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Abstract. Consider a linear fractional stable motion A(t), indexed by the Hurst parameter 0 < H <
1 and the index of stability 0 < o < 2. (When « = 2, the process A(t) becomes the fractional Brownian
motion.) Let Ly be the local time of A(t) at @ upto the time t. When H is restricted to + < H < 1,

we obtain the convergence in distribution of: the process (¢, z,u) — e~ T (LE"* — L¥) as e — 0,
1-H it

and the process (t,u) — =2 [ f (A(s) — s”u) ds as k — oo, where the Borel function f (z) is

such that [*_ f (z)dx = 0. The restriction 3 < H < 1 cannot be relaxed. These results generalize the

known results for the Brownian motion (the case a =2 and H = % ) and the symmetric stable process
(thecase H=1 1<a<2).

1 Introduction and the main results
Let {Z,(t),t € R}, 0 < a < 2, be an a-stable Lévy motion. By this we mean that Z,(¢) has

stationary independent increments having a strictly a-stable distribution, that is, for s < ¢,

ei(t,s)ga|u\“(17iﬁsign(u) ta“(%)) ifa#1

z‘u(za(mza(s))} _
Ele { e—o(t=s)u| ifa=1, W)
where |§] < 1 and o > 0 is the scale parameter. For convenience we henceforth take o = 1. (Note that
this definition of strict a-stability for the case o = 1 differs from the usual one in that we take the shift
parameter to be 0.) When a = 2, Z,(t) becomes the Brownian motion with variance 2.

A process {Aq, m(t),t > 0} is called a linear fractional stable motion (LESM) with Hurst parameter

H,0< H <1, if it is given by
0 _ 1 _1 t _ 1
AQ,H(t):/ {(tfu)H 5 (—u) Q}Za(du)+/ (t — )™ % Z,(du)
—00 0

if H# L andif H =1 A, g(t)is taken to be Z,(t), that is,

Ray )= [ Zu() = 2,00

where Z,(t) is an a-stable Levy motion as above. Note that in the case H = é, the restriction 0 < H <1
reduces to 1 < a < 2. When a = 2, the LFSM reduces to the Fractional Brownian Motion (FBM). See
Samorodnitsky and Taqqu (1994) and Maejima (1989) for the details of LFSM and FBM.

Let LY be the local time of the LESM A, g (t) at = upto the time ¢. See Jeganathan (2004) for the

existence and other details of the local time of the LFSM. In particular we have the representation

o8] t
= i/ / ettan (8)=2) gg gy, (2)
T J—co0Jo

Note that the local time for Z,(t) does not exist when 0 < o < 1, but our interest is restricted to
Ay 1(t)=2Za(t), 1 <a <2



For convenience, we shall
henceforth denote Ay g (t) by A(t) and Z,(t) by Z(¢).

We next state the main results of this paper
Theorem 1. Assume that + < H < 1. Let the Borel function f () be such that

/w (If @) + |2 (@)]) do < oo (3)

and

/_O:Of(ac)dx:O. (4)

Then for every M > 0, and for any distinct reals uy,...,uq,

t — <n_12H /th (A(s) — nHui) ds,t =1, ...,q)
0
— (VW (L) i=1,)  in C([0,M]— RY)

as k — 0o, where W () (t),i=1,...,q, are independent standard Brownian motions independent of the
1 o0 oo Y 2 .
b= 7/ / ‘f (u)’ E {e*“m(t)} dpdt.
™ Jo —o00

Here C ([0, M] — RY) stands for the space of all continuous functions defined on the interval [0, M]
and taking values in R?. See Billingsly (1968, Chapter 2) for the weak convergence in C ([0, M] — R9).
It will become clear later that, for any Borel function h (y) such that ffooo |h (y)| dy < oo, the convergence

process A(t), and

in Theorem 1 can be extended to the form

Kt
(H_HA(KHt), g~ (1H) / h(A(s) — ;) ds,
0

Kkt
_172H A . H ; 7,: . )
K /0 f(A(s) — k) ds,i=1,..,q
= (A(t),w/ R (y) dy, VoW (%) (L;‘:i),z’:L...,q) (5)

in C ([0, M] — R!T29),

It can be seen using Plancherel’s theorem that the constant b in Theorem 1 has an alternative form

b:2/0w/_ooE[f(a:)f(x+A(t))]dxdt.

Now let ¢ (y) be the probability density function of A(1). Then the constant b has also the form

b=-2 [ [ 1@ {alyn -0 ealiyen) (2= 9)F '} £ )y

where Iy, ;1 stands for the indicator function of the set {y > x}, and

SN R S )



This is because

/OOO /_OO E[f (z) f (z 4+ A(t))] dzdt

/OOO T F@E[f (e 4 TAQ)] dedt

— 00

/OOO /_Oo /_OC flx)f (ac + tHy) (¢ (y) — ¢(0)) dydzdt using (4)

[ [t (s(Yat) - o) ddsa

which gives the stated form by making, for each x and y, the transformations

1
M — % respectively when y > z and y < x. Note that when ¢(y) symmetric around 0,

c1 = co = ¢, say, then

—— + and

1
(y—z)H 1
t t

b= [ [ f@)lo— " 7 ) dyd

Note further that ¢ is finite only when % < H < 1. Tt will be indicated below that the restriction
% < H <1 in Theorem 1 cannot be relaxed.

Theorem 1 for the special cases mentioned next is usually stated for ¢ = 1 and for w; = 0 and the
following remarks pertain to this case. In the case A(t) is a Brownian motion (that is, the case o = 2
and H = % ), Theorem 1 for the one-dimensional convergence for ¢ = 1, goes back to Skorokhod and
Slobodenjuk (1966), and in the above stated general form of convergence in C ([0, M] — R), it is due,
independently of Skorokhod and Slobodenjuk (1966), to Papanicolaou, Strook and Varadhan (1977).
The statement for this case is also presented in Tkeda and Watanabe (1989, Chapter III, Section 4.4)
and Revuz and Yor (1991, Chapter XIII, Section 2). (It may be noted that the statements in Skorokhod
and Slobodenjuk (1966) are more general with respect to the forms of the functions f (z) involved, in
the sense that they allow f (z) to be regularly varying at infinity also, for which the limiting forms in
Theorem 1 will be different.)

In the case A(t) is a symmetric stable process (that is, the case 1 < o < 2 and H = 1 ), Theorem
1 is due to Rosen (1991, Theorem 1.1). In this case note that Theorem 1 above does not assume
the symmetry requirement. However the statement for this case without the symmetry assumption is
implicit in Borodin and Ibragimov (1995) because it is a continuous analogue of the discrete versions
established there and it was stated there (Chapter III, Section 6.3, page 129) that appropriate continuous
analogues of the discrete versions will hold.

Theorem 1 itself for the one-dimensional convergence for ¢ = 1 was stated (without proof) in Je-
ganathan (2006, Remark 3) as a continuous time analogue of the discrete time version established there.

To state the next statement, let, for 0 < v < 2,

1
Uy (@) = 5 (2" + Jyl” = |z = y[").-

Let
(ta .73) — B"/ (ta 33)

be a Gaussian process with covariance

E[By (s,7) By (t,y)] = (s ANO) Ty (2,9) .



