),z < 0, for a suitable non-random v, the preceding result is due to Durrett
and Resnick (1978, Theorem 4.1). For the statements in this generality, see for example
Jeganathan (1983, Remark 2), Liptser and Shiryayev (1989, Chs. 5 - 7) and Jacod and
Shiryayev (1987, Ch. VIII). (Note however that the proof of the preceding result will
necessarily be implicit in the joint convergence of S, (t) and R, (t) to be established ).
|

2.2 CONDITIONS ON {Vu:k =1,2,..}
Let ay,, (1) and o3, (7) be as defined in (2) and (3) (with Y, involved in place
of X,r). We assume that the earlier (C1) - (C4) hold so that, as recalled above, the

convergence S, (t) B (t) together with

S=(S(t);0<t<1)eDgr|0,1] a.s.

is available. Below S will also stand for the trajectory of the process depending on the
context.

In what follows, by a functional 7 (S) of S we mean 7 (S) is a random variable such
that 7 (w) is a real number for each w € Dg [0, 1].

Also, analogous to (4) and (5), let

kn(t) kn(t)
By, (r)=) oy, (1), A (1) =) ay, (7). (5)
k=1 k=1

and, for y # 0,

kn .
o) = { D5y Dot <l iy <0
7 ot Pr—1 [Yor >y ify >0.

We now state the conditions, analogous to the earlier (C1) - (C4).
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There is a family
{A} (1,5), B{ (S) 20, Li (y,5), t€[0,1], y e R—{0}}, 7>0,
of functionals of S, with, for each ¢ € [0, 1],

P[Lt (_OO’S) =0=1IL (OO,S)] =1,

Ply+—— L; (y,S) is nonincreasing on (0,00) and nondecreasing (—oo,0)] =1,

(7)

satisfying the following conditions:
(D1): There is a dense subset T of [0,1] and a dense subset J of R — {0} such that

\ dd \
(S (1), Ly (1) 25 (S (1) L (4.5)), (w1) € T xT.
(D2): With T' C [0, 1] as in (D1),
* fdd *
(Sn(®), By, (e) = (S (1), Bi (5)), teT
as n — oo first and then € — 0 along the set J of (D1). (See Section 1 for the meaning

of this convergence.)
(D3): For some 7 > 0 satisfying

P[L; (y,S) is continuous at y = +7] =1 for allt € T, (8)

(Su (), A%, (1) 2 (S (1), 4; (1,9)), t€ T.

(D4): Bf (S), A; (1,5), as well as L} (y, S) for each y € J, are continuous in ¢ for
almost all S.
(D5): All the Ty convergencies in (D1) - (D3) hold jointly.

Remark 2. Note that when 7 in (D1) is countable, the set of all 7 > 0 satisfying
(8) is dense in (0,00). To see this let J;,,, C R — {0} be the set of all 7 # 0 such that
E[m A Lf (y, S)] is continuous at y = =7, where m is a positive integer. Then, because
of (7), R—J;,, U {0} is countable. Let J, = Ny>1 Mier Jim- Then J, is dense in R— {0}.

Thus for each 7 € J,, and for all t € T and m > 1, E [m A L} (y,S)] is continuous at
y = &7, that is, P[m A L} (y,S) is continuous at y = £7] = 1 because (7) entails that,
for each y, either m A L} (y+,S) —mAL; (y—,S) > 0 a.s or < 0 a.s. Because this is true
for every positive integer m, we thus have P [L} (y,S) is continuous at y = £7] =1 for
each 7 € J, and for all t € T. (Here L} (y+,S) =limy, L} (v',S). ) W



Remark 3. Note that, under (D4), (D1) will hold for 7" = [0, 1] itself. The same is
the case for (D2). To see this for (D2), it is enough to note that, for each n > 1, B; ; (¢)
is nondecreasing in ¢ and its limit B; (S) is such that B}, (S)— B} (S) 2 0ast' —t" — 0
by (D4). The same argument holds for (D1) because of (D4) and because L, , (y) and
L; (y) are nondecreasing in t. H

Remark 4. The limits in (C1) - (C3) associated with {X,x;k =1,2,...} are non-
random. Hence when the marginal convergencies in (D1) - (D3) are restated to the
corresponding situation of the array {X,x; k = 1,2,...}, they are implied by the condi-
tions (C1) - (C3). To see this, it is enough to lake J = NyerJy, where J; is the set of all
continuity points of x — L; (z) and T is any countable dense subset of [0, 1]. Note that

J is dense because T is countable and the complement of each J; is countable. W

2.3 FURTHER CONDITIONS

We shall also impose two further conditions that involve both the arrays { X,,x; £ = 1,2, ...

and {Y; b =1,2,...}.
(E1): For every bounded closed intervals I; and I, contained in R— {0},

kn
Y Pi[Xpr €L,V € L] B 0.
k=1
This condition together with (C1) and (D1) will entail that certain two-dimensional
point process generated by the arrays { X, Yng; £ = 1,2, ...} converges in a suitable sense
to a two-dimensional point process such that its marginals do not jump simultaneously.
In the case when the limiting Lévy measure L} is non-random (note that L; is already
non-random), this would mean that the indicated marginals are mutually independent
Poisson point processes, see, for example, Kasahara and Watanabe (1986, Section 8).
To introduce the second one, let

O-Xnk’Ynk (T) = Ek*l I:XnkYnk]I{|Xnk|<Tz|Ynk‘<T}:| - aXnk (T) aYnk‘ (T) Y

which is just the conditional covariance between Xl x, <} and Yorllyy,, <y
(E2):

kn
ZUXnk,Ynk (6) 0 as n — oo first and then € — 0.
k=1

We note that this condition as well as the condition (E1) are automatically satisfied

in many important situations, see the Remarks 7 and 8 below.

2.4 STATEMENTS OF THE RESULTS
In the statements below, a conditional additive process R (t) given the process S =

(S(t);0 <t <1)is to be understood as explained in for example Jacod and Shiryayev
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(1987, Ch. II, Section 6, page 124, Definition 6.2 and Lemma 6.10 with f;, = o (S (v) ;0 < v < 0)A
o(R(u);0<u<t)).

Theorem 1. Let S, (t) = z’;(f) Xne and R, (1) = ii(lt) Y. Assume that the
conditions (C1) - (C4), (D1) - (D5), (E1) and (E2) hold. Further assume that A, (7T)
and Aj, , (1) are tight in Dg [0,1].

Then (Sp (t), R, (t)) = (S (t),R(t)) in Dge[0,1], where S = (S (t);0<t<1) is
as before, and conditionally on S, the process R (t) is additive such that

2
log B [eiUR(t)‘ S] = A (1,5) — %B; (S) + / (eiux —-1- iuac]I{mST}) L} (dz,S).

Note that in Theorem 1 if the characteristics (A}, By, L;) of R (t) are nonrandom
(that is, they do depend on S ), then the processes S (t) and R (t) are independent.

Remark 5. Theorem 1 holds also (see Remark 11 in Section 4.4 below) when
(Sn (), Ry (1)) = ( Xnk, Z nk), under the following modifications of the con-
ditions. The condltlons (C1) - (C4) are now assumed to hold with [nt] involved in place
of k, (t), as well as the present S, (t) = gc":t]l Xk 1s now involved in the conditions (D1)
and (D2), and in addition (1) and the conditions (E1) and (E2) hold with &, V n involved
in place of k,. It is (the modification of) the conditions (E1) and (E2) that make the
ELL convergence of this extension feasible. The tightness in Dy [0, 1] will be reduced to
what is called Aldous criterion, which will be satisfied for (S, (), R, (t)) whenever it is
satisfied for each of S, (t) and R, (t) separately.

Similarly Theorem 1 holds also when (S, (t), R, (t)) = < Enl0) X o, SO nk) un-
der similar modifications. W

Remark 6. It is important to note that the shifting quantity for the vector (S, (t) ,R, (t))
in Theorem 1 is the vector (An:(7), A5, (7)) composed of those of S, (t) and R, (t).
This form is essential for the applications we have in mind, and we are able to ob-
tain this form only by using the condition (E1) in a rather crucial manner. On the
other hand, the usual shifting quantity suggested by the results for the case of sums of
independent random vectors (see for instance Jacod and Shiryayev (1987)), would be
of the form (347 Ee-1 [XeL e vist<rt | Ay Bt [YakL e 41v301<)] ). We do
not know the relationship between these two forms in general under the present given
conditions. M

Remark 7. We note that (E2) is satisfied if either B; = 0 in (C2) (which means
> 0% () B 0)or By (S) =0 as. in (D2) (which means Yo% (e) 2 0 ), because of
the inequality [ 0x,xy (I < 0%, (X 0%, (). W

Remark 8. If either Ly = 0 a.s. together with B; = 0, or L, = 0 together with
Bf (S) = 0 a.s, then both (E1) and (E2) are satisfied. This is because of the preceding
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Remark 7 and the fact that (E1) is satisfied if either L} = 0 a.s. or L; = 0 holds.

