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Abstract. Consider a linear fractional stable motion Λ(t), indexed by the Hurst parameter 0 < H <

1 and the index of stability 0 < α ≤ 2. (When α = 2, the process Λ(t) becomes the fractional Brownian
motion.) Let Lx

t be the local time of Λ(t) at x upto the time t. When H is restricted to 1
3 < H < 1,

we obtain the convergence in distribution of: the process (t, x, u) 7−→ ε−
1−H
2H

(
Lεx+u

t − Lu
t

)
as ε → 0,

and the process (t, u) 7−→ κ−
1−H

2
∫ κt

0
f
(
Λ(s)− κHu

)
ds as κ → ∞, where the Borel function f (x) is

such that
∫∞
−∞ f (x) dx = 0. The restriction 1

3 < H < 1 cannot be relaxed. These results generalize the
known results for the Brownian motion (the case α = 2 and H = 1

2 ) and the symmetric stable process
(the case H = 1

α , 1 < α < 2 ).

1 Introduction and the main results
Let {Zα(t), t ∈ R}, 0 < α ≤ 2, be an α-stable Lévy motion. By this we mean that Zα(t) has

stationary independent increments having a strictly α-stable distribution, that is, for s < t,

E
[
eiu(Zα(t)−Zα(s))

]
=

{
e−(t−s)σα|u|α(1−iβ sign(u) tan(πα

2 )) if α 6= 1
e−σ(t−s)|u| if α = 1,

(1)

where |β| ≤ 1 and σ > 0 is the scale parameter. For convenience we henceforth take σ = 1. (Note that
this definition of strict α-stability for the case α = 1 differs from the usual one in that we take the shift
parameter to be 0.) When α = 2, Zα(t) becomes the Brownian motion with variance 2.

A process {Λα,H(t), t ≥ 0} is called a linear fractional stable motion (LFSM) with Hurst parameter
H, 0 < H < 1, if it is given by

Λα,H(t) =
∫ 0

−∞

{
(t− u)H− 1

α − (−u)H− 1
α

}
Zα(du) +

∫ t

0

(t− u)H− 1
α Zα(du)

if H 6= 1
α , and if H = 1

α , Λα,H(t) is taken to be Zα(t), that is,

Λα, 1
α
(t) =

∫ t

0

Zα(du) = Zα(t),

where Zα(t) is an α-stable Levy motion as above. Note that in the case H = 1
α , the restriction 0 < H < 1

reduces to 1 < α ≤ 2. When α = 2, the LFSM reduces to the Fractional Brownian Motion (FBM). See
Samorodnitsky and Taqqu (1994) and Maejima (1989) for the details of LFSM and FBM.

Let Lx
t be the local time of the LFSM Λα,H(t) at x upto the time t. See Jeganathan (2004) for the

existence and other details of the local time of the LFSM. In particular we have the representation

Lx
t =

1
2π

∫ ∞

−∞

∫ t

0

eiu(Λα,H(s)−x)dsdu. (2)

Note that the local time for Zα(t) does not exist when 0 < α ≤ 1, but our interest is restricted to
Λα, 1

α
(t) = Zα(t), 1 < α ≤ 2.
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For convenience, we shall

henceforth denote Λα,H(t) by Λ(t) and Zα(t) by Z(t).

We next state the main results of this paper
Theorem 1. Assume that 1

3 < H < 1. Let the Borel function f (x) be such that∫ ∞

−∞
(|f (x)|+ |xf (x)|) dx < ∞ (3)

and ∫ ∞

−∞
f (x) dx = 0. (4)

Then for every M > 0, and for any distinct reals u1,...,uq,

t 7−→
(

κ−
1−H

2

∫ κt

0

f
(
Λ(s)− κHui

)
ds, i = 1, ..., q

)
=⇒

(√
bW (ui) (Lui

t ) , i = 1, ..., q
)

in C ([0,M ] 7−→ Rq)

as κ →∞, where W (ui) (t) , i = 1, ..., q, are independent standard Brownian motions independent of the
process Λ(t), and

b =
1
π

∫ ∞

0

∫ ∞

−∞

∣∣∣f̂ (µ)
∣∣∣2 E

[
e−iµΛ(t)

]
dµdt.

Here C ([0,M ] 7−→ Rq) stands for the space of all continuous functions defined on the interval [0,M ]
and taking values in Rq. See Billingsly (1968, Chapter 2) for the weak convergence in C ([0,M ] 7−→ Rq).
It will become clear later that, for any Borel function h (y) such that

∫∞
−∞ |h (y)| dy < ∞, the convergence

in Theorem 1 can be extended to the form(
κ−HΛ(κHt), κ−(1−H)

∫ κt

0

h
(
Λ(s)− κHui

)
ds,

κ−
1−H

2

∫ κt

0

f
(
Λ(s)− κHui

)
ds, i = 1, ..., q

)
=⇒

(
Λ(t), Lui

t

∫ ∞

−∞
h (y) dy,

√
bW (ui) (Lui

t ) , i = 1, ..., q

)
(5)

in C
(
[0,M ] 7−→ R1+2q

)
.