Theorem 2. Assume that 1/3 < H < 1. Then for every M > 0 and A > 0, and for any distinct

Teals uy, ..., Ugq,
(tz) (g—% (L§I+“i—Lyi),¢:1,...,q)
— (VBBY (L) i=1,0q)  inC([0, M] x [-A, A] — RY)
H

as € — 0, where B(fi_)l (t,x), i = 1,...,q, are independent processes, each having the same distribution
H
as that of B _y (t,) introduced above, and independent of the process A(t), and

= 71r/000 /_0:0 (lein2 (%)) E [e_i“A(t)} dudt.

Note that the requirement 1/3 < H < 1 is the same as 0 < £ — 1 < 2.

Similar to the extension (5) of Theorem 1, Theorem 2 has the extension:

1—H

(t2) — (A( LY e (L5w+“i—Lfi),i:1,...,q>

— (M), Ly VBBYY (L 2),i = 1,.q) (6)

in C ([0, M] x [-A, A] — R¥29),

In the case A(t) is a Brownian motion, Theorem 2 is due to Yor (1983). In the case A(t) is a
symmetric stable process, it is due to Rosen (1991, Theorem 1.2) for ¢ = 1 and to Eisenbaum (1996)
for the general q.

Regarding these results, it may be noted that the restriction 1/3 < H < 1 cannot be relaxed, as can
be seen from the known regularity properties of LT with respect to the space variable x when LY is the
local time of the fractional Brownian motion (the case o = 2), see Geman and Horowitz (1980, Table
2).

We shall also obtain the following bounds, which will in particular give the required tightness for
convergencies in Theorems 1 and 2 above.

Proposition 3. Assume that 1/3 < H < 1, and let f (z) be as in Theorem 1 above, satisfying (3)
and (4). Then for any integer | > 1, there is a constant C' depending only on 1 and H, such that

Kt 2
(/{_le / £ (A(w) + &7 u) dv) 1 <Clt- s|l(17H) .

sup F

k>0,u s

Proposition 4. Assume that 1/3 < H < 1. Then for any integer | > 1, there is a constant C
depending only on | and H, such that

e>0,u

1 H 21
sup E [(5 (L = L = (L - L)) ]

S|l(l—H) )

_ I(1—H) I(1—-H)
< O eyl T 4Oyl T

The methodology we employ is a continuous time analogue of that employed in Jeganathan (2006).
This will allow us to treat both the Theorems 1 and 2 in a unified way. Before indicating this we briefly
recall the methods employed in the existing works mentioned earlier.



First, in obtaining Theorem 1, both Skorokhod and Slobodenjuk (1966) and Papanicolaou, Strook
and Varadhan (1977) initially invoke It6’s formula, thereby reducing the convergence to that of a stochas-
tic integral, but the former work uses the method of moments to obtain the required convergence whereas
the later work uses a much simpler approach of employing an appropriate continuous time martingale
CLT. The method of Yor (1983), in obtaining Theorem 2, is similar to that of Papanicolaou, Strook and
Varadhan (1977).

In the case A(t) is a symmetric stable process, in which the It&’s formula is not available, Rosen
(1991) employs the method of moments directly in obtaining Theorem 2, using the representation (2).
On the other hand Borodin and Ibragimov (1995) when dealing with the discrete analogue of Theorem
1, employ Fourier analytic method and reduce the situation in the limit to essentially a continuous
time martingale CLT, and hence their method is much simpler than that of Rosen (1991). As noted
earlier though only the discrete situation is dealt with in detail in Borodin and Ibragimov (1995), it
was mentioned, independently of Rosen (1991), that the method is applicable to the continuous time
situations such as Theorem 1 also. In the context of Theorem 2, see Eisenbaum (1996) for yet another
approach for this case under symmetry.

The present method is adopted from Jeganathan (2006) and is Fourier analytic similar to that in
Borodin and Ibragimov (1995) but we reduce the situation directly to a discrete time martingale CLT,
see Section 2 below. Note however that in all the situations mentioned above, the processes involved
have stationary independent increments, and the above mentioned methods themselves are tied to such
structures, but unfortunately such structures are not available in the present case.

We next indicate that both the Theorems 1 and 2 can be treated in a unified way.

Unification of Theorems 1 and 2 and of Propositions 3 and 4. Let
F= [ emf@a

Note that the restrictions (3) and (4) in Theorem 1 entail that

()] < Cmin (), 1). ()
We have 1 oo
@) =50 [ e T

In particular

FA® =) = - [ O F g

) =5 N
and hence

~ s) — K;HU G — i S 6—iy(A(s)—chu)A P’
| —wtyas= o [ F (1) duds, Q

which is involved in Theorem 1. It will become clear that in dealing with this, we shall invoke only the
requirement (7).
Regarding Theorem 2, using the representation (2), we have

1 [t oo )
L§$+u ~ L} = 7/ / et(A(s)—w) (e—msm _ 1) duds
2T 0 — 00
1 Kt oo _H .
_D 7/ / ez,u(n A(s)—u) (e—zusm _ 1) d,uds
K2T 0 — 00
1 /“t /°° (A=) (omineer 1) g 9)
T kl1-Hogp 0 _006 ‘ e



where =P stands for the equivalence of all finite dimensional distributions of the random processes
involved. Thus, if we take k such that

Kle=1,

and let
F(‘LL) = (eiﬂm - 1) )

then

1 Kt oo )
RITI (LT L) = o / / e 1O F () dpds. (10)
0 —o0

™
This is exactly of the form (8), in addition to having the requirement (7) for F (p), that is, |F (u)| <
C'min (Ju|, 1), where the constant C' may depend on z.

In the same way, Propositions 3 and 4 are unified. More specifically, in place Proposition 3, we
establish the following

Proposition 5. Assume that 1/3 < H < 1, and let F (u) be such that

|F (p)| < Cmin (|u[,1)

for a constant C.

Then for any integer | > 1, there is a constant D depending only on I, H and the constant C, such

that o
Kt e’}
</4; 1—2H / / efi#(A(U)*nHu)F (,LL) dudv) ] < D |t - S‘l(l_H) .

sup F
k>0,u

It is clear that Proposition 3 follows from this, in view of (7) and (8). The same is the case for
Proposition 4. To see this, fix  and y with = > y, and take k such that

ke (x—y)=1.

Then we have, as in (9) and (10),

Kt o)
HlfH (L§m+u B Lieru) _D 1 / e*iH(A(S)*HHu)eiH%_y (eiM _ ]_) d,uds

% 0 —00
1 Kt [e%s) (A .
= — e in(As)=r “)F(,u) duds (11)
2w 0 —00
where now
F(u) = =5 (" — 1), (12)

which clearly satisfies |F' ()| < C'min (|u|, 1), where the constant C' does not depend on = and y. Hence
we have by applying Proposition 5,

E |:(,‘<;/(12H> (LfmJ,»u _ L§y+u))2l:|

1-H)

B (- e - 1) |

1(1—H)

IA

Dt

This is the same as

1(1—H)

_ 21
E |:(5‘_(12HH) (L§w+u _ L:y.{.u)) :| S D|t|l(1_H) |$ _ y|



Also, using (10) we have
o (ey) T (LY — L¥ — (LEV+e — LY))
Kt [e'e]
_D K 1_2H / / e—iu(A(v)—mHu)F (U) dudv

with k¥ey =1 and F (u) = (e — 1). Thus, by Proposition 5 again

_ 21 1(1—H)
" Kf L - Ly - (L - L)) ] <Dyl 7t 1T
The preceding two inequalities give Proposition 4, in view of
1-H 21
R

A-—H)

< CE {(5 o0 (Lim-t,-u _ Liyﬂ))m}

1—H

+CFE |:<5_ oH (Liy-‘ru _Lq; _ (Liy+u - Lg)))zz] .