We now give a situation (occurring in Jeganathan (2006a, Lemma 4)) where the
modified (E1) and (E2) of Remark 5 hold. If, as n — oo first and then ¢ — 0,
Shvm o2 (¢) & 0 and Yy " 02 () is bounded in probability then the modified
(E2) is satisfied. If anvn Pi_1 [|[Yor| > 1] & 0 for every 1 > 0, then the modified (E1)
is satisfied. W

The next result is directly applicable in, and in fact possibly broadens the scope of,
many applications, see Jeganathan (2006b). To state the result, let g (u, v) be a function
satisfying the following conditions.

(i) (u,v) — g (u,v) is continuous,

(i) g (u,0) = 0 for each u,

(ii) there are continuous functions u — ¢}, and u — ¢/ such that if

2
() = s Gl n.0) vl — ol
then

sup pp (u) =0 asn — 0 for each a > 0.
jul<a

In the next statement, it is convenient to let
A* (t,1,8) = A} (1,S),B* (t,S) = B; (S) and L* (z,t,S) = L} (z,95).
Theorem 2. Let R (t) = Z g (Zk X0, Y, k) with g (u,v) and the correspond-

ing g, and g, as above. In addztzon to the conditions of Theorem 1, assume that

kn

> lav,, (1) 0. (9)

k=1

Further assume that P [t — A* (t,7,S) is of bounded variation] = 1.
Then (S, (t),R: (t)) = (S(t),R*(t)) in Dg2[0,1] where conditionally on S the
process R* (t) is additive such that

log E [ei“R*(t)‘ S

= wAf (1,5) - —B# / / e9(SE)a) _ 1 ] {ja) <11 95 ) ) L* (dz,dz, S)

2
with Bf (S) = [ (g's(z)) B* (dz, S) and

t

! ! * 1 " *
A;# (T’S):/O gS(z)A (dzaTaS)+§/0 gS(z)B (dZaS)



Remark 9. In the particular case g (u,v) = h(v), the conditions on g (u,v) reduce
to: (i) v — h(v) is continuous, (ii) h(0) = 0 and (iii) there are constants h’ and A"
such that — ‘h (v) —vh' — %h” — 0 as v — 0. For this particular case, the extension
indicated in Remark 5 above holds also. For the case of independent summands, a form
of this particular case is contained in LeCam (1986, Proposition 5, page 443).

Note that the condition P [t — A} (7,S) is of bounded variation] = 1 is imposed
in order that fot gg(s)A* (ds,T,S) is well-defined (and is not required for the preceding
particular case because h' is a constant). Further, this condition, as well as (9), will be
satisfied in many applications, see Section 3 below.

We further remark that for the particular case g (u,v) = f (u)wv, one can also use
Kurtz and Protter (1991, Theorem 2.2, page 1039) to obtain from Theorem 1 the con-
clusion of Theorem 2 with R* (t) = fot f(S(%))dR (z). This will be implicit in the proof
of the general case of Theorem 2 given in Section 5 below, which proof also relies on
some of the ideas contained in Kurtz and Protter (1991). Also the additional condition
(9) will not needed for this case because g =0. W

Remark 10. For convenience we have taken R, (¢) and R (¢) in Theorems 1 and
2 to be scalars. In applications one would often require these to be vectors. We now
describe one such extension that is in particular needed in Jeganathan (2006b). As-
sume that the assumptions of Theorem 1 are satisfied. Consider an additional array
{Znk; k =1,2,...} adapted to {A; k =0,1,2,...}, for which the conditions (D1) - (D5)
hold (with limits that are functionals of the same S = (S (¢);0 < ¢ < 1) ) such that the
4 convergencies involved in these conditions hold jointly with corresponding ones for
the array {Y,x; k = 1,2,...}. Assume further that (E1) and (E2) hold in addition for the
array { Xk, Znk; k= 1,2, ...} as well as for the array {Y,x, Zu; k = 1,2, ...} also.

Then Theorem 1 extend to the of vectors ( I,z;(f) Xnk,zznz(f) Ynk,ZZ’;(f) Z k) in
Dgs [0, 1] with the limit (S (¢), R (t), Z (t)) such that conditionally on S, the processes
R(t) and Z (t) are independent additive processes. Theorem 2 is similarly extended. W

3 SOME EXAMPLES

As noted earlier, extensive applications that will require the full force of the preceding
results to certain network traffic models are presented separately in Jeganathan (2006b).
(See further Jeganathan (2006a, Lemma 4), where the extension indicated in Remark 5
above has been invoked.)

In the examples below will shall use the sequence §;, —oo < j < oo, of iid random
variables belonging to the domain of attraction of a stable law with index 0 < o < 2.
(Later on we shall indicate that the results of the Example 1 below extend to the situation

of a more general sequence of chain dependent variables described in Durrett and Resnick
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(1978, Example 4.1).) Details regarding the stable distributions and their domains of
attraction can be found in many sources, for instance in Feller (1971, Chapter XVII).

Consider the case 0 < a < 2, where the preceding requirement amounts to
P& >z)~car *H(z), P& <—-x)~cax *H(z), z—

for some slowly varying function H (z) and nonnegative constants cy, c; with ¢; + ¢ > 0.
With the constants a,, chosen such that

nP(‘£1| 2 anx) — x—a’

define

if0<a<l1
E&)) fl<a<?2 (10)

g
" (&
(flc — F [&]g/<ran}]) =1
(C

We next recall that (C1) - (C4) hold for X,. First, (Cl) holds with L; (z,00) =
tpr=* x> 0, and L; (—o0, —y) = tqy~*, y > 0, where p =

a,
Xok = Gy,
a

+62 and ¢ = 1 — p with ¢

and ¢y are as above.

In addition (C3) holds, with

%(p—q)Tl_a ifo<a<l1
App (1) = Ai(r)=q -5 p—gm @ ifl<a<?2 (11)
0 ifa=1.

The verification of (C1) with the limit as above, as well as the preceding convergence
(11) for the cases a # 1 are contained, for example, in Durrett and Resnick (1978, Exam-
ple 4.1). For a = 1, note that F [Xnk]I{I&ISTan}} = P[|§1| > Tan] (a;lE [§1H{|§1|S7an}])’
so that

> B [Xuil e <rany]| = 0

because nP [|&| > Ta,]is bounded and a, ' E [&1{¢,|<ra,}] — 0inview of P [|&| > ean] —
0 for all € > 0. In addition, by (C1),

S 1B Xk Lpisry = Lgensran)]| < 0B [[Xakl Ly suicrsas fentye, o]}

Thus (11) holds for « = 1 by the preceding two displayed convergencies.
The condition (C2) also holds, with B; = 0, see Durrett and Resnick (1978, Example
4.1) mentioned above. Thus, according to Section 2.1 above,
[nt]

Y Xop = Sa(t) in Dg[0,1],
k=1
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where the limit S, (¢) is now a stable process with index «.

Let us also note that the condition (9) is satisfied because supy |ax,, (7)] = 0 and,
similar to (11), Y>p_, |ax,, (7)| = >p_1 |E [Xuklqx,./<r}] | converges to a finite quantity.
(Note that in the examples below (9) will not be required, see the Remark 9 in Section
2 above)

In the case a = 2, we shall assume for convenience that E[£?] < oo, in which case
Xop =n"Y2(& — E[€]). In this case L; = 0, A; (1) =0 and B, = tF [£2].

Example 1. First consider a simpler situation in which (&;, (;), —oo < j < oo, form
an iid sequence of pairs of random variables, where {; are as before belonging to the
domain of attraction of a stable law with index 0 < o < 2. (The case o = 2 will be
discussed at the end of this example.) Here &; and (; need not be independent for each
j. For example (; can be a function of (&, ...,&;). Let S, = Z?Zl Xp,j, where X, i is
as in (10).

We shall assume that E [(;] = 0 and 0 = E [(?] < oo (though it will be enough to
assume that (; is in the domain of attraction of a normal distribution). In the case (13)
below we shall assume in addition that F [(1]&] = 0.

In certain asymptotic inference problems, asymptotic behaviors of the pairs of the forms

1 [nt] 1 [nt]
=N h(Snp1),— S , 12
nkz:; ( k 1) \/ﬁ;g( k 1)C1c ( )

1 [nt] 1 [n1]
n Z h(Snk) % Z 9 (Snk) Ce (13)

are required, where g and h are continuous functions (for example g (r) = z and
h(z) = x?). See Jeganathan (1997) where specific cases of (12) and (13) arose in con-
nection with the asymptotic representation of the likelihood ratios or of the approximate
maximum likelihood estimates (MLEs) in certain time series models. There the asymp-
totic behavior was studied as a consequence of direct asymptotic analysis of the likelihood
ratios. However, that method itself is applicable only for the case of approximate MLEs.
Thus the present results would be useful if estimates more general than the approximate
MLEs are considered (such as M-estimates).

