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1. Introduction

A partial linear space is a pair S = (P,L) consisting of a nonempty ‘point-set’ P and a
nonempty ‘line-set’ L of subsets of P of size at least 3 such that any two distinct points x and y
are in at most one line. Such a line, if it exists, is written as xy, x and y are said to be collinear
and written as x ∼ y. If x and y are not collinear, we write x � y. If each line contains exactly
three points, then S is slim. For x ∈ P and A ⊆ P , we define x⊥ = {x} ∪ {y ∈ P : x ∼ y}
and A⊥ = ∩

x∈A
x⊥. If P⊥ is empty, then S is non-degenerate. A subset of P is a subspace

of S if any line containing at least two of its points is contained in it. For a subset X of P ,
the subspace 〈X〉 generated by X is the intersection of all subspaces of S containing X. A
geometric hyperplane of S is a subspace of S, different from the empty set and P , that meets
every line nontrivially. The graph Γ (P ) with vertex set P , two distinct points being adjacent
if they are collinear in S, is the collinearity graph of S. For x ∈ P and an integer i, we write

Γi(x) = {y ∈ P : d(x, y) = i},

Γ≤i(x) = {y ∈ P : d(x, y) ≤ i},

where d(x, y) denotes the distance between x and y in Γ(P ). The diameter of S is the diameter
of Γ (P ). If Γ (P ) is connected, then S is a connected point-line geometry.

1.1. Representations of partial linear spaces. Let S = (P,L) be a connected slim partial
linear space. If x, y ∈ P and x ∼ y, we define x ∗ y by xy = {x, y, x ∗ y}.

Definition 1.1. ([6], p.525) A representation (R,ψ) of S with representation group R is a
mapping ψ from P into the set of subgroups of order 2 of R such that the following hold:

(i) R is generated by Im(ψ).
(ii) If l = {x, y, x ∗ y} ∈ L, then {1, ψ(x), ψ(y), ψ(x ∗ y)} is a Klein four group.

For each x ∈ P , we identify the subgroup ψ(x) = 〈rx〉 with its non-trivial element rx and
set Rψ = {rx : x ∈ P}. The representation (R,ψ) is faithful if ψ is injective. A representation
(R,ψ) of S is abelian or non-abelian according as R is abelian or not. Note that, in [6],
‘non-abelian representation’ means ‘the representation group is not necessarily abelian’.

For an abelian representation, the representation group can be considered as vector space
over F2, the field with two elements. For each connected slim partial linear space S, there
exists a unique abelian representation ρ0 of S such that any other abelian representation of
S is a composition of ρ0 and a linear mapping (see [8]). ρ0 is called the universal abelian
representation of S. The F2 vector space V (S) underlying the universal abelian representation
is called the universal representation module of S. Considering V (S) as an abstract group with
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the group operation +, it has the presentation

V (S) = 〈vx : x ∈ P ; 2vx = 0; vx + vy = vy + vx for x, y ∈ P ;
and vx + vy + vx∗y = 0 if x ∼ y〉

and ρ0 is defined by ρ0(x) = vx for x ∈ P .
A representation (R1, ψ1) of S is a cover of a representation (R2, ψ2) of S if there exist an

automorphism β of S and a group homomorphism ϕ : R1 −→ R2 such that ψ2(β(x)) = ϕ(ψ1(x))
for every x ∈ P . Further, if ϕ is an isomorphism then the two representations (R1, ψ1) and
(R2, ψ2) are equivalent.

If S admits a non-abelian representation, then there is a universal representation (R(S), ψS)
which is the cover of every other representation of S. The universal representation is unique
(see [5], p. 306) and the universal representation group R (S) of S has the presentation:

R (S) = 〈rx : x ∈ P, r2x = 1, rxryrz = 1 if {x, y, z} ∈ L〉.

Whenever we have a representation of S, the group spanned by the images of the points is
a quotient of R(S). Further,

Lemma 1.2. V (S) = R(S)/[R(S), R(S)].

In [5], Ivanov defined a representation of a partial linear space with p + 1 points per line,
p a prime. For a detailed survey on non-abelian representations, we refer to [5], also see ([9],
Sections 1 and 2).

1.2. Near 2n-gons. A near 2n-gon is a connected non-degenerate partial linear space S =
(P,L) of diameter n such that for each point-line pair (x, l) ∈ P × L, x is nearest to exactly
one point of l. Near 4-gons are precisely generalized quadrangles (GQ, for short); that is, non-
degenerate partial linear spaces such that for each point-line pair (x, l), x /∈ l, x is collinear
with exactly one point of l.

Let S = (P,L) be a near 2n-gon. Then the sets S(x) = Γ≤n−1(x), x ∈ P , are special
geometric hyperplanes. A subset C of P is convex if every shortest path in Γ(P ) between two
points of C is entirely contained in C. A quad is a convex subset of P of diameter 2 such
that no point of it is adjacent to all other points of it. If x1, x2 ∈ P with d(x1, x2) = 2 and
|{x1, x2}⊥| ≥ 2, then x1 and x2 are contained in a unique quad, denoted by Q(x1, x2), which
is a generalized quadrangle ([11], Proposition 2.5, p.10). Thus, a quad is a subspace.

A near 2n-gon is called dense if every pair of points at distance 2 are contained in a quad.
In a dense near 2n-gon, the number of lines through a point is independent of the point ([2],
Lemma 19, p.152). We denote this number by t+ 1. A near 2n-gon is said to have parameters
(s, t) if each line contains s+ 1 points and each point is contained in t+ 1 lines. A near 4-gon
with parameters (s, t) is written as (s, t)-GQ.

Theorem 1.3. ([11], Proposition 2.6, p.12) Let S = (P,L) be a near 2n-gon and Q be a quad
in S. Then, for x ∈ P , either

(i) there is a unique point y ∈ Q closest to x (depending on x) and d(x, z) = d(x, y)+d(y, z)
for all z ∈ Q; or
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(ii) the points in Q closest to x form an ovoid Ox of Q.

The point-quad pair (x,Q) in Theorem 1.3 is called classical in the first case and ovoidal in
the later case. A quad Q is classical if (x,Q) is classical for each x ∈ P , otherwise it is ovoidal.

1.3. Slim dense near hexagons. A near 6-gon is called a near hexagon. Let S = (P,L) be
a slim dense near hexagon. For x, y ∈ P with d(x, y) = 2, we write |Γ1(x) ∩ Γ1(y)| as t2 + 1
(though this depends on x, y). We have, t2 < t. A quad in S is big if it is classical. Thus, if Q
is a big quad in S, then each point of S has distance at most one to Q. We say that a quad Q
is of type (2, t2) if it is a (2, t2)-GQ.