The plan of the rest of the paper is as follows. In Section 2, we shall obtain the convergence of finite
dimensional distributions in Theorems 1 and 2. As in Jeganathan (2006), this is done by reducing this
problem to a discrete time martingale CLT, so that most of Section 2 is devoted to the verification of
the requirements of this CLT. The verification of the Lindeberg condition of this CLT and the proof
of Proposition 5 are presented in Section 3 because they involve the similar ideas as well as similar
computations. (It may noted that in the special case H = 1, in which A(t) = fot Zo(du) = Zy(1),
many of the computations of this paper will become unnecessary and the method itself will take a much
simpler form.)

D used above for the equality of the finite dimensional

Notations. In addition to the notation =
distributions of two random processes, g stands for the convergence in distribution of all finite dimen-
sional distributions of a sequence of random processes.

E; will stand for the conditional expectation given the o-field o (Z(s); s < t).

Throughout below we let

s2
A(sl,sz](t) = / (t — U)H_l/a Z(du), 0 <81 <89 < t,

s1
and more generally, for —oo < 51 < s9 < ¢,

S2

Aorssal(t) = /SIVO {6 = w1 — (—w)" ) Z(du) + / (t— )"V Z(du).

S1 s1VO0

Note that
A(s,,5,)(t) and Ay, 1,1(t) are independent if (s1,s2] and (t1,%s] are disjoint.
We also have the self-similarity property (already used in some form)
Ao, ,s0] (1) =D a_HA(aslyasﬂ(at) for any constant a > 0.
In particular

‘E [ew/\(t)” <E {eiuA(o’t](t)} _E [ethA(O,l]u)} < e—\ut”\“[&‘u”‘i‘“du7



where in obtaining the last inequality, we have used the fact that Ao 17(1) has the stable distribution with

1

«
scale parameter o such that o = fol ’uH ~a| du, see (1). The preceding inequality and its analogues

will be used extensively below.

2 Convergence of finite dimensional distributions

It follows from the discussions of Section 1, and as will be indicated at the end of this section, that
the convergence of finite dimensional distributions in both the theorems 1 and 2 will follows from the
following result.

Proposition 6. Assume that 1/3 < H < 1, and let F (u) be such that

IF ()] < Cmin (Jul 1) (13)

Then, for any distinct reals uq, ..., u

q>
s Kt [e'e] (A "o
t — (H 2 / / e in(A()—w "")F(u)duds,izl,...,q>
0 —o0

14 (\/IT*W“”) (L¥),i=1, ...,q)

where W (%) (t),i = 1,...,q, are independent standard Brownian motions, independent of the process
A(t), and

b* = 2/ / |F(u)]>E [eii“A(t)] dudt.
0 —00

The proof of this result given below is directly based on Jeganathan (2006), see Proposition 7
below, and therefore, one actually has the following more general statement, where Fy (1) is such that
[Fy ()] < C.

Kt 00
(H_HA(KHt), k~(A—H) / / e*iN(A(S)*HHui)Fl (1) duds,
0 —00

Kt fe%e]
R / / e~ (A=) By duds, i = 1, ...7q>
0 —o0

14 (A(t),F1 (0) L, Vo W () (L¥) i = 1, q) . (14)

This will give the generalizations (5) and (6) of Theorems 1 and 2 stated earlier.
It is convenient to present the detailed proof for the case u; = 0,7 = 1,..., ¢, and then indicate the

required modifications for the general case. For this particular case we need to show that

Kkt 0
et [ o s 25 vt
0 —oo

where W (t) is a standard Brownian motion independent of the process A(t). More specifically, for each
finite 0 < t; < ... < t,, < oo and for each reals vy, ..., v,, we first show that

== ivi /Hti /oo e A E () dpds = \/FZ”Z (W (L2) =W (L?H)) -
i=0  Jmti-1 /im0 =

As in Jeganathan (2006), we shall reduce this problem to the application of a martingale CLT. For this

K

purpose, let, for integer m > 1,

K
_1—-H

Cnml =k 2 /

Iil

L )
/ e A B (w)duds, 1=1,2,....
.



Let l1m, ---, £rmy be integers such that such that

m m '

(16)

Then it is clear from Proposition 5 of Section 1 above that, in order to obtain (15), we need to show
that

£im

ivi S o= WTZU (ws) -w(z,)) (17)

=0 I=l;_1,m+1
as Kk — oo first and then m — co.
For this purpose we shall show that the following requirements hold (recall that F; stands for the

conditional expectation given o (Z(s); s <t) ).

(R1) There is a nonrandom A (x, m, L) such that, for each m and L > 0,

[mL]
Z ‘Eﬂ%l [(mnl}‘ < A(k,m,L) =0 ask— oc.
=1

(R2) For the integers £;,,, as in (16),

r Lim r
§ 2 § 2 *§ /‘ 2 0 0
vi En% [CKWLI] :> b vi <Lt1 - Lti71)
i=0 1=l 1+l i=0

as k — oo first and then m — oo, where the constant b* is as specified above in Proposition 6.

Here recall that the convergence in distribution of a sequence of distribution functions is metrizable,
for example by the Lévy distance (see Loeve (1963, page 215)). Then the preceding convergence means
that the distribution of the left hand side converges in such a metric to that of the right hand side as
Kk — oo first and then m — co.

(R3) For every L > 0,

[mL]
lim lim sup Z E [Céml] =0.

m— oo K00

=1

The next condition (R4) pertains only to the case a = 2, in which case Z (t) reduces to a Brownian

e (e o) 2(450)

motion. To state it define

(R4) When a =2

[mL]
lim sup P Z ‘E,{g [Cﬁmlx,iml]’ >¢| =0 for each m, L >0 and e > 0.
K— 00 =1 m

Proposition 7. Suppose that (R1) - (R4) above are satisfied. Then the convergence (17), and hence
that in (15) holds. (Actually the more general convergence (14) holds for u; =0,i=1,...,q.)

Proof. This statement (including the generalization (14)), as well as its detailed proof, is essentially
contained in Jeganathan (2006, Section 2) because the above requirements (R1) - (R4) are the same as
the (R1) - (R4) stated there. W



We next consider the verification of (R1) - (R4). In the rest of the paper,
we shall assume without further mentioning that (13) holds.

Verification of (R3). (R3) follows from Proposition 5, by choosing the integer [ such that 27 > 4
and [ (1 — H) > 1 and taking s = m%, t = H%. However, this will require the computation of the
moments of order greater than 4. We shall indicate later (see the Remark at the end of Section 3) that

the computation of the fourth moment is sufficient. W

The next lemma verifies (R1).

Lemma 8. One has
1—H 1—-3H

Byt [Goil| < O3 4+ om2H 13,

and hence, because § < H <1, (R1) holds.
Proof. We have

Kr# o0 i
E 11 [Ceml] = Ko / / E i1 [e_Z“A(t)} F (u) dudt.
m K,% —c0 m

Recall that A(t) = A(
Hence

Kz;l](t) + A(Rz;l 1 (t) where A(_oo Kz;l](t) and A(Kz;l 1 (t) are independent.