It can be seen using Plancherel’s theorem that the constant b in Theorem 1 has an alternative form

b = 2
∫ ∞

0

∫ ∞

−∞
E [f (x) f (x + Λ(t))] dxdt.

Now let φ (y) be the probability density function of Λ(1). Then the constant b has also the form

b = −2
∫ ∫

f (x)
{

c1I{y>x} (y − x)
1
H −1 + c2I{y<x} (x− y)

1
H −1

}
f (y) dydx,

where I{y>x} stands for the indicator function of the set {y > x}, and

c1 =
∫ ∞

0

(
1
tH

φ (0)− 1
tH

φ

(
1
tH

))
dt, c2 =

∫ ∞

0

(
1
tH

φ (0)− 1
tH

φ

(
− 1

tH

))
dt.
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This is because ∫ ∞

0

∫ ∞

−∞
E [f (x) f (x + Λ(t))] dxdt

=
∫ ∞

0

∫ ∞

−∞
f (x)E

[
f
(
x + tHΛ(1)

)]
dxdt

=
∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
f (x) f

(
x + tHy

)
(φ (y)− φ (0)) dydxdt using (4)

=
∫ ∞

0

1
tH

∫ ∞

−∞

∫ ∞

−∞
f (x) f (y)

(
φ

(
y − x

tH

)
− φ (0)

)
dydxdt,

which gives the stated form by making, for each x and y, the transformations (y−x)
1
H

t 7−→ 1
t and

(x−y)
1
H

t 7−→ 1
t respectively when y > x and y < x. Note that when φ (y) symmetric around 0,

c1 = c2 = c, say, then

b = −2c

∫ ∫
f (x) |x− y|

1
H −1

f (y) dydx.

Note further that c is finite only when 1
3 < H < 1. It will be indicated below that the restriction

1
3 < H < 1 in Theorem 1 cannot be relaxed.

Theorem 1 for the special cases mentioned next is usually stated for q = 1 and for ui = 0 and the
following remarks pertain to this case. In the case Λ(t) is a Brownian motion (that is, the case α = 2
and H = 1

2 ), Theorem 1 for the one-dimensional convergence for t = 1, goes back to Skorokhod and
Slobodenjuk (1966), and in the above stated general form of convergence in C ([0,M ] 7−→ R), it is due,
independently of Skorokhod and Slobodenjuk (1966), to Papanicolaou, Strook and Varadhan (1977).
The statement for this case is also presented in Ikeda and Watanabe (1989, Chapter III, Section 4.4)
and Revuz and Yor (1991, Chapter XIII, Section 2). (It may be noted that the statements in Skorokhod
and Slobodenjuk (1966) are more general with respect to the forms of the functions f (x) involved, in
the sense that they allow f (x) to be regularly varying at infinity also, for which the limiting forms in
Theorem 1 will be different.)

In the case Λ(t) is a symmetric stable process (that is, the case 1 < α ≤ 2 and H = 1
α ), Theorem

1 is due to Rosen (1991, Theorem 1.1). In this case note that Theorem 1 above does not assume
the symmetry requirement. However the statement for this case without the symmetry assumption is
implicit in Borodin and Ibragimov (1995) because it is a continuous analogue of the discrete versions
established there and it was stated there (Chapter III, Section 6.3, page 129) that appropriate continuous
analogues of the discrete versions will hold.

Theorem 1 itself for the one-dimensional convergence for t = 1 was stated (without proof) in Je-
ganathan (2006, Remark 3) as a continuous time analogue of the discrete time version established there.

To state the next statement, let, for 0 < γ < 2,

Γγ (x, y) =
1
2

(|x|γ + |y|γ − |x− y|γ) .

Let
(t, x) 7−→ Bγ (t, x)

be a Gaussian process with covariance

E [Bγ (s, x) Bγ (t, y)] = (s ∧ t) Γγ (x, y) .
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Theorem 2. Assume that 1/3 < H < 1. Then for every M > 0 and A > 0, and for any distinct
reals u1, ..., uq,

(t, x) 7−→
(
ε−

1−H
2H

(
Lεx+ui

t − Lui
t

)
, i = 1, ..., q

)
=⇒

(√
bB

(ui)
1
H−1

(Lui
t , x) , i = 1, ..., q

)
in C ([0,M ]× [−A,A] 7−→ Rq)

as ε → 0, where B
(ui)
1
H−1

(t, x), i = 1, ..., q, are independent processes, each having the same distribution
as that of B 1

H−1 (t, x) introduced above, and independent of the process Λ(t), and

b =
1
π

∫ ∞

0

∫ ∞

−∞

(
4 sin2

(µ

2

))
E
[
e−iµΛ(t)

]
dµdt.