To deal with (12), take An, = o ((§;,¢;),J < k). Recall that E[(;] = 0 and o? =
E[¢?] < co. Then, taking Y, ; = <&, in view of the Remark 8 (the case B, = 0 with

n
L} = 0), the assumptions of Theorem 1 are satisfied. Hence Theorems 1 and 2 give

S %gg(sn,k_l) G | = (Sa (t), B ( /0 t g* (Sa (z))dz)> in Dgz [0, 1](,14)

12



where B (t) is a Brownian motion with variance F [¢?], independent of S, (). Note that,
because of the independence of B (¢ ( ) and S, (t), the distribution of the preceding limit is

the same as that of ( fo ))dB (z )) or that of ( W\/fo )
with W standard normal 1ndependent of Sy (t).
Note that sup;;<, [Sn,

nnt] = Sq (t) in
Dg [0,1]. Hence one can assume that both the functions g and h are supported by a

compact subset of the real line.
Then, because h is continuous and compactly supported, and hence uniformly con-
tinuous and uniformly bounded, it will follow from the convergence (14) that

[nt

]
1
,nt g nk 1 Cka_ h n,k— 1
| \/_Z -

k=

3

= | S, (1) ,W\//O 9% (Sq (2)) dz,/o h(Ss(2))dz | in Dgs[0,1]. (15)

To indicate briefly the relevant arguments for this convergence (for the details see Je-
ganathan (2006b, Proposition 2.2, Section 2)), first the Eid convergence in (15) follows
for example using the arguments of the proof of Theorem 1, page 485 in Gikhman
and Skorokhod (1969). If in addition A (u) nonnegative, then the tightness in Dgs [0, 1]
n (15) follows using (14) and Jacod and Shiryayev (1987, Theorem 3.37 (Statement
(a)), page 318 and Corollary 3.33 (Statement (b)), page 317), in view of the fact that
1 Z h (S —1) is monotone in ¢ and its limit fo Sa (2)) dz is continuous in ¢t. When
h (u) is not nonnegative, the positive part h* (u) and the negative part A~ (u) are con-
sidered jointly, obtaining the tightness in Dga [0, 1], from which the required tightness in
Dgs [0, 1] in (15) will follow.

To deal with the case (13), we show that it reduces to the situation of (12). Recall
that we assume in addition that E'[(;]& ] = 0. Then, assuming without loss of generality
that g (u) is, in addition to being continuous, compactly supported as is indicated above
(and hence uniformly continuous and uniformly bounded), (g (Snx) — ¢ (Snx-1)) ¢ form
martingale differences with respect to the o-fields o (&;,7 < k+1,(,l < k). The sum
of the conditional variances of this differences with respect to these o-fields is given by

E[CI&]L5(9(Snk) — 9 (Snk—1))?, where

E l Z (9(Sng) — 9 (Sn,k—l))2] = A E [(g (Sn,[nt]) -9 (Sn,[nt]—l))2} dt =0

n
k=1

because (g (Sn,[m}) —g (Sn,[m]_l))z 2 0 for each t and g (u) is uniformly bounded. This

13



will imply sup<yey | 25 S0 (9 (Sne) = 9 (Sn—1)) G| 2 0, because (g (Sn) = g (Snp-1)) G
are martingale differences. Thus the situation (13) reduces to that of (12).

We remark that if &; are such that F[¢;] = 0 and E [£f] < oo, or more generally if
&1 is in the domain of attraction of a normal distribution, then under the assumption
E[(i]&] = 0, the preceding results will remain true with Sy (¢) (o = 2 ) and B ()
independent Browning motions. This is because, with X, = n~Y2 (& — E[&]) and
Yir = % as before, one has Ey_1 [ X, 1Y, k] = E[XnxYnx] = 0in view of E[(1|&] =0,
and hence (E2) holds. As already noted L; = 0, A; (1) = 0 and B; = tFE [¢?], in addition
to L} =0, Af (1) =0 and B} =tE[(?].

We also remark that because the framework of Theorems 1 and 2 are quite general,
the iid structure of (§j,(;) can possibly be relaxed in many ways. One particularly
interesting situation is the case of chain dependent variables described in Durrett and
Resnick (1978, Example 4.1, and the references given there). In that work, the earlier
details that preceed the Example 1 above for the iid sequence (&;, ;) of the present
example are actually essentially carried out for such chain dependent variables. One can
possibly use these details, as was done above for the present particular iid case, to obtain

suitable extensions of the present example to such chain dependent variables. W

Example 2. A situation related to this example arises in Jeganathan (2006a), where
the results of the present paper are invoked. Because that situation is a bit complex,
we describe a case which is simpler but still important enough to be applicable to many
situations, as will become clear below. We also note that Theorem 2 was applicable in
Example 1 above but not in this example.

Let the iid sequence (¢;, (), —0o < j < 00, be as in Example 1 above with £ [(;] =0
and 0? = F [(?] < oo. We shall also require that the index « of the domain of attraction
of & is such that 1 < o < 2. (The reason for this restriction on o will become clear

below.) In addition we shall assume that & satisfies the Cramér’s condition
limsup|u|— oo |E [ei“§1]| <1. (16)

Let the functions h (u) and g (u) be uniformly bounded and locally Riemann integrable
functions, such that

/Oo Ih ()] du < oo, /OO g ()| du < co.

Consider the pairs (with X, as in (10) and S, = Z’;Zl Xok)

[n1]

3 3 [nt]
Fn Z h (/ann,k—l) ’ V ;n Z g (ﬂnSn,k—l) Ck ’ (17)
k=1

k=1

14



where (3, is such that £, — oo but ’%" — 0. Pairs of this form arises in asymptotic infer-
ence problems in certain nonlinear time series regression models, see Park and Phillips
(2001) for the particular case a = 2, in a manner analogous to that described in Example
1 above.

Now, because g (u) is uniformly bounded,

Yn,k - \/%79 (ﬁnSn,kfl) Ck

form martingale differences, with Y By [Y;2,] = E (7] %“ > 9* (BnSng—1)- It follows
from Borodin and Ibragimov (1995, Ch. III. Sections 2 and 3) or Jeganathan (2004,
Theorem 2) for a more explicit statement, that (when 1 < o < 2 and when (16) and the
stated conditions on A (u) and ¢ (u) hold)

[nt]
Sn,[nt]: % 292 (ﬁnSn,k—l) % (Sa (t) ’ Et/QQ (U) du) (18)
k=1

where £; > 0 a.s. is random, called the local time of the process S, (t) at 0 up to the
time t. (Remark: Actually Borodin and Ibragimov (1995) considers explicitly only
the marginal convergence of ﬂn—“ ZEC":t]l 9% (BuSnk—1) but it is implicit in their proof that
the preceding joint convergence holds whenever S, .4 g S (t), see Jeganathan (2004,
Proposition 6 and Lemma 8).

The details regarding the local time £; can be found for example in Borodin and
Ibragimov (1995, Ch. 1, Section 4). In particular, the local time does not exist for
0 < a <1, and when 1 < o < 2, it has the representation £, = 5~ [ fot eSa(2)d zdu.
Note that £; is a functional of S, ().

Now,

2 Bn 2 2
Ek:—l Yn k:]I Y, & |>e = — /BnSn,k—l u dFl u
3 Bt [Yadr, o] = 5 200 (BaSi-) /{ L 1O

where

u?dFy, (u) S/ u?dFy, (u) 50
1 {SUPk \/@‘9(5n5n,k—1)||u|25} 1
because sup, i—” |9 (BnSnk—1)| 2 0 and E[¢?] < oo. Hence 3 By [Ynz,k]lﬂyn k|25}] N
0, by (18).
Thus, (D1) - D4) hold with L} =0, Bf = L, [ ¢* (u) du and A} (7) = 0 for all 7 > 0.
Then, when 1 < a < 2, it follows from Remark 8 that

[nt] [nt]
ZXM,\/%T‘ > 9 (BaSup—1) G | = (Sa (1), Wy /Lo / g2 (u) du) in Dge [0,1],
k=1 k=1 (19)
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where W is standard normal independent of S, (¢) (and L; ).
Next suppose that o = 2 and assume for convenience that E [¢;] = 0 and F [€2] < oo
(in which case a,, = y/n.) Then

VBn

Z Elc—l [ancYnk] = fﬂ zg (6n5n,lc—1) E [§1C1] £> 0

because %" > 9 (BnSnk—1) is stochastically bounded (see (18)) and f,, — oo. Thus, by
Remark 8, the statement (19) holds for the case o = 2 also.

Now using the remark made immediately after (18), it follows from (19) (which holds
for 1 < a<2) that

(17) 4 (Lt/h(u) du,W,/Et/QQ (u) du).

dd . .
We note that the f:>convergence here can be strengthened to = in Dg: [0, 1] using the

earlier arguments given in the context of obtaining = in Dg2 [0, 1] in (15) of Example
1 above, because it is known (Borodin and Ibragimov (1995, Ch. 1, Section 4)) that

t — L, is continuous in ¢ with probability one.

4 PROOF OF THEOREM 1

4.1 PRELIMINARY APPROXIMATIONS

We recall that the conditions (D1) - (D3) for {Y,x; £ = 1,...} are assumed to hold for
a dense subset 7' C [0,1] and for a dense subset J C R— {0}. Because J is dense, it is
easy to see using the familiar arguments (see for example Loeve, M. (1963, Section 11.3,
pages 180)) that (D1) is equivalent to the statement that for every bounded continuous

functions hy, ..., hy that vanish in some neighborhood of 0 and for every t,,...,t, in T

fdd

(sn(t),/hj(y)L;;,t, (dy),1 s]',qu) Ju (S(t),/hj(wL:, (dy,8>,1s]’,zsq)

where the limit L} (y, S) is as in (D1). In addition, for every bounded continuous func-

tions g, ..., gq

(sn 0, / 03 () Lipsa L (dy) 11 < 5,1 < q)

iy (s 0, / 0 () Ty, s L (dy, S) 1< 4,1 < q) (20)

for any a > 0 such that, with probability one, y — L} (y, S) is continuous at y = +a
for all ¢,...,%,. The preceding two convergence statements are equivalent because the

set
s =0 Ly, (x),..., Ly, (z) are continuous at x = +a and
=qa :
foeote P [Lz‘l (y,5), ..., Ly, (y,S) are continuous at y = j:a] =1 (21)
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is dense in (0,00). (I4,... s, is the complement of a countable set, see Remark 2 in Section
2.2.).