— 00,

[w ’EH% [6%““”} ’ |F ()] dpe

o0 —ipAr 1 (1) o i —1)H
< / ’E {e A= ) ”|F(M)du :/ ‘E [e—m(t—,@lm ) A(o,u(l)} ’ |F ()| dp
-H o0 N -H
= <t — /{l — 1) / ‘E {e*i‘“\(ﬂ-ﬂ(l)” F ((t - /<al 1) M) dp
m oo m
-H oo N H
< (tnl_l) / e—clul® F<<t/<;l 1) y) dp. (19)
m o m

Suppose that m% — KJ% = £ < 1. Then, using |F (u)|] < C, the preceding bound is bounded by

C(t— /—@%)71{, and hence

1 n# 1 —H
‘Enz;l [Cmml]} < Ck~ ZH/ (t—nzl ) dt

-1 m
_1-H H%J’_l -1 —H _1-H
< Ck™ 72 t— k— dt < Ck™ 2
ol=1 m
If/iﬁl1 /{% = 2= > 1, then
B m%—i—l 1—1 —H
‘E"LTTI [Cnml]’ < Cﬁi%/l,l <tl<6 m > dt
K

l

1-m oo elul® Kom 1—1 —2H
+Cr™ 2 || e du t— k— dt,
—00 n%+1 m

where the first factor of the sum on the right hand side is obtained from (19) using |F' (u)| < C as in

previous inequality, and the second factor is obtained from (19) using |F (u)| < C'|u|. Now

1

11— [Fm 1—1\ 2% 1-H 2H-1, 1-2H
K2 / t—Kk— dt < CK_T(l—i—m TRk )

1—1 m -
o

1-H 1-3H
= O T om e

10



This completes the proof of the lemma. B
The next lemma verifies (R4), where recall that (R4) pertains only to the case a = 2.

Lemma 9. Assume a =2 and let Xwmi be as in (18). Then

1-3H

1-H _ 1 3
E,{ﬂ [CHleK,ml] S Cr™ 2 72 + Cm2H7§H 2

)

from which (R4) follows, because % < H<1.
Proof. First note that because a = 2, Z (¢) is a Brownian motion, and also recall that A(t) is an
integral with respect to Z (t). We have

1-H 1
K 2 +2E,€l:Tl [Cf{lenml]

Ko [ - .
= / / E i1 KZ (Iil> -7 <nl1)> e”‘A(S)] F (u) duds.
nl;l o ™ m m
-1 ‘
o (o) 2 (458)
m m m

—iphA —17(s) — —inhg -1 1(s)
e (=2 g KZ(S)Z(/{Z 1>>e P }

Here

m

1
A =] ) (5 - ,{H) E {Z(l) e—iu(s—ﬁ%)“m,u(l)}
m

where in obtaining the first equality we use E,_ -1 [(Z (/@#) - Z(s)) e‘i”A(s)} = 0, which is a conse-
quence of E [Z (kL) — Z (s)] = 0 and the independence of Z (k-L)—Z (s) with respect to o (Z (£) ;¢ < s).

m
Therefore

1-H
K 2

+3

E,.; % [Cmnl Xrml

Suppose that K# - /ﬁ% = £ < 1. Then, using |F (u)| < C, the preceding bound is bounded by

£
m

R+ 1—1\2"H
s —K ds < C.
rizl m

Here we have used the fact that ffooo |E [Z (1) e’iﬂA(O,l](l)] ’ dp < 0o, which is a consequence of the fact
that (Z(1),A(aj(1)) has a non-degenerate bivariate normal distribution. In the case /—1% - n% =

£ > 1, using in addition |F (p)| < C |p| and the fact [*_|ul|E [Z (1) e~ Ao )] | dp < oo, we have
the bound

n%-&-l I—1 I—H R 1—1 3—2H S _2H
/ (S—Ii ) ds+/ (s—/{ > dsgC—i—C(ﬁ)2 .
s m N .Y m m

1—-H

<Ok~ 7z ~

Thus

)Eﬂ% [Cnml Xfﬁ’fﬂl]

ol
7 N
—
+
—
Sl=
~—
[N
s
T
N—

11



which is the same as the inequality in the statement of the lemma. W

We next verify (R2). We begin with some preliminaries. We have

’%liHEnﬂ [C,zml]

kL 0o 2
E i1 / ' / e AL B (1) d,uds)
m =1 —o0

m

TN

m

I
DO

_WIA(sl)_WA(SQ)} F () F (MQ)dMId,U2} dsads;.

We write (A(s1), 32)) kL <51 < sy < kL, in the form

A(
(5 2 (5
Here recall that A (Ii% + t1) = A(_ooﬁ%] (KJ% + tl) +A(K%’R%+tl] (m% + t1) and similarly for
A (/@% +t1 + tg). We observe that

(A(Kl TPNEIT ( =1 —|—t1) A( =1, ] ( % +t —|—t2)) is independent of o (Z(t) t < Wl),

and in addition has the same distribution as that of

(Ao,47(t1), A0,y 4] (E1 + T2))

t1 t1 1 to )
=2 [Tz, [ 2+ [Tz @)
0 0 0

where Z*(du) is an independent copy of Z.

K K
>), O<t1<*,0<t2<f—t1.
m m

Hence one can write

—ip AR L 4t ) —po A (R 4y 4t
E,{% {6 (725} (Km 1) M2 (F»m 1 2):|

(y1,92) = (A(Oo,ﬁzWLl] (nl ;11 > Aotz (nlml +t +t2)> . (21)

m [t
E, i [Cot] = 2/—1*(1*H)/0 /0 I (y1,y23t1, t2) dtadty, (22)

- E [e—im (y1+80,6,1(t1)) =12 (Y2+A 0,6, 445) (11 +t2))}

with

Thus

where we set

I( 17y2at1at2)
e~ Hy1—H2y2 | [ 77;#1A(0,t1](t1)7#2A(0,t1+t2](t1+t2):| F (,Ul) F (,uz) dprdps

_ / / e~ y1—p2(y2—y1)

[e iAo, ) (01) =p2 (A0, 4150 (b1 +HE2) = Ao, tﬂ(“))} (1 — po) F (p2) dpadps. (23)
Note that
1 (y1, 23 t1, t2)]
< / / ’E [eﬂ'mAm,tl](tl)fuz(A@,tle](t1+tz)*A<o,t1](t1))} ‘ |F (11 — p2) F ()| dpey dpss

= I* (tl, tQ) , say. (24)

12



The requirement (R2) is then a consequence of the following four statements, stated in the form of
Lemmas 10 - 13.
Lemma 10. For each m, with I, (t1,t2) as in (24) above,

lim lim sup x -@- H)/ / « (t1,t2) dtadty = 0.

q—00 K—00

lim/ / ’E[e*w(”]‘|F(u)|2dudt:0.
= J, J_oo

Lemma 12. For each m and q > 0, the difference between

Lemma 11.

™ q
7(17H)/ / I (y1,y2;t1,ta) dtadty, with (y1,92) asin (21),
o Jo

and

1 oo s H, —Hp\ Rl=l t1
%/ / . ipam e (_OM%]( ™ +ﬁm)E [e_ml/\(o,tl](tl)} dpdt
m-- 0 —0o0

([ B[] 1P g du (25)

converges to 0 in probability.