Theorem 1.4. ([1], Theorem 1.1, p.349) Let S = (P,L) be a slim dense near hexagon. Then
S is necessarily finite and is isomorphic to one of the eleven near hexagons with parameters as
given below.

|P | t t2 dimV (S) NPdim(S) a1 a2 a4

(i) 759 14 2 23 22 − 35 −
(ii) 729 11 1 24 24 66 − −

(iii) 891 20 4? 22 20 − − 21
(iv) 567 14 2, 4? 21 20 − 15 6
(v) 405 11 1, 2, 4? 20 20 9 9 3

(vi) 243 8 1, 4? 18 18 16 − 2
(vii) 81 5 1, 4? 12 12 5 − 1

(viii) 135 6 2? 15 8 − 7 −
(ix) 105 5 1, 2? 14 8 3 4 −
(x) 45 3 1, 2? 10 8 3 1 −

(xi) 27 2 1? 8 8 3 − −

Here, NPdim(S) is the F2-rank of the matrix An : P ×P −→ {0, 1} defined by An(x, y) = 1
if d(x, y) = n and zero otherwise. We add a star if and only if the corresponding quads are big.
The number of quads of type (2, r), r = 1, 2, 4, containing a point of S in indicated by ar. A
‘–’ in a column means that ar = 0.

For a description of the near hexagons (i)− (iii) see [11] and for (iv)− (xi) see [1]. However,
the parameters of these near hexagons suffice for our purposes here. For other classification
results about slim dense near polygons, see [12].

1.4. Extraspecial 2-groups. A finite 2-group G is extraspecial if its Frattini subgroup Φ (G) ,
the commutator subgroup G′ and the center Z (G) coincide and have order 2.

An extraspecial 2-group is of exponent 4 and order 21+2m for some integer m ≥ 1 and the
maximum of the orders of its abelian subgroups is 2m+1 (see [4], section 20, p.78,79). An
extraspecial 2-group G of order 21+2m is a central product of either m copies of the dihedral
group D8 of order 8 or m − 1 copies of D8 with a copy of the quaternion group Q8 of order
8. In the first case, G possesses a maximal elementary abelian subgroup of order 21+m and we
write G = 21+2m

+ . If the later holds, then all maximal abelian subgroups of G are of the type
2m−1 × 4 and we write G = 21+2m

− .
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Notation 1.5. For a group G, G∗ = G \ {1}.

1.5. The main result. In this paper, we prove

Theorem 1.6. Let S = (P,L) be a slim dense near hexagon and (R,ψ) be a non-abelian
representation of S. Then

(i) R is a finite 2-group of exponent 4 and order 2β, where 1 + NPdim(S) ≤ β ≤ 1 +
dimV (S).

(ii) If β = 1 + NPdim(S), then R is an extraspecial 2-group. Further, R = 21+NPdim(S)
+

except for the near hexagon (vi) in Theorem 1.4. In that case, R = 21+NPdim(S)
− .

Existence and uniqueness of non-abelian representations in each case will be discussed in
[10].

Section 2 is about slim dense near hexagons. In Section 3, we study representations of (2, t)-
GQs. In Section 4, we study the non-abelian representations of slim dense near hexagons. In
section 5 we prove Theorem 1.6.

2. Elementary Properties

Let S = (P,L) be a slim dense near hexagon. Since a (2,4)-GQ admits no ovoids, every quad
in S of type (2, 4) is big (see Theorem 1.3).

Lemma 2.1. ([1], p.359) Let Q be a quad in S of type (2, t2). Then |P | ≥ |Q|(1 + 2(t− t2)).
Equality holds if and only if Q is big. In particular, if a quad in S of type (2, t2) is big then so
are all quads in S of that type.

Let Q1 and Q2 be two disjoint big quads in S.

Lemma 2.2. ([1], Proposition 4.3, p.354) Let π be the map from Q1 to Q2 which takes x to
zx, where x ∈ Q1 and zx is the unique point in Q2 at a distance one from x. Then

(i) π is an isomorphism from Q1 to Q2.
(ii) The set Q1 ∗Q2 = {x ∗ zx : x ∈ Q1} is a big quad in S.

Let Y be the subspace of S generated by Q1 and Q2. Note that Y is isomorphic to the near
hexagon (ix), (x) or (vii) according as Q1 and Q2 are GQs of type (2,1), (2,2) or (2,4). Let
{i, j} = {1, 2}. For x ∈ P \ Y , we denote by xj the unique point in Qj at a distance 1 from x.
For y ∈ Qi, zy ∈ Qj is defined as in Lemma 2.2. The following elementary results are useful
for us.

Proposition 2.3. For x ∈ P \ Y , d(zxi , xj) = 1 and d(zx1 , zx2) = d(x1, x2) = 2; that is,
{x1, zx1 , x2, zx2} is a quadrangle in Γ(P ).

Proof. Since x ∈ Γ1(x1) ∩ Γ1(x2), d(x1, x2) = 2. Further, d(xi, xj) = d(xi, zxi) + d(zxi , xj). So
d(zxi , xj) = 1 and d(zx1 , zx2) = 2. �

Proposition 2.4. Let l be a line of S disjoint from Y and x, y ∈ l, x 6= y. Then, x1y1 = x1zx2 if
and only if x2y2 = x2zx1. In fact, if x1y1 = x1zx2, then (y1, y2) = (zx2 , x2∗zx1) or (x1∗zx2 , zx1).
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Proof. xjyj = xjzxi if and only if yj ∈ {zxi , xj ∗zxi}. If yj = xj ∗zxi , then yi ∼ xi ∗zxj , because
2 = d(yj , yi) = d(yj , xi ∗ zxj ) + d(xi ∗ zxj , yi). Since yi ∼ xi, it follows that yi is a point in the
line xizxj and yi = zxj .

If yj = zxi , then applying the above argument to (x ∗ y)j = xj ∗ zxi , we get (x ∗ y)i = zxj

and yi = xi ∗ zxj . �

An immediate consequence of Proposition 2.4 is the following.

Corollary 2.5. For x, y ∈ P \ Y with x ∼ y, d(zx1 , zy2) = d(zx2 , zy1) = 2 or 3. Further, this
distance is 2 if and only if the lines xjyj and xjzxi coincide.

Proposition 2.6. Let Q be a big quad in S disjoint from Y . For x, y ∈ Q with x � y,
(d(zx1 , zy2), d(zx2 , zy1)) = (2, 3) or (3,2).