Now, below in this subsection,

kn(X)
Z stands for Z for some fixed p < A in 7.
k=kn(u)+1

In this section we shall use the notations
X = Xux —ax,, (1), Y = Yox—ay, (7),
Fri(@)=Pa [XP <a], Tl =na [ <4,
Fio (o) = P [ X5 <20 <y

(Note that 7 in (C3) and 7 in (D4) are different but we use the same notation for

convenience.) Now, for any reals u and v, we have
Z E, . [ X iy ) 1}
— Z/ (eiu;c—l—ivy . 1) dFkX_,); (a:,y)
= ’LUZ aXr(;/;) (7’) + v Z (ZY;;) (7’)
fuztiv . . —X,Y
+ Z/ (EZ Ty _ 1— ZU.Z‘]I“;UKT} - wy]l{‘y‘q}) dFlc—l (:L', y) (22)

where the last term itself can be split into the sum of three parts

; ; . . —X,Y
Z/ (e — 1 — iual e <ry — WYlgy <ry) Laj<eyi<a dF ;1 (2, 9) (23)

tUT+1v - . ——X,Y
2. / (€™ ™ =1 — el cry — WYlyyi<ry) Lpae dF5 1 (2,9) (24)
and
UT+ivy . . XY
E (e — 1 — iualyp)<ry — WYLy <ry) Lio<ely>adF; 1 (2, 9) (25)

The first step consists of the following important
Proposition 3. Assume that all the conditions of Theorem 1, except (C3) and (D3),

are satisfied. Then the following approximations hold.

(i).

kn kn
Z @y () (7')‘ 50, Z () (7')‘ 5 0.
k=1 k=1
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(i1). The difference between (24) and

UT ; o
> / (€™ = 1 = iualjscry) Loz dFk 1 (7)), (26)

as well as the difference between (25) and

v ; 7
2 / (€™ =1 = ivylyy <ry) Iy >adFy 4 (), (27)

converge to 0 in probability as n — oo first, and then € — 0 along the set I,, 5 in (21).
(111). The difference between (23) and

DI HOEES SENOET) SLNNC 28)

converges to 0 in probability as n — oo first, and then € — 0 along the set I, 5 in (21).
Proof of the statement (i) of Proposition 3. Recall that XT(JC) = Xnp—ax,, (7)

and
PLCIEDS

Also, Y ‘Ek:—l [XEJC) <]I{‘X,(Jc) <T} - ]I{IXnk|<T}>:|

measurable) on the event {maxy |ax,, (7)| < n}, n < 7, with

(1)
ZH{|“Xnk(T)\<"} B [X"k (H{‘Xﬁ) <} ]I{|Xnk|<7}):| ‘
kn
< 2(T+77)ZP]€71[7’—7’]§ |Xnk‘ <7—+77] ﬁ)O
k=1

(1)
Ey [Xnk ]I{‘ch) <T}] ‘ : (29)

coincides (note that ax,, (7) is Apx—1

as n — oo first and then n — 0 because £7 are continuity points of the Lévy measure
L. Further, maxy |ax,, (7)| < 0 + 7max Py_1 [0 < |X,k| < 7] for every § > 0, and hence

by (1),

max lax,, (1)] 2 0. (30)

Thus
y4
) T H{mkﬂﬂ ‘ — 0.

¥ 52 (1

In addition

> Bt [ X5 xin] | = 2 lax (0] Pt 11X > 71
kn

< maxax,, (7)| Y Peet [[Xar| > 7] %0 by (30) and (C1).
k=1
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Thus (29) 2 0. Similarly $° ‘aY(T) (’T)‘ 2 0, completing the proof of Statement (i). M
nk

For the proofs of the remaining statements, we need

Lemma 4.

kn,
622 {Pk—l HX}JC)‘ > e] + P [ Yn(,?‘ > e]} 20
k=1

as n — oo first and then ¢ — 0.
Proof. For each € € I, 5, where I, 5 is as in (21), we have

kn
EQZP]C,1 [

k=1

Yn(,:)‘ Ze} =d>e2/ L* (dy) as n — 0.
{lyl=€}

Now, in view of the fact [ (1 Ay?)L*(dy) < oo a.s., we have, with 0 < € < 1 and as

e — 0,
€ / L* (dy) &0,
{ly>1}

62/ L* (dy) < 6/ y?L* (dy) 2 0
{1>Jy[>ve} {1>]y|>0}

€ L*(d 2L (dy) 2 0.
/{\/€2|y|>e} () < /{\/€2|y|>e}y () =0

Hence €2 f{|y|>€} L* (dy) 2 0. Similarly € f{|y‘>e} L (dy) & 0. The proof follows. M
Proof of the statement (ii) of Proposition 3. The proof will depend on the use

and

the condition (E1), in addition to the preceding Lemma 4. For notational convenience,

we restrict to w = 1 = v. Then note that
(eiz+iy — 1 — il pyery — iyﬂ{|y|<¢}) — (eiw 1= ixﬂ{|z|<r})
= €7 (¥ — 1~ iyLjycn) + (67 — 1) yLyyi<n)

where |(€7 — 1) yIy<ry| < |2/ |y| A 27 and

y?=y? A T2 if ly|<T

| — 1 — iylyyen| < { 2=5 (A7) if |y > 7.

Thus the difference between the summand in (24) and that in (26) is bounded in absolute
value by

— XY
o/ (192 A 72+ [2] ly] A 27) Tgaipay dFL7 (2,) (31)
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for some C' > 0 (C depends on 7). Now note that
—=X,Y
/ ([P A7*+ L2l 1y A 27) (Taizg — Tarsposepi<ey) dFy s (2,9)

—X,Y
< (77 +27) / (Lzi>ay + Lgyary + Lingsjopsemsiyizey) dF 1 (2, 9)
= Iln (M) + Ign (M) + Ign (M, 6) , Say.

In addition, if € < 7,

XY e
/(|y|2/\72) Linrs o >e i<} AF 5 1 (2, 9) < 64/H{w>e}dFk1 (z) = Iy (€) , say,

and in the same way,
—X,Y =X
/(|.’L“ |y\ N 27’) ]I{MZ\$|Z€7\?!|S€2}dFk71 (37, y) < M62 /]I{M2|:c|25}dFk1 (.’13) = I5n (M, 6) , say.

Now, for each ¢ > 0 and M > 0, 3 Is, (M, €) 2 0 as n — oo by the condition (E1).

In addition, for each M > 0, 3= (I, (€) + Isn (M, €)) £ 0 as n — oc and then € — 0,
by Lemma 4.

Furthermore, Y (I1, (M) + I, (M)) £ 0 as n — oo and then M — oc.

We have thus shown that the sum ) of (31) converges to 0 in probability as n — oo
and then € — 0, completing the proof of the first part of the statement (ii). In the same
way the second part also follows. W

Proof of the statement (iii) of Proposition 3. Note that, for some constant
C > 0 (depending on u and v),

ezuw—l—wy

. . 1 2
—1—w3:—wy+§(ux+vy)

1
< 3 luz + vy’ < Ce ((uz)? + (vy)?)  if |2| <e,|y| <e

Hence the difference between (23) and
1 —XY
-5 Z/ (uz + vy)* Loyl < dF 5 1 ()
_ (7)
5 0 | (R ) Yo o &

is bounded in absolute value by Ce)_ [ ((um)2 + (vy)Q) H{|$|<€,|y‘<e}dffi (x,y). There-
fore it is enough to show that the difference between (28) and (32) converges to 0 in

()
Yok

<e,

probability, as n — oo first and then € — 0.

We have,
2
‘Ek:—l UX,(L? <]I{|X(73 < Yn(k)

)] senala] =4

Pled T Hx<

€, Yn(T)
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Further, noting Xé? = Xnk — ax,, (7),
(n]?
E, ‘Xnk I \X(Z) <

(]?
By |:‘Xnk <H{‘X§53 >€aXnk|<€}):|

EPp_1 [| Xpp| > €] +2 <€2 + max lax,, (7')|2) P [ ch)

|

<€,\Xnk|26} + H{‘X:,;)

g Lq1X 1<}

IA

IN

> e] L (34)

In addition,

2
Ej-1 [{XS/;)H{IXMI«} — (Xkxp1<0) — 0x,, () | ]

2
By [{CLX e (T Lgxal<e) — x, (6)} ]
2 (Bt [XarLiesixoui<n])” + 2 (@6 (7))* Pt [ X | 2
{7'2 max Pe 1 [| Xnk| > €] + QmBX lax,, (7')|2} Py 1 [| Xnk| > €. (35)

IA

IN

In view of (1), (30) and Lemma 4, it follows from the above bounds (33) - (35) that, as
n — oo first and then ¢ — 0,

Z By {XT(LZ)]I{‘X’S:I—C) <

Using the inequality, 2 |c> — d?| = 2|c—d||c+d| < M|c—d|* + M~ ' |c+d?, we
have

€, Yé;)

< T (Xt X,l<e) = Oxe (6))} ] 50, (36)

|c? —d?| < (M +1)|c—df +4M " |d|*  for all M > 0. (37)
Using this inequality, and in view of (36) and because Ej_; [((Xnk]l{\XnkKe} —ax,, (s)))Q] =

0%, (€), we see that ) is bounded by a

2
Ey s UX(T) i

{‘X(T) <€}:| - Ug( nk (6)
quantity that — 0 as n — oo first, then ¢ — 0 and then M — oo. ( Y 0%  (€) is
stochastically bounded.) Thus

2
> b X

as n — oo first and then € — 0.