In the preceding lemma 12, note that

K_HA_ -1 K}li—i—[g;t—l :DA _ -1 li_i_til .
(ooizt] | K=+ R (—ootzt] |+ —

Lemma 13. With the integers ¢; ,,, as in (16),

T 1 Li,m 1 1 e’}
2
12:(:) ot Xl;m,—Fl/O [277 /*00 )

-1
_‘X”T]( m +m)E |:€—75#A(0,t](t):| d,u] dt

,
= E v? (L?i—LgFl) as m — 00.
i=0

Proof of Lemma 13. Taking (16) into account, lemma 13 is essentially the Lemma 18 in Jeganathan
(2006), and therefore we shall not give the details of its proof. MW

Proof of Lemma 11. Recall that |E[ —tnA(t ]| < |E[ ZWWJA(”H = ‘E [eﬂ"‘tHA(D*”(l)” <
e_c|“tH|a, so that, using |F (u)| < C|u| and making the transformation ut? —— p,
A e T o et
<

C/ dt—>0
q t3H

The proof of Lemma 10 will be given in the next Section 3 because the ideas involved are similar to

as ¢ — oo because 3H >1. N

the verification of (R3) or the proof of Proposition 5. We next concentrate on the proof of Lemma 12.
Note that, using |F (u)] < C, for I, (t1,t2) as defined in (24),

C/Oo /Oo ’E [e*”‘l/\wm(tl)*W(A(o,tsz(t1+t2)*A<o,t11(tl))} ‘ dpdpo

= L. (t1,t2), say.

I* (tlth)

IN

13



We next show that 1

I** (tl,tQ) S CW
12
Using (20), one has
’E |:e—i#1A(0,t1](tl)_#2(A(O,t1+t2](t1+t2)—A(01t1](t1))i| ‘

z L Ly | 1)a
< e_fotl|“1uHig+“2((“+t2)Hia—quﬂ)‘ du—fotg‘uzuH’E| du

Hence, making the transformations p —— %’}’ Lo — %‘% 7

L. (t1,t2)
We have
/t2 ,uTi H-L1 adu _ /1 ‘uzqué adu
o |t3 o
= [1 ‘MWH_% Y du = % ‘MQ’UQ -,
3

for % < ug < 1, where we have used the mean value theorem for integrals. Similarly

Hru' T ((7~L‘i‘752)H_é - uH_i)‘ du

tff
" ,LLl ,U/Q H 1 1 « 1
0 tf—a LH H- &
1 H—L1 «
M2 to o H_1
- e A —u T du
/o 1 =+ tH << t1> )
H-—L1 «@
1 H_i H M2 tg @ _é
= 5 |mth +t1§ U1+E —uy
for 1 <wy <1. Thus
8 Lo (t1, t2)
v g (or )" H ) gt
S C// H1Uy +t t2 <(u1+t1) Uy 3| H2Uy d’uldu2
Here we have
« H*é «
/oo 6_% "l ((“ﬁ%) ! ) dpy
— 00

1 -1 1
I** (tlatQ) S CW /e 2 d‘LLQ S CW,
12 12

14
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obtaining (26).
The following consequence is immediate.
Lemma 14

KO  pq
sup m_(l_H)/ / [T (y1,2;t1,t2)| dtadt; < Cq'=Hs =H,
o Jo

Y1,Y2
Proof. Follows from |I (y1,y2;t1,t2)| < L (t1,t2) and (26). W

The next step consists of finding a suitable approximation to

Kk prq
(1) / / I (y1,y2;t1,ta) dtadty
ko JO

for each ¢ > 0 and § > 0, that will lead to the proof of Lemma 12. For this purpose note that, making

the transformations iy — %5, pa —— p2 in (23), we have
1

I( y1,y2,t1,tz

_ *ifTéyruz(yz*yl)
= tH

*1$A<o,m (t1)=p2(A0,1 +9] (1 Ft2) = A(0,1) (tl))} F (Ml

XE [e T uz> F (p2) dpdps.
1

Define

[ (y1,Y2;t1, t2)

_ // —l Hy1 p2(y2—y1)
) S i<, |u2|<a}

xFE [e_ztf’A“’*tﬂ(tl)_’“(/‘“”flﬂﬂ(t1+t2)—"<0,f11(t1))} F (5; — M2> F (p2) dpadps.
1
(30)

Let us first obtain
Lemma 15.

Kk rq
sup #~ (=) / / I (y1, Y25 t1,t2) — Lo (Y1, y2; t1, t2)| dtadty — 0
ko JO

Y1,Y2

as Kk — oo first and then a — oo.
Proof. Similar to (28), we have

[T (y1,y25t1,t2) — Iq (y17y2,t1,t2)|

//{Iu1<a,|uz<atH} ey

. Hol g 1
) “+tH“2<(u1+t2) & —uy “)

//{u1|<<><>7uz|>atH} /[{Iu1>a7luzl<at”}

= J(S, ) (917y2;t17t2) J¢§,2) (yl»yQ;t17t2)7 say.

IN

o 1|«

H
qug

dpydps

IA

(In the first inequality above A€ stands for the complement of of the set A.) Using (29), we then see

15



that

K prq
H_(l_H)/ / I (g1, y23t1, t2) dtadty
kd JO
K 1 q 1 _1
O(I{_(l_H)/ Hdtl)/ H / & 2
ws 11 o o {\u2\>at§}

1

n 1 q 1 _1 T o
C/ fdtg—‘r/ — / e’

o t3 n 1 {lpz|>atf}

as a — oo first and then n — 0.
Next note that when |us| < atll

IN

H-L1 “1
et duz} dto

H
H2ug

IN

d/”’?} dt2 - 07

fh2 ta H= H-1
g (neir) o
< ato | (tyuy + )T E — (tyu) TR
< C’atléJrH*if1 = C’atfl_l <Ca (ﬁé)H_l — 0, when kd < t; < k.

Therefore, noting % <y <1, when |us| < atll,

_1 1 _1
{lp1|>a}
1 H—L|
< / e’ Hr dp
 Himi>g}
Hence
K rq
K_(I_H)/ / I (y1,y23t, t2) dtadty
k6 JO
K orqaq 1 H*é‘
S C(Kz_(l_H)/ / ”dtht1>/ (& 2|ft dﬂl
ti't a
k6 JO 12 {|M1\>5}
_1 Mqui “
< C/ e’ ! dpy — 0,
{lml>4}
as a — oo. This proves the lemma. W
In view of Lemma 15, we next consider the approximation to
Kk rq
n_(l_H)/ / Lo (y1, 923 ta, ta) diadty, (31)
kd JO

which will lead to the Lemma 16 below. For this purpose let v,; be such that
Vi

v, < kb, V,—00 and — —0 ask— oo.
K

We have

B |:ei:§{A(0‘tl] (t1)—p2(A0,t1 4t (F1+E2)— A0,y (tl))}

- E |:eif{jl{A(0,t1 v (t1)—ip2 (A(D,tlfu,@] (t14t2)=A0,t1 — vy (tl))}

< E |:e—i:{11/\(t1,/mtl](tl)—ilw (A(tlﬂl,{,tﬁrtz] (trtt2) = Aty —vp 1] (tl)):|

16



Here
Aoty —v) (t1 +t2) = Aoy —0,1(t1)
11—V o1 o1
- / {2 = w5 — (1 )15} Z(dw)

0

= /__Vn {(ta= )"+ = (—)"+} Z(aw)

ty

= Acty,—v(t2),

where
sup P Aty v (t2)| >n] =0 for all n > 0.
k0<t;<kK,0<t2<q
Further

1 1 [h Ho1

ﬁA(tl—umtl](tl) = t?/ (tr —u)” = Z(du)

1 1 Jti—vg,

p 1 / 1k 7y =P Ve /1 H=3 7(du)
= — u' T w) =" L u' T U
ti Jo i Jo ’
where
sup Vs _ Vs | 0,
kO<t1<kK tq KO
so that .
sup P HHA(tl—ertl](tl) > 77] — 0 forall > 0.
wé<ti<n  LIT
Moreover
Aty vt (B F12) = Mgy 000 (B1)
t1+to Ho1 1 1
= / (t1 +to —u)" "= Z(du) — / (t1 —u)” = Z(du) because t; — v, >0,
t1—Vk t1—Vk
IS to o1 0 g1
- / (ts — )% Z(du) — / (—u)=* Z(du)
0 o1 o1 ta oL
_D / {(tQ—u) o — (—u) a}Z(du)Jr/ (ta —u)” = Z(du)
— Uy 0
= A(fuﬁ,tg](t2)7

where

sup P [|Ay, b0 (t2) = Alt2)] >n] =0 for all n > 0.
k0<t1<k,0<t2<q

Vi

o v
In addition, because sup,s<y, <. 7 = 5 — 0,

1 1
sup P |:'t{{A(0,t1Vn}(t1) — ?A(O,h](tl) > ’r}:| — 0 forallp>0.