Proof. By Lemma 2.2, there exist w ∈ {x, y}⊥ in Q such that x1w1 = x1zx2 . By Proposition
2.4, (w1, w2) = (zx2 , x2 ∗ zx1) or (x1 ∗ zx2 , zx1). Assume that (w1, w2) = (zx2 , x2 ∗ zx1). Then,
d(zx2 , zy1) = d(w1, zy1) = d(w1, zw1) + d(zw1 , zy1) = 2. Now, y2 ∼ w2 and y2 � x2 in Q2

implies that x1 � zy2 . So d(x1, zy2) = 2 and d(zx1 , zy2) = d(zx1 , x1) + d(x1, zy2) = 3. A similar
argument holds if (w1, w2) = (x1 ∗ zx2 , zx1). �

3. Representations of (2, t)-GQs

Let S = (P,L) be a (2, t)-GQ. Then P is finite and t = 1, 2 or 4. For each value of t there
exists a unique generalized quadrangle, up to isomorphism ([3], Theorem 7.3, p.99). A k-arc of
S is a set of k pair-wise non-collinear points of S. A k-arc is complete if it is not contained in
a (k + 1)-arc. A point x is a center of a k-arc if x is collinear with every point of it. An ovoid
of S is a k-arc meeting each line of S non-trivially. A spread of S is a set K of lines of S such
that each point of S is in a unique member of K. If O (resp., K) is an ovoid (resp., spread) of
S, then |O| = 1 + 2t (resp., |K| = 1 + 2t).

Since each line contains three points, each pair of non-collinear points of S is contained in a
(2, 1)-subGQ of S. For t = 1, 2, a (2, t)-subGQ of S and a point outside it generate a (2, 2t)-
subGQ in S. Minimum number of generators of a (2, t)-GQ is 4 if t = 1, 5 if t = 2 and 6 if
t = 4.

3.1. (2, 2)-GQ. Let S = (P,L) be a (2, 2)-GQ. For any 3-arc T of S, |T⊥| = 1 or 3. Further,
|T⊥| = 1 if and only if T is contained in a unique (2, 1)-subGQ of S; and |T⊥| = 3 if and
only if T is a complete 3-arc. If S admits a k-arc, then k ≤ 5. S contains six 5-arcs (that is,
ovoids). Each ovoid is determined by any two of its points. Each point of S is in two ovoids
and the intersection of two distinct ovoids is a singleton. Any two non-collinear points of S
are in a unique ovoid of S and also in a unique complete 3-arc of S. Any incomplete 3-arc of
S is contained in a unique ovoid. Any 4-arc of S is not complete and is contained in a unique
ovoid. The intersection of two distinct complete 3-arcs of S is empty or a singleton.

A model for the (2, 2)-GQ: Let Ω = {1, 2, 3, 4, 5, 6}. A factor of Ω is a set of three pair-
wise disjoint 2-subsets of Ω. Let E be the set of all 2-subsets of Ω and F be the set of all factors
of Ω. Then |E| = |F| = 15 and the pair (E ,F) is a (2, 2)-GQ.
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3.2. (2, 4)-GQ. Let S = (P,L) be a (2, 4)-GQ. Each 3-arc of S has three centers and is con-
tained in a unique (2, 1)-subGQ of S. So any 4-arc of S is contained in a unique (2, 2)-subGQ
of S. If S admits a k-arc, then 0 ≤ k ≤ 6. So S has no ovoids. S admits two disjoint 6-arcs. A
5-arc of S is complete if and only if it is contained in a unique (2, 2)-subGQ of S. Each incom-
plete 5-arc has exactly one center and each complete 5-arc of S has exactly two centers. Each
4-arc has two centers and is contained in a unique complete 5-arc and in a unique complete
6-arc. Each 3-arc of S has 3 centers and is contained in a unique (2,1)-subGQ of S.

A model for the (2, 4)-GQ: Let Ω, E and F be as in the model of a (2,2)-GQ. Let
Ω′ = {1′, 2′, 3′, 4′, 5′, 6′}. Take

P = E ∪ Ω ∪ Ω′; L = F ∪ {{i, {i, j}, j′} : 1 ≤ i 6= j ≤ 6}.

Then |P | = 27, |L| = 45 and the pair (P,L) is a (2,4)-GQ.

3.3. Representations. Let S = (P,L) be a (2, t)-GQ and (R,ψ) be a representation of S.

Proposition 3.1. R is an elementary abelian 2-group.

Proof. Let x, y ∈ P and x � y. Let T be a (2, 1)-subGQ of S containing x and y. Let {x, y}⊥

in T be {a, b}. Then [rx, ry] = 1, because rbry = ryrb, rbrx = rxrb and r(a∗x)∗(b∗y) = r(a∗y)∗(b∗x).
So R is abelian. �

For the rest of this section we assume that ψ is faithful.

Proposition 3.2. The following hold:

(i) |R| = 24 if t = 1;
(ii) |R| = 24 or 25 if t = 2, and both possibilities occur;

(iii) |R| = 26 if t = 4.

Proof. Since S contains a set of k points which is not contained in no proper subspace of S,
(t, k) ∈ {(1, 4), (2, 5), (4, 6)}, F2-dimension of R is at most k. So |R| ≤ 2k.

(i) If t = 1, then |R| ≥ 24 because |P | = 9 and ψ is faithful. So |R| = 24.
(ii) If t = 2, then |R| ≥ 24 because S contains a (2, 1)-subGQ. The rest follows from the

fact that S has a symplectic embedding in a F2-vector space of dimension 4 and as well as an
orthogonal embedding in a F2-vector space of dimension 5.

To prove (iii) we need Proposition 3.3 below which is a partial converse to the fact that if
x ∼ y, x, y ∈ P , then rxry ∈ Rψ. �

Proposition 3.3. Assume that (t, |R|) 6= (2, 24). If rxry ∈ Rψ for distinct x, y ∈ P , then
x ∼ y.

Proof. Let z ∈ P be such that rz = rxry. If x � y, then T = {x, y, z} is a 3-arc of S because
ψ is faithful. There is no (2,1)-subGQ of S containing T because the subgroup of R generated
by the image of such a GQ is of order 24 (Proposition 3.2(i)). Every 3-arc of a (2, 4)-GQ is
contained in a unique (2,1)-subGQ. So t = 2 and T is a complete 3-arc. Let Q be a (2,1)-subGQ
of S containing x and y. Then z /∈ Q and P = 〈Q, z〉. Since rz ∈ 〈ψ(Q)〉, |R| = | 〈ψ(Q)〉 | = 24,

a contradiction to (t, |R|) 6= (2, 16). �
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Proof of Proposition 3.2(iii). If t = 4, then there are 16 points of S not collinear with
a given point x. By Proposition 3.3, |R∗ \ Rψ| ≥ 16. Thus, |R| > 25 and so |R| = 26. This
completes the proof.

Corollary 3.4. Let t = 4 and Q be a (2,2)-subGQ of S. Then |〈ψ(Q)〉| = 25.