Note that the requirement 1/3 < H < 1 is the same as 0 < 1
H − 1 < 2.

Similar to the extension (5) of Theorem 1, Theorem 2 has the extension:

(t, x) 7−→
(
Λ(t), Lui

t , ε−
1−H
2H

(
Lεx+ui

t − Lui
t

)
, i = 1, ..., q

)
=⇒

(
Λ(t), Lui

t ,
√

bB
(ui)
1
H−1

(Lui
t , x) , i = 1, ..., q

)
(6)

in C
(
[0,M ]× [−A,A] 7−→ R1+2q

)
.

In the case Λ(t) is a Brownian motion, Theorem 2 is due to Yor (1983). In the case Λ(t) is a
symmetric stable process, it is due to Rosen (1991, Theorem 1.2) for q = 1 and to Eisenbaum (1996)
for the general q.

Regarding these results, it may be noted that the restriction 1/3 < H < 1 cannot be relaxed, as can
be seen from the known regularity properties of Lx

1 with respect to the space variable x when Lx
1 is the

local time of the fractional Brownian motion (the case α = 2), see Geman and Horowitz (1980, Table
2).

We shall also obtain the following bounds, which will in particular give the required tightness for
convergencies in Theorems 1 and 2 above.

Proposition 3. Assume that 1/3 < H < 1, and let f (x) be as in Theorem 1 above, satisfying (3)
and (4). Then for any integer l ≥ 1, there is a constant C depending only on l and H, such that

sup
κ>0,u

E

[(
κ−

1−H
2

∫ κt

κs

f
(
Λ(v) + κHu

)
dv

)2l
]
≤ C |t− s|l(1−H) .

Proposition 4. Assume that 1/3 < H < 1. Then for any integer l ≥ 1, there is a constant C

depending only on l and H, such that

sup
ε>0,u

E

[(
ε−

1−H
2H

(
Lεx+u

t − Lu
t −

(
Lεy+u

s − Lu
s

)))2l
]

≤ C |t|l(1−H) |x− y|
l(1−H)

H + C |y|
l(1−H)

H |t− s|l(1−H) .

The methodology we employ is a continuous time analogue of that employed in Jeganathan (2006).
This will allow us to treat both the Theorems 1 and 2 in a unified way. Before indicating this we briefly
recall the methods employed in the existing works mentioned earlier.
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First, in obtaining Theorem 1, both Skorokhod and Slobodenjuk (1966) and Papanicolaou, Strook
and Varadhan (1977) initially invoke Itô’s formula, thereby reducing the convergence to that of a stochas-
tic integral, but the former work uses the method of moments to obtain the required convergence whereas
the later work uses a much simpler approach of employing an appropriate continuous time martingale
CLT. The method of Yor (1983), in obtaining Theorem 2, is similar to that of Papanicolaou, Strook and
Varadhan (1977).

In the case Λ(t) is a symmetric stable process, in which the Itô’s formula is not available, Rosen
(1991) employs the method of moments directly in obtaining Theorem 2, using the representation (2).
On the other hand Borodin and Ibragimov (1995) when dealing with the discrete analogue of Theorem
1, employ Fourier analytic method and reduce the situation in the limit to essentially a continuous
time martingale CLT, and hence their method is much simpler than that of Rosen (1991). As noted
earlier though only the discrete situation is dealt with in detail in Borodin and Ibragimov (1995), it
was mentioned, independently of Rosen (1991), that the method is applicable to the continuous time
situations such as Theorem 1 also. In the context of Theorem 2, see Eisenbaum (1996) for yet another
approach for this case under symmetry.

The present method is adopted from Jeganathan (2006) and is Fourier analytic similar to that in
Borodin and Ibragimov (1995) but we reduce the situation directly to a discrete time martingale CLT,
see Section 2 below. Note however that in all the situations mentioned above, the processes involved
have stationary independent increments, and the above mentioned methods themselves are tied to such
structures, but unfortunately such structures are not available in the present case.

We next indicate that both the Theorems 1 and 2 can be treated in a unified way.
Unification of Theorems 1 and 2 and of Propositions 3 and 4. Let

f̂ (µ) =
∫ ∞

−∞
eiµxf (x) dx.

Note that the restrictions (3) and (4) in Theorem 1 entail that∣∣∣f̂ (µ)
∣∣∣ ≤ C min (|µ| , 1) . (7)

We have
f (x) =

1
2π

∫ ∞

−∞
e−iµxf̂ (µ) dµ.