Régtl SH

Thus from the preceding four approximations it follows that (32) is approximated, uniformly over

KO <tp < K,0 <ty < q, || < a,lpe| <a, by

B |:ei:'{_}1\(o)1,1](t1):| E |:e—7:'u,2A(82):|

F(% =) = F(~m)| = 0.

In addition, we have sup,s<¢, <« |1 |<a

17



Thus, taking in addition Lemmas 14 and 15 into account, and using the preceding approximations
n (30), we have obtained the following lemma.

Lemma 16. Let R, (y1,y2,a,0) to be the difference between

= rq
:‘i_(l_H)/ / I (y1,y2;t1,t2) dtadty
o Jo
/ / // —Z Hy1—inz(y2—y1)
L (o <auual<a}

- 71\ t 1
< E [6 Ao, L )] E |:efw2/\ m)] \F(M2)| dmduz} dtodty. (33)

and

Then,
lim lim lim sup (sup | R, (yl,yz,a)|> =0.

d—0a—00 koo \y1,2

We can now complete the proof of Lemma 12.
Proof of Lemma 12. The approximation in the preceding lemma 16 is uniform in y; and y2, and
hence it holds also when (y1,¥s2) is as in (21). Note that

[ — [—1
Yo — Y1 = A(foo,nl’l] <I€ > 7/\(700)'%1771] (I{m +t1>

m
ri=L H-1/a H-1/a
= 1 1
= / {(5l+t1+t2—u) —(Hl ) }Z(du)
oo m m

S IR (R e L T

—t
=D / {(t2 — )T (fu)H—l/a} Z(du)
= A(—OO,—tl] (tz) b
where
sup P[|A—oo,—t,) (t2)] >n] — 0 for all n > 0.

£5<t)<r,0<t2<q

Thus the factor 5ry1 + p2 (y2 — y1) in (33), with (y1,y2) as in (21), can be replaced by
1

1 H1 -1
=Y = —A ook l=l <I€ +t1> .
tH ¢ (oo '] m

m

Taking this into account and by making the transformation % (%) 11 — 1, the approximation (33)

- /"“5/ //Im —r Juzlﬁa} eilm("L)iHA(’“’“l%](H%Hl)

takes the form

H
1

< E { —im ()" T A 0,641 (t1) } { —Wz/\(tz):| |F(N2)|2 d/nd,uz} dtodty.

H H
Here note that F [ —im (3)” A(Ovtﬂ(tl)} =F [eﬂ“l(m) A0 M | Hence making the further trans-

formation ¢; (%)71 —— t1, and noting that F {e‘i“ltflA<°’1J(1)} =F [e_i“lAm,tﬂ(tl)}, the preceding

18



approximation takes the form

mli- H/ / //|#1|< ’|M2|<a}J(maﬂl,#z,tz,h)dulduz dtsdty (34)
where
J (m, py, p, ta, t)
- e‘iulmHmHA(—xW’%](m’%%%)E [e—mlA(o,tl](tl)} > {e_iH2A(t2):| P ()
Note that

1 1 q ) [e)
WA A {/Oo /OOJ(m,ﬂl,ﬂg,tg,tl)d,uld‘ug}dtzdtl

is the same as (25) of Lemma 12.
Now let K (a) be the difference between (34) and

1 1 q 00 00
mlfH/(s /0 {/OO /OOJ(mvﬂl’ﬂz,tmh)dmdm}dtgdtl.

(Here m, ¢ and § are fixed.) Then noting that [e=**| <1 and |F (uz)| < C, we have

m' 7K (a)
q oo 1
< </ / ‘E [e—iuzA(tz)} ’ d,ugdt2> / / ‘E [e—im/\(o,tl](h)] ‘ dpydt
0 J—oo {lp1]>ad}
(/ / 71H2A(t2 ‘dﬂ@dtz) / / 7i/J,1A(0)1,1](t1):| ’ dﬂldtl
{\u2\>a}
< 2R(a (assume ¢ > 1)

where

q .
R (a) = / / ‘E |:€*1H2A(0,t2](t2):| ‘ d,ugdtg
0 J{|p2>ad}

71 o
S C/ 7/ e—C|M2\ d,ugdtg
0 th {|;L2|>a6t§}

m1 o
c/ —dts + C el gy,
o U3 {|u2|>adn"}

IN

where the right hand side converges to 0 as a — oo first and then 7 — 0. Also R (0) < co. Hence

m' MK (a) -0 asa— oco.

§ [>'s)
/ / ‘E [e*im/\(o,f,l](h)} ‘ dpydty
0 — 00
5 ) 1-H
1 el | (6))
< C(/o t{ldtl> (/_Ooe I | dul) < T —0asd— 0.

This completes the proof of the lemma 12. W

Next note that

19



Completion of the proof of Proposition 6. We now indicate the modifications required in the
above proofs in order to obtain the general statement of the Proposition 6. First consider the process,

for u real,

Kt o8]
f w3 [ [T O R ) dyds. (35)
0 —o0

In this case we take
H K,# 0o ) u
Comi =K 2 / / e mAOT) (1) duds,  1=1,2, ...
L e

Then it is clear that only the verification of (R2) will require modification. It is easy to see that the

only change will be that the earlier (y1,y2) in (21) will now be replaced by (y1 — £ u,y2 — k" u), that
_it‘LT}-ljyl —ip2(y2—y1)

is, the earlier factor e in the approximation (33) will now take the form

e*i%(ylfﬁHu)*iM(W*yl)

As a result A(_ 11 (/@l_l + fi%) in (25) will need to be replaced by

00,k m

A /il_1+/€t—1 —kfu =P " (A1 1_71+L1 —u).
(—oomizt] | F - (oorz2] | o o

This means in Lemma 13, A(_Oo 1=1] (l_—l + %) will need to be replaced by A(_OO 1=1] (% + %) — u.

m ' Tm

In this case the limit in Lemma 13 will be Y2} 2 (Lt — Li_, ). Thus

(35) L% Vew® (v,

where W (t) is a standard Brownian motion independent of A(t).
To consider the general case of Proposition 6, for simplicity take ¢ = 2. Then consider, for reals uq,

ug, a1 and ag, with uq, us distinct,

2 Kt oo
j=1 0 e

Now take

2 K,L o0
Cromi = K Zaj /171 / e_i“(A(S)_”H“j)F(,u) dpds, 1=1,2,...
j=1 JeTm J oo

Here also it is clear only the verification of (R2) will be different. The essential difference is that
E, =1 [szl] will now involve a cross product term.