Proof. This follows from Proposition 3.2(iii) and the fact that P = 〈Q, x〉 for x ∈ P \Q. �

Proposition 3.5. If t = 2, then |R| = 24 if and only if rarbrc = 1 for every complete 3-arc
{a, b, c} of S.

Proof. Let T = {a, b, c} be a complete 3-arc of S and Q be a (2,1)-subGQ of S containing a
and b. Then c /∈ Q and P = 〈Q, c〉.

If rarbrc = 1, then rc ∈ 〈ψ(Q)〉 and |R| = |〈ψ(Q)〉| = 24. Now, assume that |R| = 24. Let
{x, y} = {a, b}⊥ in Q. Then x, y ∈ T⊥, since T is a complete 3-arc. Let z be the point in Q

such that {x, y, z} is a 3-arc in Q. Then c ∼ z and rz = (rarx)(rbry). Since H = 〈ry : y ∈ x⊥〉 is
a maximal subgroup of R ([7], 4.2.4, p.68), |H| = 23. So rc = rarb or rarbrx, since ψ is faithful.
If the later holds then rc∗z = ry, which is not possible because ψ is faithful and y 6= c∗z. Hence
rc = rarb. �

Corollary 3.6. Assume that (t, |R|) = (2, 24). Let T = {a, b, c} ⊂ P be such that rarbrc = 1.
Then T is a line or a complete 3-arc.

Proof. Assume that T is not a line. Then, since ψ is faithful, T is a 3-arc. We show that T is
complete. Suppose that T is not complete. Let {a, b, d} be the complete 3-arc of S containing
a and b. Then rarbrd = 1 (Proposition 3.5) and c 6= d. So rc = rd, contradicting that ψ is
faithful. �

Lemma 3.7. If S contains a 3-arc T = {a, b, c} such that rarbrc ∈ Rψ, then (t, |R|) = (2, 24).
In particular, T is incomplete.

Proof. Let x ∈ P be such that rx = rarbrc. Since ψ is faithful, x /∈ T . Let t = 2. If T is
complete, then |R| = 25 (Proposition 3.5) and x is collinear with at least one point of T , say
x ∼ a. Then rbrc = rxra ∈ Rψ, a contradiction to Proposition 3.3. Thus, T is incomplete if
t = 2.

Let Q1 be the (2,1)-subGQ of S containing T . If x ∈ Q1, then 〈ψ(Q1)〉 = 〈ra, rb, rc, rx〉
would be of order 24, contradicting Proposition 3.2(i). So x /∈ Q1 and t 6= 1. Let Q2 be the
(2,2)-subGQ of S generated by Q1 and x. Then |〈ψ(Q2)〉| = 24, and so t 6= 4. Thus t = 2 and
|R| = |〈ψ(Q2)〉| = 24. �

Lemma 3.8. Let a, b ∈ P with a � b. Set A = {rarx : x � a} and B = {rbrx : x � b}. Then
|A ∩B| = t+ 2.

Proof. It is enough to prove that rarx = rbry for rarx ∈ A, rbry ∈ B if and only if either x = b

and y = a holds or there exists a point c such that {c, a, y} and {c, b, x} are lines. We need to
prove the ‘only if’ part. Since ψ is faithful, x 6= b if and only if y 6= a. Assume that x 6= b and
y 6= a. For this, we show that y ∼ a and x ∼ b. Then ra∗y = rary = rbrx = rb∗x. Since ψ is
faithful, it would then follow that a ∗ y = b ∗ x and this would be our choice of c.
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First, assume that (t, |R|) 6= (2, 24). Since a � b, rarb /∈ Rψ by Proposition 3.3. Since
rxry = rarb, Proposition 3.3 again implies that x � y. Now, rarbry = rx ∈ Rψ. By Lemma 3.7,
{a, b, y} is not a 3-arc. This implies that y ∼ a. By a similar argument, x ∼ b.

Now, assume that (t, |R|) = (2, 24). Suppose that x � b. Then T = {a, b, x} is a 3-arc of
S. By Proposition 3.7, T is incomplete. Let Q be the (2, 1)-subGQ in S containing T and
let {c, d} = {a, b}⊥ in Q. Then rx = rarbrcrd = rxryrcrd. So ryrcrd = 1. By Corollary 3.6,
{c, d, y} is a complete 3-arc. Since b ∈ {c, d}⊥, it follows that b ∈ {c, d, y}⊥, a contradiction to
that b � y. So x ∼ b. A similar argument shows that y ∼ a. �

Proposition 3.9. Let K = R∗ \ Rψ. Each element of K is of the form ryrz for some y � z

in P , except when (t, |R|) = (2, 25). In this case, exactly one element, say α, of K can not be
expressed in this way. Moreover, α = rurvrw for every complete 3-arc {u, v, w} of S.

Proof. Since K is empty when (t, |R|) = (2, 24), we assume that (t, |R|) =
(
1, 24

)
,

(
2, 25

)
or(

4, 26
)
. Fix a, b ∈ P with a � b. Then rarb ∈ K (Proposition 3.3). Let A and B be as in

Lemma 3.8, and set

C = {rarbrx : {a, b, x} is a 3-arc which is incomplete if t = 2} .

By proposition 3.3, A ⊆ K and B ⊆ K and by Lemma 3.7, C ⊆ K. Each element of C
corresponds to a 3-arc which is contained in a (2,1)-subGQ of S. Let rarbrx ∈ C and Q be the
(2,1)-subGQ of S containing the 3-arc {a, b, x}. If {a, b}⊥ = {p, q} in Q, then ra∗prb∗q = rx

implies that rarbrx = rprq. Thus, every element of C can be expressed in the required form.
By Proposition 3.3, A ∩ C and B ∩ C are empty. By Lemma 3.8, |A ∩B| = t+ 2. Then an

easy count shows that

|A ∪B ∪ C| =

{
10t− 4 if t = 1 or 4
10t− 5 if t = 2

.

So K = A ∪ B ∪ C if t = 1 or 4, and K \ (A ∪ B ∪ C) is a singleton if t = 2. This proves the
proposition for t = 1, 4 and tells that if (t, |R|) = (2, 25), then at most one element of K can
not be written in the desired form.