Y(T)

{‘X}Q Y(T) <e ] ZUXnk (38)

In exactly the same way,

Y Ein [Y

2
2] T

<6}] =2 0, (950 (39)

<e,‘Yn(;)
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Next consider > Ejy_q X&)YTEZ)H{‘ } = Ey_1 [pror], where we let ¢ =

X("')

<e|¥)<

e e L SR (T

ax,, (€) and Vk: = Yuel gy, <ep — ay,, (€),

}. Then, with Uy = Xpuplyx, 1< —

|y(*>

Ex 1 [|loxte — UVil] < Exo1 [|ek| |6k — Vill + Ex—1 [|Vi| lox — Ukl

where

S B Villor = Uil < 34/ Bt [Vil] B [lioe — Ui
< (ZEk L[| Vil )ZEk 1 [lex — Ukl"] 50

by (36) and because Ej_; [|Vk|2] = oy, (€). Inthe same way Y Ex_1 [|ox| [ox — Vil] 0.
Hence, noting that ox,, v, (€) = Ex_1 [UxVk|, we have

ZEk 1 |: nk nk {‘X(r) - <€}:| - ZUXnk:Ynk (€) 2.

This together with (38) and (39) implies that the difference between (28) and (32) con-
verges to 0 in probability, as n — oo first and then ¢ — 0, completing the proof of the

statement (iii) of the proposition 3. W

We shall also need the following bound for (22), already implicit in the proof of
Proposition 3.

Lemma 5.
ULT+1v . . —X,Y
‘/ (et — 1 — juzllyy)<ry — ivylyy<ry) dF ) (x,y)‘
2, 2\ X 2, 2\ Y
< C (/ (:c AT )dF,c_1 (x) —|—/(y AT )dF,c_1 (y))

for some constant C > 0 depending on 7, u and v.

Proof. First, the summand in (23) with € = 7 is bounded in absolute value by

XY
C / (2% + ) Laj<rfyi<ndFy ) (2,9) (40)

for some C' > 0 depending on u and v. Also

—X,Y
‘/562 (Toj<rlyi<ry = Lgal<ry) dF S (rc,y)‘

—X,Y ., v
‘ / 2Lz <rfy>ry dF 2y (x,y)‘ <7’ / Ly >rydF_y (y) -
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—X,Y —X
In the same way ‘f y2 (H{‘$|<T,|y|<7} - ]I{‘y|<7}) dkal (:C, y)‘ < 72 f]l{\z\ZT}dFk—l (a:) Thus,
(40) is bounded by

__ X —Y
C / (2T o)<y + Dgaipry) dFy , (2) +C / (¥°Lgyi<ry + Tgyzny) dF 1 (y)
= C/ (°A1?) dF,_, (z) + C/ (y*A7?) dF,_, (y) for some C > 0. (41)

Next, the difference between the summands in (24) and (26), both with € = 7, is
bounded in absolute value by (31), which in turn is bounded by (72 + 27) [ H{W‘ZT}de—l (z).
In addition, the summand in (26) itself, with ¢ = 7 is bounded in absolute value by
2 [ LjwsndF,_, ().

Thus the summand in (24) is bounded in absolute value by C' [ ]I{‘Z‘ZT}dFkX_l (z) for
some C > 0 depending on 7, u and v. In the same way, the summand in (25), with
€ = 7, is bounded in absolute value by C f ]I{|y|27}d7:71 (y). This gives the required
bound (because the preceding two bounds are already factored into (41)). W

4.2 PROOF OF THEOREM 1 UNDER THE RESTRICTION (46)

We need to show that (S, (¢), R, (t)) is tight in Dg2[0,1], and that the finite di-
mensional distributions converge in distribution to those of the limit. The tightness is
essentially known (for instance Jacod and Shiryayev (1987, Ch VI, Sections 4 and 5)),
but for convenience we shall consider it separately in Section 4.4 below. Then, assuming
tightness, we next consider the convergence of finite dimensional distributions. For this
purpose it will be enough to restrict the index set to 7" C [0, 1] with 7" as in (D1), because
T is dense in [0, 1].

Thus we consider the convergence of the sum
T q
D w (Sn (M) = Sn (M1)) + Y v (R (t5) — R (821))
=1 j=1

for finite values 0 = Ag < Ay < ... < A, <land 0 =1¢) < t; < ... <t; <1 (contained in
T ) and for reals uy, ..., u, and vy, ..., V.

We remark that without loss of generality we can take ¢ = r and (A1,...,\,) =
(t1,....t5). Define (recall XT(:,;) = Xp, —ax,, (7), Yn(,? =Y —ay,, (7))

Unk = ulXT(;,;), anc = UlYn(]:); for kn (tl—l) <k S kn (tl), = 1, R

(For notational convenience, we suppress the dependence of Uy, on u;’s and of Vj; on

23



v;’s ). Then we need to consider, for each finite 0 = ¢y < ¢; < ... <t, =1, the sum

D (w Sn (ti=1)) + v (By () — Rn (ti-1)))
ol

) kn (£:)
= nk: + Vnk: + Z Z (ulaxnk (T) + v1ay,, (7—)) .
k=1 I=1 k=kn (ti1)+1

Now it is clear that the conditions (C1) - (C4) hold with appropriate limits when the
array {Upk, kn (t-1) < k <k, (t;), | =1,...,q} isinvolved in place of the array { Xk, k = 1,...}.
Similarly, (D1) - (D5) hold for the array{Vix, kn, (ti-1) < k < k, (&), { =1,...,q}. (These
arrays are now adapted to the array {An,kn(tl—1)7 s Ankat), 1=1,. ,q} Thus the
Proposition 3 also holds for these arrays.

Further note that these arrays depend on ax,, (7) and ay,, (7), but because of the
statement (i) of Proposition 3 for these arrays, the corresponding Ly ; (y) of (C1) and
(D1) will be approximately the same as the ones obtained with the same arrays but with
ax,, (1) =0=uay,, (7).

For convenience we next state this fact and some of its consequences in the form we
shall need.

Corollary 6. Under the assumptions of Proposition 3, the difference between

kn(tq)

Z By [ez‘UnkHVnk _ 1}

k=1

and the sum

q

> { / (e =1 —iualye <ry) Tgeipeyd (Lng; () = Loy, (2))

=1
+ / (e =1 = vy gyien) Lpizad (Lo @) = L, )
s ui v s
b (R0 Foh0)
k=kn(ti—1)+1

converges in probability to 0 as n — oo first, and then € — 0 along the set Iy, . 4
defined in (21). In particular

kn(tq)

; fdd
S (t) 5 Ang, AL, Z By [eUmtivee 1] | L4

(S (t) >At7 Azk’ Z (% (U‘l) - ¢tz_1 (ul) + w:l (ul) - w;_l (ul)>> 3 (42)

=1
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where
1

Py (u) = —§u23t + / (€™ — 1 — iuzlyg)<ry) dL; (),
* 1 * 1%}
Y7 (v) = —5u’B; +/( V=1 —ivylyy <ry) dLj (y).-
|

In the same way, in view of (22) and Lemma 5, we also in particular have the bound

l2/\kn(tq)
Y. B [0 1] < Doy = Doy + 1y, = Iy, (43)
k=1 Akn(tg)+1

(in particular ‘ Z;kf(m By [eUnetiVak — IH < Ty +T%, ), where we let, for a suit-

able constant C' > 0,

INkn (tg) INkn (tg)
Pnl:cZ‘X(T +CZ/:):/\TdFk1()
INkn (tg) INkn (tg)

r;lzcz‘ v —i—C’Z/y/\T dFr_, (1) (44)

Note further that, in view of (1), we always have

sup |Ej_y [ePmtne — 1] 5 0, (45)
1<k<kn

As a first step we complete the proof of Theorem 1 under the restriction
Lok, +Thp, < K as (46)

for some constant K > 0, which restriction will then be removed in the next step (Section
4.3 below). We then have the following approximation result.
Proposition 7.