We now show that the contribution of this cross product term can be neglected asymptotically. First,
this term will be of the same form as that of (22) except that the earlier (y1,y2) in (21) will now be

gL g —
replaced by (y1 — k" u1,y2 — ug), that is, the earlier factor e grn e o (33) will take the

form
—i 5 (y1—r"ur) —ipa (y2—y1)+inar® (u1—u2)
e ,
where now uq —ug # 0. This means A(—oo,n%] (k=2 + k1) in (25) will be replaced by A(_O(M%] (kL + k) —

#fuy, and in addition the factor [ [*° E [e=#20(2)] |F (u9)[? duadts in (25) will be changed to

[ et [ 1B () dpadty
0 —o00

P17 i () —ipaA(1 H2 ?
= /0 tﬁq/—ooe 2 E{e He ()} F i dpadts, (37)

2
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where note that ‘F (’%)‘ < Cand [7 ‘E [e~tH2A()] ‘ dus < C. In particular, each fixed n > 0,
2

,12 W (01 —u . ?
/ ?/ (w1 —u2) [e—wz/\(l)} ’F (%)‘ dpodty — 0
n b3 Joo E

as Kk — 00, by the Riemann-Lebesgue Lemma. Further fon tintg — 0 as 7 — 0. Hence (37) converges
2
to 0.
Thus the cross product term indicated above can be neglected, so that the limit in Lemma 13 will

2 2 2 uj Uj
be 3751 a3 > im0 Vi (L —L;’ ). This means

2
(36) ZE VB> a;w ) (L),
=1

where W (%) (t), j = 1,2, are independent standard Brownian motions, independent of the process A(t).
This completes the proof of Proposition 6 (except for the verification of (R3) and the proof of Lemma
10). N

Regarding the convergence of finite dimensional distributions in Theorem 1, it is a direct consequence
of Proposition 6, in view of the representation (8). The same is the case for Theorem 2, because for any
reals x1, ..., Tk, €1, ..., ¢ the linear combination Zle ¢j (szﬁui - Li“) will have the representation in
Proposition 6 (see (10)), with

j=1

It thus only remains to obtain the covariance structure of the limit in Theorem 2. It is enough to

obtain the limiting covariance for L*" — L5¥"" for each t > 0. According to the representation (11)

and Proposition 6,

1

. ;HH (Lierui _ Lfy-i—ui) — \/bTﬁlaj _ y‘% W(ui) (L?i),

where note that the variance of vo* |z — y|% W (i) (t) is the same as the variance of v/b* (B(f_) (t,z) — B(ul) L (& y))
H H
This gives the required covariance structure.
Also, according to (12),

|F(/¢)|2 = |6i“ — 1’2 = 4sin® (%) .

3 The remaining proofs

Recall that to complete the proof of the convergence of finite dimensional distributions in Theorems 1
and 2, it remains to prove Lemma 10. This as well as the proof of Proposition 5 are given in this section.
As noted earlier (R3) is a consequence of Proposition 5, but we shall indicate that the computation of
the fourth moment is enough for the verification of (R3), see the Remark at the end of this section.

We shall need the following result (which is not required when H = 1 ).

Lemma 17. Assume H # é Then

1/

sup — |(v+s+7) 7é—(v+s)H i <c.
t<v<t,s>0,r>0 T
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Proof. Noting H — 1 — é < 0, we have when % <,

(v+s+ 7“)H*é —(v+ s)H*é

< C’/ (v+s+x)H71*édx
0

< C’(min(t,s))H_l_‘ll/ dz
0

C' (min (¢, s))Hil*é T

Further, when H — 1 < 0, we have, using ¢ < 2v,

i :

-

1 -
‘(v+s+r @ —(v+s i

& < O (min(t,s)" =

<(v+s

and similarly when H — é > 0, we have using v < ¢,

Q=

‘(v—l—s—i—r)H_é —(v+ )7

1
< (11—1—5—&—7‘)H_5SC’TH_é ifr>t>sorr>s>t.

We have using (38) and noting 1 — H > 0,

tl/(x 1 1
T (w+s+r)7 ;—(v—&—s)H o < otEpHE-1-E,
r\1-H

In addition, using (39), we have

tl/a H_1 H_1
T—H(v—&—s—i—r) *—(v+s) =

1
< Ctar HHi—s —cor B <0, fH——<0,r>t
a
Further, using (40),

tl/a

i (w+s+r)7"

I

. (v+s
1
< Ctar=HpH—% — Cr—ata <c,, fH——>0,r>t>s.
!
From (38) we have,

tl/a

oH Wrs+r)"F —(w+s)"F| < CtarHsHlmay

S

It remains to consider the case H — é >0,r >t t<s, r>s Inthis case we have from (40 ),

tl/a H-—L H-L 1 H H-—1 t %
T (v+s+r) = —(v+s)" | < Ctor ™ PriTe = - <C

because t < s < r. This completes the proof of the lemma. M

Next we present the proof of Lemma 10.
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1-H t %
C(i) <(C, ifr<sandt<s.
s

(40)



Proof of Lemma 10. We have, similar to (28), with I, (¢1,¢2) as defined in (24),

1 _1
I*(tl,tg) < OW//e 2
102
K 2
F(t;—#q)F(tH)‘d/hd/«bz (41)
1 2

Here recall that % <wu; <1 and % < ug < 1. Let us write

[e% H—i (a3
pouy @

1 1 1

H-L H-+ gL
o o pH B2 ta [ o

Hiug +t7 tgl u1+t1 —uy

X

Ho1 t{—] to H-3 H_1 H-1
patty " papg |\ un —up ) = (At pzh(t ) w7
with

H-L
_H LtH t a H—1
h(ty,t2) Y +a1<<u1+t2) — a>
2 1

_H ty -1 _1
= U ta tH ((t1u1 +t2) —(t1U1)H ").

I
X

Then, in view of the above Lemma 17 and because % <wu <1,

sup |h(t1,t2)] < C.
t1>0,¢2>0

(Note that h(t1,t2) = 0 when H = 1) Noting, |F (% - %?) F (%3)’ <C (lf{}‘ + %) % and
making the transformation py + pgh (t1,t2) — p1, pa — po, we then obtain

I* (t17t2>

IN

thH <|M1—|—|,Lt2| +|]/f;|) Zi%‘ —c|p1|*du—clpz|® dprdps

< Oy (w+w) = o + wam
< g g~ p) o7 = o

C C
—(= H>/ / « (t1,t) dbadty < Crm(7H) / / <t2Ht2H+th3H>dt2dt1

,(17H)/m /m tzHlﬁ2H dtodt, < Cr—(1—H) 2—4H _ CH173H,
1 q 1 2

where 1 — 3H < 0. Similarly

Thus

We have

e mo w1 > 1 -
a H)/ / Wdthtl S C/ t37Hdt2 S qu 3H — 0 as q — OQ.
1 q 12 q 2
Now, note that we also have I, (t1,t2) < ﬁ%’ using ‘F (f—}} — f—ﬁ)} < C. Hence
1 "2 1 2

1 K 1 K
/f(l*H)/ / I, (t1,t2) dtadty < C{U*H)/ / g dtadty < Cr™H
0 Jg 0o Jg Ui

This completes the proof of the Lemma 10. B

It remains to prove Proposition 5.
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Proof of Proposition 5. We consider the case [ = 2 in detail and then indicate the modification
required for the general case. It is enough to take u = 0. Then we have, assuming ¢ > s,

Kt [e%} 4
E[(KIH/ / e"“A“)F(u)dudv)]