Now, let (t, |R|) = (2, 25) and T = {u, v, w} be a complete 3-arc of S. By Lemma 3.7,
α = rurvrw ∈ K. Suppose that α = rxry for some x, y ∈ P . Then x � y by Lemma 3.7
and {x, y} ∩ T = Φ by Proposition 3.3. Suppose that x ∈ T⊥ and Q be the (2, 1)-subGQ
of S generated by {x, u, v, y}. Since w /∈ Q and rw = rurvrxry, it follows that |R| = 24, a
contradiction. So, x /∈ T⊥. Similarly, y /∈ T⊥. Thus, each of x and y is collinear with exactly
one point of T . Let x ∼ u. Then y � x ∗ u, since x ∗ u ∈ T⊥ and α = rxry. Let U be the
(2,1)-subGQ of S generated by {u, x, y, v}. Note that y ∼ u in U . Let z be the unique point in
U such that {u, v, z} is a 3-arc of U . Then rz = rxryrurv = rw. Since w 6= z (in fact, w /∈ U),
this is a contradiction to the faithfulness of ψ. Thus, α can not be expressed as rxry for any
x, y in P . This, together with the last sentence of the previous paragraph, implies that α is
independent of the complete 3-arc T of S. �
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4. Initial Results

Let S = (P,L) be a slim dense near hexagon and (R,ψ) be a non-abelian representation of
S. For x ∈ P and y ∈ Γ≤2(x), [rx, ry] = 1 : if d(x, y) = 2, we apply Proposition 3.1 to the
restriction of ψ to the quad Q(x, y). From ([9], Theorem 2.9, see Example 2.2 of [9]) applied
to S , we have

Proposition 4.1.

(i) For x, y ∈ P , [rx, ry] 6= 1 if and only if d(x, y) = 3. In this case, 〈rx, ry〉 is a dihedral
group 21+2

+ of order 8.
(ii) R is a finite 2-group of exponent 4, |R′| = 2 and R′ = Φ(R) ⊆ Z(R).

(iii) rx /∈ Z(R) for each x ∈ P and ψ is faithful.

We write R′ = 〈θ〉 throughout. Since R′ is of order two, Lemma 1.2 implies

Corollary 4.2. |R| ≤ 21+ dim V (S).

Proposition 4.3. R = EZ(R), where E is an extraspecial 2-subgroup of R and E ∩ Z(R) =
Z(E).

Proof. We consider V = R/R′ as a vector space over F2. The map f : V × V −→ F2 taking
(xZ, yZ) to 0 or 1 accordingly [x, y] = 1 or not, is a symplectic bilinear form on V . This is
non-degenerate if and only if R′ = Z(R). Let W be a complement in V of the radical of f and
E be its inverse image in R. Then E is extraspecial and the proposition follows. �

Corollary 4.4. Let M be an abelian subgroup of R of order 2m intersecting Z(R) trivially.
Then |R| ≥ 22m+1. Further, equality holds if and only if R is extraspecial and M is a maximal
abelian subgroup of R intersecting Z(R) trivially.

The following lemma is useful for us.

Lemma 4.5. Let x ∈ P and Y ⊆ Γ3(x). Then [rx, Π
y∈Y

ry] = 1 if and only if |Y | is even.

Proof. Since R′ ⊆ Z(R), [rx, Π
y∈Y

ry] is well-defined (though Π
y∈Y

ry depends on the order of

multiplication). Let y, z ∈ Γ3(x) be distinct. The subgraph of Γ(P ) induced on Γ3(x) is
connected (see [2], Corollary to Theorem 3, p. 156). Let y = y0, y1, · · ·, yk = z be a path in
Γ3(x). Then ryrz = Πryi∗yi+1 (0 ≤ i ≤ k− 1). Since d(x, yi ∗ yi+1) = 2, [rx, ryrz] = 1. Now, the
result follows from Theorem 4.1(i). �

Notation 4.6. For a quad Q in S, we denote by MQ the elementary abelian subgroup of R
generated by ψ(Q).

Proposition 4.7. Let Q be a quad in S and MQ ∩ Z(R) 6= {1}. Then Q is of type (2,2),
|M | = 25 and MQ ∩ Z(R) = {1, rarbrc} for every complete 3-arc {a, b, c} of S.

Proof. Suppose that MQ ∩Z(R) 6= {1} and 1 6= m ∈MQ ∩Z(R). Then m 6= rx for each x ∈ P
(Proposition 4.1(iii)). If Q is of type (2,1) or (2,4). By Proposition 3.9, m = ryrz for some
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y, z ∈ Q, y � z. Choose w ∈ P \ Q with w ∼ y. Then [rw, rz] = [rw, ryrz] = [rw,m] = 1. But
d(w, z) = 3, a contradiction to Proposition 4.1(i).

So Q is a (2,2)-GQ. Now, |MQ| 6= 24 otherwise M∗
Q = {rx : x ∈ Q} and m = rx ∈ Z(R) for

some x ∈ Q, contradicting Proposition 4.1(iii). So |MQ| = 25. Now, either m = rurv for some
u, v ∈ Q, u � v or m = rarbrc for every complete 3-arc {a, b, c} of Q (Proposition 3.9). The
above argument again implies that the first possibility does not occur. �

Corollary 4.8. Let Q and Q′ be two disjoint big quads in S of type (2, t2), t2 6= 2. Then
MQ ∩MQ′ = {1}.

Proof. This follows from the proof of Proposition 4.7 with Z(R) replaced by MQ′ and choosing
w in Q′. �

Proposition 4.9. Let Q be a quad in S of type (2, 2). Then Q is ovoidal if and only if
|MQ| = 25 and MQ ∩ Z(R) = {1}.

Proof. First, assume that Q is ovoidal and let z ∈ P \Q be such that the pair (z,Q) is ovoidal.
Let Oz = {x1, · · ·, x5} be as in Theorem 1.3(ii). If |MQ| = 24, then for the complete 3-arc
{x1, x2, y} of Q containing x1 and x2, d(y, z) = 3 and rx1rx2ry = 1 (Proposition 3.5). But
[rz, ry] = [rz, rx1rx2ry] = 1, a contradiction to Proposition 4.1(i). So |MQ| = 25. Suppose
that MQ ∩ Z(R) 6= {1} and 1 6= m ∈ MQ ∩ Z(R). By Proposition 4.7, m = rarbrc for each
complete 3-arc {a, b, c} of Q. The above argument again implies that this is not possible. So
MQ ∩ Z(R) = {1}.

Now, assume that |MQ| = 25 and MQ ∩ Z(R) = {1}. Suppose that Q is classical and
let {a, b, c} be a complete 3-arc of Q. Then, by Proposition 3.5, rarbrc 6= 1. Since (x,Q) is
classical for each x ∈ P \ Q, either each of a, b, c is at a distance two from x or exactly two
of them are at a distance three from x. In either case [rx, rarbrc] = 1 (see Lemma 4.5). So
1 6= rarbrc ∈MQ ∩ Z(R), a contradiction. �

5. Proof of Theorem 1.6

Let S = (P,L) be a slim dense near hexagon and let (R,ψ) be a non-abelian representation
of S. By Proposition 4.1(ii), R is a finite 2-group of exponent 4. By Corollary 4.2, |R| ≤
21+dimV (S). For each of the near hexagons in Theorem 1.6 except (vi), we find an elementary
abelian subgroup of R of order 2ξ, 2ξ = NPdim(S), intersecting Z(R) trivially. Then by
Corollary 4.4, |R| ≥ 21+2ξ and R = 21+2ξ

+ if equality holds. For the near hexagon (vi) we prove
in Subsection 5.3 that R = 21+2ξ

− , thus completing the proof of Theorem 1.6.