E |20 Unet Vo) -2l ma[etmrvu] |

Proof. In view of (43), (45) and (46), the proof is identical with Lemma 6 in
Jeganathan (1982) (which proof itself is based on Brown and Eagleson (1971)). W

Now to complete the proof of the g, we shall use the preceding Proposition 7
together with the convergence (42) of Corollary 6. Note that the tightness in Dy [0, 1]
of each of the first three components follows from the assumptions. Recall also that we
have assumed that (S, (t), R, (t)) is tight in Dg- [0, 1] (see Section 4.4 below), and hence
is tight in (Dg [0, 1])* also.
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Thus the process (Sn (t), Rn (), Ang, A 4, ’,Z’;(f“) Ej_y [eUnktivVar — 1}) is relatively
compact in the product space (Dg [0,1])* x R. Assume for convenience that it converges
in (Dg[0,1])* x R for the sequence {n} itself to the limit

(S (t) aR# (t) aAt’ A:’ Z <wt1 (U’l) - %_1 (ul) + w;t: (ul) - 1’/}:1—1 (ul))> ) Say,

for some limiting process R* (t). Note that this convergence in particular entails the

ey Then, in view of Proposition 7 and because of (43),
E [eZ(UnkﬂLVnk)*Z Ek_l[ewnk"'wnkfl]}
o [62?_1{“1(5(751)—5(7511))+vl(R#(tz)—R#(tl1)—(AZl—AZ,_I))—(W,(Ul)—wt*l_l(vl))}:|
xe S {w(Ay Ay )+ (v w) vy (w)) }
= 1 (47)

(Recall that A; and v, (u) are nonrandom and Aj and %} (v) are functionals of S =
(S (u),0 <wu<1).) Taking v; = 0, this in particular gives

E [62521“1(5(751)—5(%—1))} — eXio {m(An—An_y )+ (v () =y (w0) }

Substituting this in the identity (47), and taking into account the remark made at the
beginning of this subsection, the identity (47) gives

5 [ezgzl u; SO+, {w (R#(m—R#(tl_l)—(A:,—A:,_l))—(w:l(m—w:,_l(w))}} _E [ez§:1 ujsu,-)]

forevery 0 = A < A1 < ... <A <land0=1% <t <..<t; <1 and for reals uy, ..., u,
and vy, ...,v,. Because the preceding identity holds for every 0 < A\; < ... < A, <1, we

have
5 [ez,q_l{u,(R#(tl)R#(t,_l)(AzlA:,l))(wzl(vz)wi““(”l))}‘ s] =1.

Because Aj and 1 (v;) are functionals of S, this is equivalent to

E[62?=1vz(R#(tl)—R#(n_l))‘S} S > I Y G A R CACOR NG )

= E[ezlq=1”l(R(tl)_R(tl—l))

s|.

(Note that the process R (t) as defined in the statement of Theorem 1 is well defined.)
This gives the required finite dimensional convergence (under the restriction (46)). W

4.3 RELAXATION OF THE RESTRICTION (46).
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We have
(Tt Drotnty) 4 (r,T}) (48)
where (with C' as in the definitions of I'; 1,y and L7 e 0 (44))
[,=CB;,+C / 2*Ar?dLy (x), T;=CBf+C / y*AT?dL; (y) .
We note that I',;, and I'}, are A, ,_; measurable. Now let, for some n > 0,
k=TI14+n. (49)
(Recall that I'; are nonrandom and I'; < T'y. ) Define
Xk = Lr <y Xk, Yoi = H{F;kga}ynk
for a given o > 0. We then have

aX:k(T) ::Hﬁhkﬁﬁ}axﬁk(T)a (50)
* * 2
0%, (€) = Ep—1 [XniLix,i<a] = (Be-1 [XokLgxai<a])” = Lir<nix,, (6)

and

E (e =1 — iuXpLix,, <) x>
= Trusm B (" =1 = iuXolx,0<n) Tixulza] - (52)
The same relations (50) - (52) hold with the X, Xk, ['nx and & replaced respectively

by Y, Yor, L'y, and a.
Lemma 8.(7).

E [(e™Xmn — 1 — X} Ly, <rt) Lixo e ]
P = E (e =1 — iuXpplyx, <)) Lixoeizea] » — 1.
ax: (1) =ax,, (1), (5§(;k (6) = 0%, (¢) foralll <k <k,ande>0

(ii).

kn (t) kn (£) :
fad * *
52;“;@ () = Z ]I{F:kaa}o-%/nk (€) = o H{r;ga}dB/\ = B; o, 52y, (53)
k=1 k=1
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and, when y—— L} (y,S) is continuous at y = *e,

kn(t)
N E (e =1 — vy Ly, <ry) Livarze ]

fdd iv
— / (€™ = 1 = ivylgycry) Ly gL, () (54)

where (with L* (y,t) = L} (y) )

Lia )= [ Lpgenpl .. (55)

Proof. The proof of the statement (i) is clear because the event {I', 5, < x} implies
the event in question by (50) - (52), and because P [, > ] — 0 in view of (49).

For the statement (ii), we establish (53), and the proof of (54) is similar in view of
the fact that (52) holds for Y, also (with H{r;kga} in place of Iy, <3 ). First, for a

given nn > 0, one can find continuous, nonnegative, nonincreasing functions h; (y) and
ho (y) such that

0< hy(y) < Ty<ay < ha(y) with hy (y) — by (y) < Tja—gey<atqy forall y.

Also, because I'} on (£) is nondecreasing in ¢, with its limit I'; continuous in ¢, and

because —hy (y) is nondecreasing and continuous in y, we have

sup  |hy (T pn) — P (T nkn(u))|ﬁ>0 (56)
[A—u|<1/q

as n — oo first and then ¢ — co. The same holds for A, (y).

En (A i .
We have S5 i (U)o, (€)= 50, 0y 6y i (D) 0, (6): The diffr-

ence between this and

S (C) X @ 67)

is bounded in absolute value by

[A—pl<1/q

kn
Sup |h1 (F:l,kn()\)) —h (Fz,kn(u)) ‘ ZU%/M () &0
k=1

as n — oo and then ¢ — oo, in view of (56). Further,

= Zhl( AL 1)( taL T :N%)
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which in turn converges in probability to fot hy (I'}) dBj;. Thus we have shown that

kn(t)

S b (T 0%, (£ / hi (%) dB;.

k=1

In the same way Zk"(t) hy (T7,) a%, (€) % fot ha ( )dB*

Now S5m0 (hy (T5y) = by (i) 02 () 25 [ hy (T'%)) dBg, which limit

is bounded by

1 1
/O ]I{a—n<I‘;§a+n}dB; S A ]I{a—n<I‘;§a+n}dF:k\ = P:H - P;2 S 277

where p; is such that I'; =a+nif a+n<I7and py =1if a+n > T']. Here we have
used the continuity of I'; in ¢. Similarly ps is defined with o — 7. Hence (53) follows. W

Now define U}, and V%, in terms of X, and Y, in exactly the same way as U, and
Vi were defined in terms of X, and Y,,; in the preceding Section 4.2. Then Proposition 3
and Corollary 6 hold for the variables U, and V, also, with the following modifications.
The bound (43) will now take the form (with the constant C' as in (44))

oAk, (tq )

¢ Y At (jg 0]+ [#ardrl @)

k=11 Akn(tg)+1

+ H{F:zk <a} (

where the bound « + & is obtained in view of the definitions of I',; and I}, in (44).

Y(T) ‘—i—fy/\TQdFkl())} <a+k

Hence, Proposition 7 holds when U, 4+ V.%, are involved in place of Uy 4 V. There-
fore, if now @, (¢) is the limit of Z?; (Y;j —ayy, (T )), then in view of Lemma 8,

E ez;lzl ’Ul(Qa(tl)_Qa(tlfl)) Si| — 62?:1(w;;l’a(,ul)_zpzl—l,a(vl)) (58)

where

* 1 * [z - *
Vi (V) = —50"Bio + / (e =1 —ivylyy <ry) dL;, (y)

with By, and L, (y) as defined in (53) and (55). Note that
P[sup|wza(v)—w;‘(v)| #0] <Pl >al—=0asa— o0
t

and in the same way

Fn (1) 0
P (Y;j — ayy, (7’)) # Y (Yoj — ay,; (1)) for some t € [0,1]| < P [T}, > a
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*

where lim,_, limsup, . P[]

sides of (58)

x> o] = 0. Thus taking the limit as & — oo on both

P> (R(n)R(n_l)(A:lAzl_l))‘ S] _ St (v vi_, )

Noting that A} are functionals of S, this proves the convergence of finite dimensional
distributions. W

4.4 TIGHTNESS OF (S, (t), R, (t))

The tightness of (S, (), R, (t)) in Dg2[0,1] is essentially contained in Jacod and
Shiryayev (1987, Ch VI, Section 4b, page 322), based on a certain criterion due to
Aldous (1978). Because we shall need this criterion in Section 5 below, we shall present
it. Actually, in view of the specific nature of our centering (see the earlier Remark 6 in
Section 2.4), this criterion will be satisfied for (S, (¢), R, (t)) whenever it is satisfied for
each of S, (t) and R, (t) separately.

To state the criteria, it is convenient to extend (S, (t), R, (t)) to t € [0, 00), by taking
Xn; and Y,; as before for 1 < j < k, and letting X,,; = 0 =Y,,; if j > k,. (Recall that
k, =k, (1) is a stopping time). Similarly, take A, ; = Ay, if 7 > k,. Then note that
(Sn(t),Ra(t) = (Su(1),R, (1)) if 1 <t < oo (as well as ay,, (1) = 0 = ax,, (7) if
J>ky).