Kkt pr(t—s) pr(t—s) pe(t—s)
< Ylp20-H) / / / / I, (t1, to, ts, ty) dtgdtsdtadty, (42)
KS 0 0 0

I* (t17t27t3at4 ////’E 77’23 1 g A(t 4.t )iH

X |F (1) F (p2) F' (p3) F (pa)| dpydpadpsdpg.

where

Here

’E {e*iZ?zl ij(t1+...+tj)} ’

< ’E |:ei2?1 7D 3y A(t1+...+tk1,t1+...+tk](t1+"‘+tj):| ’

(Here and below t1 + ... + tx—1 = 0 when k = 1.) Letting

)\j =i+ ... + g,

we have

J
15 D Attt it (B 1)
1 k=1

<
~ I\Mux

= {/\kA(t1+...+tk_1,t1+..‘+tk] (t1+ .+ ti)
1

~
Il

4
YN (M tte sttt (4 o 15) = Myt trotn] (B £1))
j=k+1

(Here and below Zj:k 41 is empty when k = 4.) Here the summands on the right hand side are
independent, and the distribution of the k-th summand is the same as that of

4

)\kA 0,tx] tk Z /\ A(O te] (tk + ...+t ) A(O,tk] (tk + ...+ tj_l)) .
j=k+1

We have, similar to (27) and the three steps subsequent to it,

5 ei(%A(o,tk](tk)+Z?=k+ TJI( (0] (b F ot =A g ] (bt 1)))

t H_1 XA _1 _1n |«
—Jo*| A tkH D tfé((u+tk+1+~-+ta‘fl+t;‘)H & —(uttpgprto+ti—1) " ”) du
S e J
1 1 le%
-1 H-L1 4 tk 1+ At \H-o tk et \H— 5
_JO Aku cx-‘rtk j=k+1 tH (( T ) “ ( “7kj) : du
= €
H— 1 [e1

1
- tk+1+ T+t e tepitottj 1\ H-g
—Akuk "+1‘,C Sk tH<(" + ) "‘—(u + T )

e

= Jk (tka"'7t4;)\k~->>\4)a say,
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where % <wup <1,1<k <4. Further

tH g1+ o+ 1\ s 4o+t \ T
K (g + — (4 BT T
tj tr tr

is 0 when H = é and, when H # é, is of the form of Lemma 17 with ¢t = ¢, r = t;, v = tpur and
s =tg41 + ... + tj_1. Thus, similar to (41) together with a similar use of Lemma 17 therein and using
|F (A)] < C'|A|, we have (letting A5 = 0)

I (t17t27t33t4

Mg Akt
thHth4 ////ij (B a3 2y M) F(le t}cqﬂ)
4
c //// 11 il 4t Al Ayl £ -+ | Adf
tH kil e th 1

xe~ L=l 1% dx dhadAgd )y

- C L1 1 N 1 L1y 1 (43)
R R 727 A2 A AN 2 A 2 ) AN~ 7 i

The right hand side here is a sum of the terms of the form

1 1
44)
aHbH cHidH |7 (
(tl tjl > <tj2 t]3 >

for an arrangement (ji,j2,73) of (2,3,4), where a,b, ¢ and d are integers satisfying the following con-

IN

dA1dAadAzdAy

IA

straints:
e 1 <a<2witha+b=4,and 1 < ¢ <3 such that c+d = 4.
To proceed further, first suppose that
Kk(t—s)>1. (45)

Then, using the bound (43), we next obtain

t .5 t S t S
201 H) / / / / L (t1, b, b3, ta) dtadtsdisdty

< C(t—s)01, (46)

We have, corresponding to the second factor in (44),

k(t—s) pr(t—s)
— H
= / / tcthHdthdtﬁ
1<c<3 c+d=4 J2 I3
K(t—s) r(t—s) 1 1
—(1—H
< 2kt )/1 /1 (tgt;’?f + thtw) dt;,dt,
< oI (- ) -9 ) <0 - ) (47)

The last bound is obtained as follows:

kO (kb —s) T =t —5)' T,
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K/—(lfH) (H (t _ S))2_4H — H173H (t _ 8)2_4H S (t _ S)3H_1 (t _ 8)2_4H — (t _ S)l—H ,
where we use (45) together with the fact 1 — 3H < 0, and similarly
O < (- g H

Next, corresponding to the first factor in (44),

_(1 ) Kk(t—s) 1
Z / / Lo H o H dt;j,dty
ks J1 1 Y5

1<a<3,a+b=
_(1 o) K(t—s) 1
1 J1
< Crm0-H) ((ms)lfH - (Fus)“f F (st —s)P 4 1) : (48)

where
k~(—H) ((/{t)lfH - (/{s)lfH) Il g <)

Thus (46) holds.
Next, note that

t 5 t s
201~ H>/ / / / I, (t1,ta, t3, ta) dtsdtsdtodt; < C (¢ — 5)>0H) (49)

This follows, because, as in (43) but using ’F (—,&, - )’ ‘F (— - TH)‘ < C, the left hand side of (49)

is bounded by
m(t—s) m(t—s) 1 1 1 1
C (tl_H — SI_H) I{_(l_H) / / THLH TH + TH ?dtzldtg
1 1 t3ity \tg  ty )ty

< oM =stM - s)(lfH) , using (47). (50)

In the same way the bound in (49) holds when the integral f:st fol ff(tis) ff"(tis) there is changed to
I ff(t ) fo fﬁ(t *) or to f K(t ° ff(t_s) fol. Thus Proposition 5 holds when « (t —s) > 1 (and
1=2).

Next, in the remaining case

Kk(t—s) <1,

the right hand side in (42) is bounded by, similar to (26),

t s t S t S
Cr—20- H)/ / / / thHthHdt4dt3dt2dt1

C—2(1—H) (k (t _s))4(1 H) — OR20- H)( t—s) 4(1-H)
< C(t—s) 2 (1= 10 = o g — 52071 (51)

IA

This completes the proof of Proposition 5 for [ = 2.
The proof for the general [ > 1 is the same, except for notational differences. To see this, in the

general case the bound analogous to that in (43) will take the form

201
C .
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This will be a finite sum of the products of the form
1 51

tathH c‘T,H d,.H ’
1 % r=1 t]QT' Jar41

for an arrangement (j1, jo, ..., jor—1) of (2,3,4,...,2l), where, as in (44), a,b, ¢, and d, are integers such
that 1 < a < 2 with a +b = 4, and each 1 < ¢, < 3 such that ¢, + d. = 4. Then it is clear that
Proposition 5 holds for [ > 1 also. This completes the proof. W

Remark. We now show that the computation of the fourth moment is sufficient for the verification
of (R3). Taking s = =1 and t = L, the bound C (¢t — )7 in (47) becomes Cm*~1. Similarly, the

bound in (48) becomes
INH 1\ H
<<m> - <m> +m 2l fﬁ‘“‘f”) :

and the bound in (50) becomes Cm®~! ((L)PH - (F—l)lfH), so that when & (t —s) = £ > 1,

l 1-H I 1 1-H
Bl SCmH_1<<) _( - ) +m4H_2ﬁ1_3H+H_<1_H)>.
m m
We have

[mL] 1-H 1-H 1-H
mH—lZ ((l> _<ll> ) =mi1 <[mL]> with H — 1 < 0.
m m m
=1

Further 1 — 3H < 0. Hence (R3) follows when £ > 1.
When £ (t—s) = £ < 1, the first bound Cr=20=H) () (¢t — s))4(1_H) in (51) is bounded by

m

Cr=20-H) "and hence (R3) holds in this case also. W
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