5.1. The near hexagons (vii) to (xi). Let S = (P,L) be one of the near hexagons (vii) to
(xi) and Q be a big quad in S. Set M = MQ. Then, by Proposition 4.7, M ∩Z(R) = {1} and
|M | = 24 or 26 according as Q is of type (2,1) or (2,4). If Q is of type (2,2), then |M | = 24 or
25. Also, if |M | = 25, then |M ∩ Z(R)| = 2 because Q is classical (Propositions 4.7 and 4.9).
Thus, R has an elementary abelian subgroup of order 22ξ/2 intersecting Z(R) trivially.
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5.2. The near hexagons (i) to (v). Let S = (P,L) be one of the near hexagons (i) to (v).
Fix a ∈ P and b ∈ Γ3(a). Let l1, · · ·, lt+1 be the lines containing a, xi be the point in li with
d(b, xi) = 2 and A = {xi : 1 ≤ i ≤ t + 1}. For a subset X of A, we set TX = {rx : x ∈ X},
MX = 〈TX〉 and M = 〈rb〉MX . Then MX and M are elementary abelian 2-subgroups of R.

Proposition 5.1. Let X be a subset of A such that

(i) MX ∩ Z(R)={1},
(ii) TX is linearly independent.

Then, |M | = 2|X|+1 and M ∩ Z(R) = {1}. In particular, |R| ≥ 22|X|+3.

Proof. By (ii), 2|X| ≤ |M | ≤ 2|X|+1. If |M | = 2|X|, then rb can be expressed as a product
of some of the elements rx, x ∈ X. Since [ra, rx] = 1 for x ∈ X, it follows that [ra, rb] = 1,
a contradiction to Proposition 4.1(i). So |M | = 2|X|+1. Suppose that M ∩ Z(R) 6= {1} and
1 6= z ∈ M ∩ Z(R). Let z = Π

y∈X∪{b}
r
iy
y , iy ∈ {0, 1}. Since z ∈ Z(R), ib = 0 by the previous

argument. Then it follows that z ∈MX , a contradiction to (i). So M ∩ Z(R) = {1}.
By Corollary 4.4, |R| ≥ 22(|X|+1)+1 = 22|X|+3. �

A subset X of A is good if (i) and (ii) of Proposition 5.1 hold. In the rest of this Section,
we find good subsets of A of size (2ξ − 2)/2, thus completing the proof of Theorem 1.6 for the
near hexagons (i) to (v). The next Lemma gives a necessary condition for a subset of A to be
good.

Lemma 5.2. Let X be a subset of A which is not good, α ∈MX ∩ Z(R) (possibly α = 1) and

(1) α = Π
xk∈X

rikxk

where ik ∈ {0, 1}. Set B = {k : xk ∈ X}, B′ = {k ∈ B : ik = 1} and; for 1 ≤ i 6= j ≤ t+ 1, let
Ai,j = {k ∈ B′ : xk ∈ Q(xi, xj)}. Then

(i) |B′| ≥ 3,
(ii) |B′| is even if and only if |Ai,j | is even.

Proof. (i) |B′| ≥ 2 because rxk
/∈ Z(R) for each k (Proposition 4.1(iii)). If |B′| = 2, then

rxry = α for some pair of distinct x, y ∈ X. Since ψ is faithful and rx, ry are involutions,
α 6= 1. For the quad Q = Q(x, y), 1 6= α ∈ MQ ∩ Z(R). By Proposition 4.7, Q is a (2, 2)-GQ
and rarbrc = α for each complete 3-arc {a, b, c} of Q. In particular, if {x, y, w} is the complete
3-arc of Q containing x and y, then rxryrw = α. Then it follows that rw = 1, a contradiction.
So |B′| ≥ 3.

(ii) Let w ∈ Q (xi, xj) and w � a. For each m ∈ B′
i,j = B′ \ Ai,j , d(w, xm) = 3 because

xm ∼ a. Now, [rw, Π
m∈B′

i,j

rxm ] = [rw, Π
m∈B′

rxm ] = [rw, α] = 1. So |B′
i,j | is even by Lemma 4.5.

This implies that (ii) holds. �

In what follows, for any subset X of A which is not good, B′ is defined relative to an
expression as in (1) for an arbitrary but fixed element of MX ∩ Z(R). Any quad Q in S

containing the point a is determined by any two distinct points xi and xj of A that are
contained in Q. In that case we sometime denote by AQ the set Ai,j defined in Lemma 5.2.
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5.2.1. The near hexagon (i). There are 7 quads in S containing the point x1 ∈ A. This
partitions the 14 points ( 6= x1) of A , say

{x2, x3} ∪ {x4, x5} ∪ {x6, x7} ∪ {x8, x9} ∪ {x10, x11} ∪ {x12, x13} ∪ {x14, x15}.

Consider the quad Q(x10, x12). We may assume that Q(x10, x12) ∩ A = {x10, x12, x15}. We
show that

X = {x2, x3, x4, x5, x6, x7, x8, x10, x12, x14}
is a good subset of A.

Assume otherwise. Let C1 = {8, 10, 12, 14} and C2 = B \ C1. For k ∈ C1, Q(x1, xk) ∩ A =
{x1, xk, xk+1}. So A1,k ⊆ {k}. By Lemma 5.2(ii), either C1 ⊆ B′ or C1 ∩ B′ is empty. Now,
C1 * B′ because, otherwise, A1,14 = {14} and A10,12 = {10, 12} and, by Lemma 5.2(ii), |B′|
would be both odd and even.

Suppose that C1 ∩ B′ is empty. Then B′ ⊆ C2. Since A1,8 is empty, |B′| is even . Choose
j ∈ B′ (see Lemma 5.2(i)). Observe that there exists k ∈ {8, · · ·, 15} such that Q(xj , xk)∩{xi :
i ∈ C2} = {xj}. Then Aj,k = {j} and |B′| is odd also, a contradiction. So, X is good and
|X| = 10.

5.2.2. The near hexagon (ii). Let X = {xi : 1 ≤ i ≤ 11}. Then X is a good subset of A.
Otherwise, for some i, j ∈ B′ with i 6= j (see Lemma 5.2(i)), Ai,j = {i, j} and Ai,12 = {i} and,
by Lemma 5.2(ii), |B′| would be both even and odd.