As in Aldous (1978), the preceding extension is just to avoid the inconvenience of
dealing with the stopping times 7 that will take their values in [0, 1] but 7"+ § may lie
outside [0, 1]. Then, the criteria of Aldous (1978) (as modified in Jacod and Shiryayev
(1987, Ch VI, Section 4a) states that (S, (t), R, (t)) will be tight in Dge [0, 1] if

limg 0 limsupy 0o P | sup {[S, () + Ry (1)} > | =0 (59)
0<t<1

and for every n > 0,

lims o limsup, 400  sup  P[|S, (T) — Sn (T*)| + |Ry (T) — R, (T*)| > 1] — 0
T*<T<T* 45 (60)

where the supremum is with respect to all stopping times 7" and 7™ satisfying T* < T <
T* + 6 and adapted to { A, t € [0,1]}.

Now when (59) and (60) involves either S, (t) only or R, (¢) only, the verification
of them based on the present assumptions (C1) - (C4) or (D1) - (D4) follow from Ja-
cod and Shiryayev (1987, Ch VI, Theorem 4.18, page 323), where note that the “C-
tightness” in part (iii) of Theorem 4.18 follows because of the assumptions (C4) and
(D4). (Note however that the stopping times are with respect to the common filtration
{ Ak, ;t € [0,00)}) Hence (59) and (60) follow. M
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Remark 11. We now indicate the modifications required for the validity of Theorem
1 for the situation of Remark 5. We consider the case (S, (t), R, (1)) = ( Xnk, Zk" Oy, )

Regarding the modifications for Section 4.2, define now (with Xr(bk) and erk) defined in
Section 4.2), letting &} (t,) = [nt,] V kn (¢,),

Ui = X, [nti_y] <k <[nt)], l=1,.,q, U, =0, [nty] <k <K (t,),

ok = Unks kn (1) <k <k, (t), l=1,...,q, k, (t,) <k <k (t,),

and
Vok = lerfk)7 k., (tl 1) <k<k, (tl), |l = 1,...,q, Ve = 0, k, (tq) <k< k‘: (tq) .

This gives the arrays {U,,; k=1, ...,k (t,)} and {Vi; k=1, ..., k) (t,)}, both adapted to

the same array

{An,kn(tl_1)7 “rey An,kn(tl)a l = ]-7 - q, An,kn(tq)’ LR} An,k;‘;(tq)} .

(We note that this statement breaks down in general if S, (¢) = 1;;;({5) X, where the
stopping time k!, (t) is different from £, (¢) or from [nt]. )

Now Proposition 3 holds for these arrays when the sums involved in its statements are
taken to be k" t" + Zk ,:q)(t )41~ Lhis is because all the bounds involved in the proof
of Proposition 3 Wlll be in terms of either the sum Y ;_, of the quantities associated
with the array {X,z;k = 1,...,n} or the sum YF* of those associated with the array

{Yar; k=1,...,k,}. In addition note that the sum (26) in terms of U}, can be rewritten
in terms of Unk, in which case the sum takes the form >/, ka’[ml et

The remaining modifications in Sections 4.2 and 4.3 are clear, obtaining the 4.
The tightness also follows because as noted above (59) and (60) involve S, (¢t) and R, (t)

only separately. W

5 PROOF OF THEOREM 2

5.1 PROOF FOR THE SPECIAL CASE g (u,v) = h (v)

We first consider the particular case g (u,v) = h (v), because much of the arguments of
this case essentially become applicable to the more delicate general situation of Theorem
2. The arguments below are based on LeCam (1986, Proposition 5, page 443). We shall
verify the conditions of Theorem 1 (which dealt with the array { X, Yok, & = 1,...}) for
the array { X, h (Yox) , k= 1,...}.

First consider (D1). Note that if g; (y) vanishes in some neighborhood of 0, then
y — g; (h (y)) also vanishes in some neighborhood of 0 in view of the continuity of A (y).
Also if L}*, (dy) is as defined in (6) with Y, replaced by h (Yy,), then [ g; (y) LY (dy) =
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[ 9; (h(y)) L}, (dy). Hence it follows from (20) that (D1) holds for the array {h (Yox) , k= 1,...},
with the limit L;* (y, S) defined by

/ g () L (dy, S) = / g (h(v)) L (dy, S)

for every g (y) vanishing outside a neighborhood of 0.
Next, note that (E1) holds because h (v) is continuous. Regarding the conditions
(D2) and (E2), they follow from the following Lemma 9, where we define

vy (&) = Bt [0 (Yar) Tywiieat] — (Boor [B (Vak) Igwii<])”

Recall that the conditions on g (u,v) reduce to (see Remark 9): (i) v — h (v) is continu-
ous, (ii) h (0) = 0 and (iii) there are constants ' and h” such that 2 |h (v) — vh' — %h" —
0asv—0.
Lemma 9 Asn — oo first and then € — 0, we have
Z (Trv) (€) = Opy oy (6)) 50, (61)
Z UXnkah(Ynk) (6) - hl Z O-Xnkyynk (6) & 0 (62)
and
> Oty () = B> B [V gui<a] = 0. (63)

Proof. We first verify (63). Note that by (1) and (D1), for each € > 0,

S B [Yaiespvy <] | < m2sup Py [Vl > €Y Poy [Varl > e 20
J

for any 0 < € < 7. Hence, in view of the assumption (9),

Z ‘Ekfl [Ynk]l{\Ynk|<5}] |2 20. (64)
In particular
D 0%, (© =D Bit [Vilgv<a] =0 (65)

Now, by assumption, (|h (Ynr)| + |Yak|) Igv,. < < Ke and
(B (Yar) = B'Yarl Ty < < KY Ly, <o (66)
for some constant K, so that (using |a® — b%| < |a — b| (|a| + [b]) ),

“Ek—l [h (Yor) ]I{\Ynk|<e}} |2 — |h'Ek—1 [Ynk]I{|Ynk|<e}] |2‘ < K?¢E;,_, [erk]l{lYnkKe}] )
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Hence, by (64) and (65),

Z |Ek—1 [h (Ynk) ]I{|Ynk|<€}] |2 ﬁ) 0 (67)

as n — oo first and then € — 0. Similarly, by (66),

> ‘E’“—l ['h (Yar) = h'Ynk|2H{|Ynk\<f}” <KEY By [Yalpvu<gl, (68

and hence using (65) and the inequality (37)

D B [0 (Vo) Lvieiea] = B2 ) Bt [ViLg<g] 5 0

as n — oo first and then € — 0. Hence (63) follows from (67).

We next show (61). We have, for some positive constants K; and Ko,

> Eeo [22 (Var) Ty <t — L <e3 ]
Ep—1 [0* (Yar) (Tyo<e b 26} T L) <, Yarlze}) |
< K €@ Py [|[Yo| > eK] 5 0 (69)

IN

as n — oo first and then ¢ — 0. Here 2 0 is obtained by Lemma 4, and the last
inequality is obtained because the assumption on h (v) entails that there is a 1 such that
|h (v) — W'v| < Kv? for all 0 < |v| < n for some K > 0, so that for all sufficiently small

€> 0, Ly, 1<ehvon) > < Lijv,,l<e,Yor|>ce) for some ¢ > 0. The same arguments also give

2
> Bt |12 (Ve [Tgrii<as = Lgnovawi<a|] 2 0 (70)
as n — oo first and then € — 0, from which, using (67) and the inequality (37), we get

‘Z|Ek L [B Yo Lnrni<a] | = D 1B [B (Yak) Lgyi<a] |

This together with (67) and (68) gives (61).
To prove (62), recall that

0. (1)

OX Yok Z Ej nk]I{\XnkKe} o (f)) (Ynkﬂ{\Ynkl«} — A (6))} .
Hence
‘Z %Yo (€) = O By [(XukLxon<ep = 0, (€)) YirI i< ] ‘
Z ‘Ek—l [(Xnk]l{|xnk|<e} — AXyy, (6)) O, (6)”

S ok (©) (v ()7 < 0%, (D (av,, ()2 50

IN

IN
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as n — oo first and then € — 0, in view of (9) and (C3). In the same way, because of
(67) and (71),

D T (©) = D Bt [(XuaTxa<ep = 0, (€)) b (Vi) L) <] = 0.
Further,
> Bkt [(XnkLyx,ui<p — ax, (6)) (B (Yok) Lgnviny i<y — ' YarIgyi<e) ]|
< D 0%, (©) B [ Yoe) Linvaoi<et = P Yl gvil<e)) ] =0

because of (68) and (69). Thus (62) follows from the three displayed convergencies,
completing the proof of the Lemma. W

Thus, Proposition 3 together with Lemma 5 and Corollary 6 hold for the array
{ Xk, h (Yar),k =1,...}. In particular, the difference between

and
> / (e — 1 — iualgyery) dFy_, (z)+) / (€M) — 1 — iwh (y) Lng) <ry) dFp_y ()

converges to 0 in probability. In view of (61), the second term of the last sum is approx-

imated by

U2 [ : *
— 5 DO () + / (€™ —1 —ivh (y) Lyng) <ry) TgizedLr, (dz)

as n — oo first and then € — 0. Further

W) an) () + / (™" — 1 —ivh (y) Ly <ry) LiyisadLy , (y)

can be rewritten in the form
0> {Bro1 [B (Yar) Ljnv) <o <et) + W Eret [YarLecvieery ] } (72)

+ / (ei”h(y) -1- ivh'yﬂ{\ym}) Liyi>ey Lt (dy) -

In view of ]I{‘h(ynk)|<7,|ynk|<e} = ]I{|Ynk|<€} and

hll
> B [( wk) = WY = < Y%) H{Ynk|<e}] =0

as n — oo first and then € — 0, the sum in (72) is approximated by

hll
' ZEIH Yok L ve )<} ] + > Z Ep 1 [Yolgva<o)
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as n — oo first and then € — 0. In view of (65), this gives the required forms for the
limit of 325 b (V).

Also note that it is implicit in the above arguments that Z:’;(f) an(y,,) (T) is approx-
imated by a quantity that converges in Dg [0, 1] with limit in Cg [0, 1]. This completes

the arguments for the particular case.

5.2 PROOF OF THE GENERAL CASE
As in the particular case above, we shall verify the conditions of Theorem 1 for the
array { X, Wk, k = 1,...}, where

k—1
Wae =g (Z Xnjs Ynk) : (73)
j=1
As in Section 4.4, we assume for convenience that the process (S, (t), R, (1)) is extended
to [0, 00).

We first obtain a certain discrete approximation, in the form of a step function,
to Sy, (t) in the space Dg[0,00). It is taken directly from Kurtz and Protter (1991,
page 1067). In this approximation the locations of the jumps of the approximating step
function are stopping times.

To describe the approximation, let 6;,/ > 1, be a sequence of i.i.d. uniform random
variables on [%, 1}, independent of o (U, Ug Aux). Fix e > 0. For each z € Dy [0, 00),
define recursively 77 = T (z),l > 0, such that

T =0, Tf,=inf{t>Ty: |zt — 2re| V |zt, — e | > et} .
Letting yj (2) = zr¢, define I* (z) € Dge [0, 00) such that
IF(2), =y (2) HT7 () <t<Ti, (2).
Then note that
2o — I (2),| <e foralltel0,00). (74)

In addition, it is shown in Kurtz and Protter (1991, Lemma 6.1, page 1067) that if
zp — 2z in Dge [0, 00), then, for every integer ¢ > 0,

(om 1% (2) 45 () T () L = 1, o)
— (2, I°(2), 45 (2),Tf (2),1 = 1,...,q) in Dga[0,00) x R* a.s. (75)

(Note that I¢ depends on the random variables 6;.) This leads to the next lemma, where

we define

S, () =1°(Sa) (1),  S°() =1 (5°) (¥),
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T,,=T; (2) when z = (Sy, R,), Ty =Tf (2) when z = (S, R).
Note that S¢ (t), S, (t) and R, (¢) are all adapted to {A 1t €0, oo)}, where A7, =

Aoty Vo (0,1 > 1). (The o-field o (6,1 > 1) is 1ndependent of o (Uy Ug Ank)- )
Lemma 10 For each q > 0,

(S5 (t),Sn(t),Rn(t),5; (Tr)), Tyl =1,...,q)
= (S°(t),S(t),R(t), S (TF),Tf,l=1,...,q) in Dga|0,00) x R*.

In addition, for every p > 0 and n > 0, there are integers ¢ > 0 and nyg > 0 such

that
P[l—pST,f’qSl] >1—n forall n > ny.

Proof. The first statement is a consequence of (75) and Theorem 1 (already estab-
lished). According to the arguments in Aldous (1978, pages 339 and 340), the second
statement is a consequence of (60) and the fact that X,,; = 0=1Y,,; for j > k, =k, (1).
[ |

With the help of the preceding approximations we next verify the condition (D1) for
the array {Wy, k =1, ...} defined in (73). For this purpose let

k-1
Sn,kfl - Z X'n,],
j=1
so that Wy, = ¢ (Sn k-1, Yax). Also, below we let
Fk?/—l (y) = Py [Ynk < y] ] Fkvzl (y) = P [Wnk < y] :

Lemma 11. For every continuous function h (y) that vanishes in a neighborhood of
0,

kn(t) (t/\TE
S [rwariw-Y % e ey e o
=1 =k (TS, ) (76)

converges to 0 in probability, uniformly over t € [0,1], as n — oo first and then € — 0.
Proof. Suppose that h vanishes outside the neighborhood [—n, 7], n > 0. Also note
that continuity of (u,y) — g (u,y) entails that y — sup, <, |9 (v, y)| is continuous (at
y = 0 in particular) for every o > 0, and hence sup, <, |9 (v, y)| > 1 entails |y| > v for
some 7y > 0.
Hence if

sup |Sy, (t)] < aand sup |S; ()] < « (77)

0<t<1 0<t<1
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are true, then the left hand side of (76) takes the form

S [rwdr ) = X[ bl dFL )
y[>y
kn (tATS )
=D S SR Ty F )
=1 k=, (tATE )41 ly>y
Similarly, the integral on the right hand side of (76) can be restricted to |y| > . Hence,
when (77) is true and in view of (74), (76) is bounded in absolute value by

kn

Z/ > ( L hle(wy) R (v,ym) dFY, (y)

B /|> (Iu—v|<ss<;1<p|u| \v|<a|h(g (u,9)) = h g (”’y))|> L}, (y)

< K (7N / dL%, (y) + Ko / dL%, (y)  for every A >0,
ly| >y

ly[>A
where K; (7’ )‘) = SUP|y—y|<e,0< |ul,[v|<ayy<|y|<A |h( ( y)) —h (g (U’ y))| and Ky = 2 Sup, |h (y)‘
We have K (7,\) = 0 ase — 0 for every A > 0. Also f|y|>7 dLy, | (y) is stochastically
bounded for each v > 0. Further,

limy_, o limsup,_ oo P [ /
|

yI>A

dL, (y) > (5] =0 for all § > 0.

In addition, limg e HMSUPn 0P [SUPg<sct [Sn (£)] > @] = 0 and the same holds true
for St (t). Hence the proof of the lemma follows. W

To complete the verification of (D1), note that we can write

kn (tATS )

S [l AT ) L )

k=kn (¢ATS _;)+1

= / B (S5 (A Tei) 2 0)) d (Lionre, = Lints,_, ) ().

Also, in view of the second statement of Lemma 10, together with

// ALy, (y) < Liy (1) = Lis p () + Loy (=) = Loy, (=7) 2 0
1—p v [y[>7

as n — oo first and then p — 0, and the fact (S, (¢), R, (t)) = (S. (1), R, (1)) if
1 <t < oo, we have, for each € > 0,

sup
0<t<1

Z /||> h (g (Sfl (t A Tg,l_1) 7y)) d (L:L,t/\TE — Ly inre
y[>y

n,l—1
l=q¢+1

) )
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as n — oo first and then ¢ — oo.

Now suppose that hq, ..., h; are functions that vanish in some neighborhood of the
origin. Using the arguments similar to those employed in the above proof of Lemma
11, one can assume without loss of generality that the functions y — h; (g (z,y)) also

vanish in some neighborhood (independent of z) of the origin. Therefore,

( Z/ (tAT5 ) y)) d (L:,t/\T;,l - L:L,t/\t/\T;,l_l) (y),1<j< l)
(S Z / (tATEL),y))d (L;“AT; - LIMAT;_I) y),1<j< l)

As in (78), we can approximate the preceding limit, as n — oo first and then ¢ — oo, by

( Z/ SE t/\Tlg 1) )) d (L;tk/\Tf - L;fk/\t/\Tli1> (y)) ’

which in turn is approximated, as in Lemma 11, by [ h; (g (S (¢),y))dL; (y) as n — oo
first and then € — 0.

We have thus established (D1) for the array {W,x, k =1, ...}, as required.

We now complete the proof of Theorem 2 by proceeding analogous to the arguments
of the particular case of Section 5.1. Recall the condition sup,<, oy (u) — 0 asn — 0
for each a > 0 where p, (u) = supy}, <, % g (u,v) — vgl, — %g;" This, together with
the fact that supg<,<; |Sy ()] is stochastically bounded, entails that supy, py, (Spk-1) 50

are

as n — oo first and then 7 — 0. In addition, both sup, ‘g'sn,k_l‘ and sup,, ‘ggn,k_l
stochastically bounded. Therefore all the arguments that lead to Lemma 9 in connection
with the particular case of Section 5.1 become applicable here, so that we have the
following lemma, where (recall Wy, = g (Sp k-1, Yar) )

2

Sy, (© = Ex 1 Wi livae<a] = (Br1 [Waklgvae<a]) ™

which replaces the d ;. (€) of Lemma 9.
Lemma 12. As n — oo first and then ¢ — 0, we have

Y (0, (0=, () 0,

ZO-XnkaWnk (6) - Zg;lsn,k_lo-xnkaynk (6) £> 0

ngvnk ng - 1E’c 1 Yﬂkﬂ{|ynk|<€}j| 0.
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Now, using (65) and the approximation arguments that lead to (53), we have

ng i Bt [YaiLgrif<a)] :>/ (»48" (2)

Similarly, the remaining steps to complete the proof of Theorem 2 are essentially the

same as those for the particular case of Section 5.1.
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