5.2.3. The near hexagon (iii). Let Q1, · · ·, Q5 be the five (big) quads in S containing x1 and
a. Let

Q1 ∩A = {x1, x2, x3, x4, x5},
Q2 ∩A = {x1, x6, x7, x8, x9},
Q3 ∩A = {x1, x10, x11, x12, x13},
Q4 ∩A = {x1, x14, x15, x16, x17},
Q5 ∩A = {x1, x18, x19, x20, x21}.

We show that X = {x2, x3, x4, x5, x6, x7, x8, x10, x14} is a good subset of A. Assume otherwise.
Since Q5 ∩X is empty, AQ5 is empty and, by Lemma 5.2(ii), |B′| and |AQ| are even for each
quad Q in S containing a. Since AQ3 ⊆ {10} and |AQ3 | is even, 10 /∈ AQ3 and so, 10 /∈ B′. This
argument with Q3 replaced by Q4 shows that 14 /∈ B′. Since AQ2 ⊆ {6, 7, 8} and |AQ2 | is even,
j /∈ B′ for some j ∈ {6, 7, 8}. Since |B′| ≥ 3 (Lemma 5.2(i)), k ∈ B′ for some k ∈ {2, 3, 4, 5}.
Then, Aj,k = {k}, contradicting that |Aj,k| is even. So X is good and |X| = 9.

5.2.4. The near hexagon (iv). Let Q1, · · ·, Q6 be the six big quads in S containing the point a.
Any two of these big quads meet in a line through a and any three of them meet only at {a}.
Let

Q1 ∩A = {x1, x2, x3, x4, x5},
Q2 ∩A = {x1, x6, x7, x8, x9},
Q3 ∩A = {x2, x6, x10, x11, x12},
Q4 ∩A = {x3, x7, x10, x13, x14},
Q5 ∩A = {x4, x8, x11, x13, x15},
Q6 ∩A = {x5, x9, x12, x14, x15}.



14 B. K. SAHOO AND N. S. N. SASTRY

We show that X = {x1, x2, x3, x4, x6, x7, x8, x10, x11} is a good subset of A. Assume otherwise.
Since Q6 ∩X is empty, AQ6 is empty and, by Lemma 5.2(ii), |B′| and |AQ| are even for every
quad Q in S containing a. We first verify that for

(i, j, k) ∈ {(1, 11, 14), (1, 12, 13), (2, 9, 13), (3, 6, 15), (4, 6, 14), (5, 6, 13)},

Q(xi, xj) is of type (2,2) and Q(xi, xj)∩A = {xi, xj , xk}. Since A1,12 ⊆ {1} and |A1,12| is even,
it follows that 1 /∈ B′. Similarly, considering A2,9 and A5,6, we conclude that 2 /∈ B′ and 6 /∈ B′.
Since 6 /∈ B′, considering A3,6 and A4,6, we conclude that 3 /∈ B′ and 4 /∈ B′. Since |B′| ≥ 3 is
even, it follows that B′ = {7, 8, 10, 11} and so A1,11 = {11}, contradicting that |A1,11| is even.
So X is good and |X| = 9.

5.2.5. The near hexagon (v). Let Q1, Q2, Q3 be the three big quads containing a. There in-
tersection is {a} and any two of these big quads meet in a line through a. We may assume
that

Q1 ∩A = {x1, x2, x3, x4, x5},
Q2 ∩A = {x1, x6, x7, x8, x9},
Q3 ∩A = {x2, x6, x10, x11, x12}.

We show that X = {x1, x2, x3, x4, x6, x7, x8, x10, x11} is good subset of A. Assume otherwise.
We note that the quads Q(xr, xk) are of type (2,2) in the following cases:

r = 1 and k ∈ {10, 11, 12}; r = 2 and k ∈ {7, 8, 9}; r = 6 and k ∈ {3, 4, 5}.

Now, Ar,s ⊆ {r} for (r, s) ∈ {(1, 12), (2, 9), (6, 5)} because xs /∈ X. Considering A1,12, we
conclude that 10, 11 /∈ B′ in view of the following: A1,12 ⊆ {1}, A1,k ⊆ {1, k} for k ∈ {10, 11}
and the parity of |B′| and |A1,j | are the same for all j 6= 1. Similarly, considering A2,9 (respec-
tively, A6,5) we conclude that 7, 8 /∈ B′ (respectively, 3, 4 /∈ B′). Since |B′| ≥ 3, it follows that
B′ = {1, 2, 6}. But A5,9 is empty because {x5, x9, x12} ∩ X and {10, 11} ∩ B′ are empty. So
|B′| is even (Lemma 5.2(ii)), a contradiction. So X is good and |X| = 9.

5.3. The near hexagon (vi). We consider this case separately because the technique of the
previous section only yields |R| ≥ 217 in this case.

Let S = (P,L) be a slim dense near hexagon and Y be a proper subspace of S isomorphic
to the near hexagon (vii). Big quads in Y (as well as in S) are of type (2,4). There are
three pair-wise disjoint big quads in Y and any two of them generate Y . Fix two disjoint big
quads Q1 and Q2 in Y . Let (R,ψ) be a non-abelian representation of S. Set M = 〈ψ(Y )〉 and
Mi = MQi for i = 1, 2. Then |Mi| = 26 (Proposition 3.2(iii)), Mi ∩ Z(R) = {1} (Proposition
4.7), M1 ∩M2 = {1} (Proposition 4.8) and M = 21+12

+ with M = M1M2R
′ (Theorem 1.6 for

the the near hexagon (vii)). Clearly, R = MN , where N = CR(M).
Let {i, j} = {1, 2}. For x ∈ P \ Y , we denote by xj the unique point in Qj at distance 1

from x. For y ∈ Qi, let zy denote the unique point in Qj at distance 1 from y.

Proposition 5.3. For each x ∈ P \Y , rx has a unique decomposition as rx = mx
1m

x
2nx, where

mx
j = rzxi ∈Mj and nx ∈ N is an involution not in Z(R). In particular, rx /∈M .
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Proof. We can write rx = mx
1m

x
2nx for some mx

1 ∈ M1, m
x
2 ∈ M2 and nx ∈ N . Set Hj =

〈rw : w ∈ Qj ∩ xj⊥〉 ≤ Mj . Then Hj is a maximal subgroup of Mj ([7], 4.2.4, p.68) and
rx ∈ CR(H1) ∩ CR(H2). For all h ∈ Hj ,

[mx
i , h] = [mx

1m
x
2nx, h] = [rx, h] = 1.

So mx
i ∈ CMi (Hj). Note that CMi (Hj) = 〈rz

xj 〉, a subgroup of order 2. If mx
i = 1, then rx =

mx
jnx commutes with every element of Mj . In particular, [rx, ry] = 1 for every y ∈ Qj ∩Γ3 (x),

a contradiction to Theorem 4.1(i). So mx
i = rz

xj . Now [mx
1 ,m

x
2 ] = 1, since d (zx1 , zx2) = 2

(Proposition 2.3). Since r2x = 1, n2
x = 1.

We show that nx 6= 1 and nx /∈ Z(R). The quad Q = Q(x1, x2) is of type (2,2) or (2,4)
because x1 and x2 have at least three common neighbours x, zx1 and zx2 . Let U be the (2, 2)-
GQ in Q generated by

{
x1, x2, x, zx1 , zx2

}
. If Q is of type (2,4), then 〈ψ(U)〉 is of order 25

(Corollary 3.4). If Q is of type (2,2), then U = Q is ovoidal because it is not a big quad. So
〈ψ(U)〉 is of order 25 (Propositions 4.9). Therefore, rarbrc 6= 1 for every complete 3-arc {a, b, c}
of U (Proposition 3.5). In particular, nx = rxrzx1 rzx2 6= 1 for the complete 3-arc {x, zx1 , zx2}
of U . Now, applying Proposition 4.7 (respectively, Proposition 4.9) when Q is of type (2,4)
(respectively, of type (2,2)), we conclude that nx /∈ Z(R). �

Proposition 5.4. Let Q be a big quad in S disjoint from Y and x, y ∈ Q. Then:

(i) [nx, ny] = 1 if and only if x = y or x ∼ y;
(ii) There is a unique line lx = {x, y, x ∗ y} in Q containing x such that nx∗y = nxny. For

any other line l = {x, z, x ∗ z} in Q, nx∗z = nxnzθ.

Proof. (i) Let x ∼ y. By Corollary 2.5 and Proposition 5.3, [mx
2 ,m

y
1] = [mx

1 ,m
y
2] = 1 or θ .

Then [nx, ny] = [mx
1m

x
2nx,m

y
1m

y
2ny] = [rx, ry] = 1.

Now, assume that x � y. By Proposition 2.6 and Proposition 5.3, ([mx
1 ,m

y
2], [m

x
2 ,m

y
1]) =

(1, θ) or (θ, 1). Since [rx, ry] = 1, it follows that [nx, ny] = θ 6= 1.
(ii) Let x ∈ Q and lx be the line in Q containing x which corresponds to the line xjzxi in Qj .

This is possible by Lemma 2.2. For u, v ∈ lx, d(zuj , zvi) = 2 (Corollary 2.5). So [mu
i ,m

v
j ] = 1.

Then ru∗v = (mu
1m

v
1)(m

u
2m

v
2)(nunv). So nu∗v = nunv. Let l be a line (6= lx) in Q containing x.

For y 6= w in l, [my
2,m

w
1 ] = θ because d(zy1 , zw2) = 3 (Corollary 2.5). So

ry∗w = (my
1m

y
2ny) (mw

1 m
w
2 nw) = (my

1m
w
1 ) (my

2m
w
2 )nynwθ,

and ny∗w = nynwθ. �

Corollary 5.5. Let Q be as in Proposition 5.4 and I2(N) be the set of involutions in N . Define
δ from Q to I2(N) by δ(x) = nx. Then

(i) [δ(x), δ(y)] = 1 if and only if x = y or x ∼ y.
(ii) δ is one-one.

(iii) There exists a spread in Q such that for x, y ∈ Q with x ∼ y,

δ(x ∗ y) =

{
δ(x)δ(y) if xy ∈ T
δ(x)δ(y)θ if xy /∈ T

.
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Proof. (i) and (iii) follows from Proposition 5.4. We now prove (ii). Let δ(x) = δ(y) for
x, y ∈ Q. By (i), x = y or x ∼ y. If x ∼ y, then rx∗y = rxry = (mx

1m
y
1)(m

x
2m

y
2)α ∈ M , where

α = [mx
2 ,m

y
1] ∈ R′. But this is not possible as x ∗ y /∈ Y (Proposition 5.3). So x = y. �

Now, let S = (P,L) be the near hexagon (vi). Then big quads in S are of type (2,4). We
refer to ([1], p.363) for the description of the corresponding Fischer Space on the set of 18 big
quads in S. This set partitions into two families F1 and F2 of size 9 each such that each Fi

defines a partition of the point set P of S. Let Ui, i = 1, 2, be the partial linear space whose
points are the big quads of Fi, two distinct big quads considered to be collinear if they are
disjoint. If Q1 and Q2 are collinear in Ui, then the line containing them is {Q1, Q2, Q1 ∗Q2},
where Q1 ∗Q2 is defined as in Lemma 2.2. Then Ui is an affine plane of order 3.

Consider the family F1. Fix a line {Q1, Q2, Q1 ∗Q2} in U1 and set Y = Q1 ∪Q2 ∪Q1 ∗Q2.
Then Y is a subspace of S isomorphic to the near hexagon (vii). Fix a big quad Q in U1

disjoint from Y . Let the subgroups M and N of R be as in the beginning of this subsection.
Then |N | ≤ 27 because |R| ≤ 21+dimV (S) = 219. We show that N = 21+6

− . This would prove
Theorem 1.6 in this case.

Let {a1, a2, b1, b2} be a quadrangle in Q, where a1 � a2 and b1 � b2. Let δ be as in Corollary
5.5. Then the subgroup 〈δ(a1), δ(a2), δ(b1), δ(b2)〉 of R is isomorphic to H = 〈δ(a1), δ(a2)〉 ◦
〈δ(b1), δ(b2)〉. We write N = H ◦K where K = CN (H). Then |K| ≤ 23. There are three more
neighbours, say w1, w2, w3, of a1 and a2 in Q different from b1 and b2. We can write

δ(wi) = δ(a1)i1δ(a2)i2δ(b1)j1δ(b2)j2ki

for some ki ∈ K, where i1, i2, j1, j2 ∈ {0, 1}. By Corollary 5.5(i), [δ(wi), δ(ar)] = 1 6=
[δ(wi), δ(br)] for i = 1, 2. This implies that i1 = i2 = 0 and j1 = j2 = 1; that is, δ(wi) =
δ(b1)δ(b2)ki. In particular, ki is of order 4. Since [δ(wi), δ(wj ] 6= 1 for i 6= j, it follows that
[ki, kj ] 6= 1. Thus, K is non-abelian and is of order 8 and k1, k2 and k3 are three pair-wise
distinct elements of order 4 in K. So K is isomorphic to Q8 and N = 21+6

− .
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