In particular

f
(
Λ(t)− κHu

)
=

1
2π

∫ ∞

−∞
e−iµ(Λ(t)−κHu)f̂ (µ) dµ,

and hence ∫ κt

0

f
(
Λ(s)− κHu

)
ds =

1
2π

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHu)f̂ (µ) dµds, (8)

which is involved in Theorem 1. It will become clear that in dealing with this, we shall invoke only the
requirement (7).

Regarding Theorem 2, using the representation (2), we have

Lεx+u
t − Lu

t =
1
2π

∫ t

0

∫ ∞

−∞
eiµ(Λ(s)−u)

(
e−iµεx − 1

)
dµds

=D 1
κ2π

∫ κt

0

∫ ∞

−∞
eiµ(κ−HΛ(s)−u) (e−iµεx − 1

)
dµds

=
1

κ1−H2π

∫ κt

0

∫ ∞

−∞
eiµ(Λ(s)−κHu)

(
e−iµκHεx − 1

)
dµds, (9)
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where =D stands for the equivalence of all finite dimensional distributions of the random processes
involved. Thus, if we take κ such that

κHε = 1,

and let
F (µ) =

(
eiµx − 1

)
,

then

κ1−H
(
Lεx+u

t − Lu
t

)
=

1
2π

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHu)F (µ) dµds. (10)

This is exactly of the form (8), in addition to having the requirement (7) for F (µ), that is, |F (µ)| ≤
C min (|µ| , 1), where the constant C may depend on x.

In the same way, Propositions 3 and 4 are unified. More specifically, in place Proposition 3, we
establish the following

Proposition 5. Assume that 1/3 < H < 1, and let F (µ) be such that

|F (µ)| ≤ C min (|µ| , 1)

for a constant C.
Then for any integer l ≥ 1, there is a constant D depending only on l, H and the constant C, such

that

sup
κ>0,u

E

[(
κ−

1−H
2

∫ κt

κs

∫ ∞

−∞
e−iµ(Λ(v)−κHu)F (µ) dµdv

)2l
]
≤ D |t− s|l(1−H) .

It is clear that Proposition 3 follows from this, in view of (7) and (8). The same is the case for
Proposition 4. To see this, fix x and y with x > y, and take κ such that

κHε (x− y) = 1.

Then we have, as in (9) and (10),

κ1−H
(
Lεx+u

t − Lεy+u
t

)
=D 1

2π

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHu)eiµ y

x−y
(
eiµ − 1

)
dµds

=
1
2π

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHu)F (µ) dµds (11)

where now
F (µ) = eiµ y

x−y
(
eiµ − 1

)
, (12)

which clearly satisfies |F (µ)| ≤ C min (|µ| , 1), where the constant C does not depend on x and y. Hence
we have by applying Proposition 5,

E

[(
κ

(1−H)
2
(
Lεx+u

t − Lεy+u
t

))2l
]

= E

[(
(ε (x− y))−

(1−H)
2H (Lεx

t − Lεy
t )
)2l
]

≤ D |t|l(1−H) .

This is the same as

E

[(
ε−

(1−H)
2H

(
Lεx+u

t − Lεy+u
t

))2l
]
≤ D |t|l(1−H) |x− y|

l(1−H)
H .
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Also, using (10) we have

2π (εy)−
1−H
2H
(
Lεy+u

t − Lu
t −

(
Lεy+u

s − Lu
s

))
=D κ−

1−H
2

∫ κt

κs

∫ ∞

−∞
e−iµ(Λ(v)−κHu)F (µ) dµdv

with κHεy = 1 and F (µ) =
(
eiµ − 1

)
. Thus, by Proposition 5 again

E

[(
ε−

1−H
2H

(
Lεy+u

t − Lu
t −

(
Lεy+u

s − Lu
s

)))2l
]
≤ D |y|

l(1−H)
H |t− s|l(1−H) .

The preceding two inequalities give Proposition 4, in view of

E

[(
ε−

1−H
2H

(
Lεx+u

t − Lu
t −

(
Lεy+u

s − Lu
s

)))2l
]

≤ CE

[(
ε−

(1−H)
2H

(
Lεx+u

t − Lεy+u
t

))2l
]

+CE

[(
ε−

1−H
2H

(
Lεy+u

t − Lu
t −

(
Lεy+u

s − Lu
s

)))2l
]

.

�

The plan of the rest of the paper is as follows. In Section 2, we shall obtain the convergence of finite
dimensional distributions in Theorems 1 and 2. As in Jeganathan (2006), this is done by reducing this
problem to a discrete time martingale CLT, so that most of Section 2 is devoted to the verification of
the requirements of this CLT. The verification of the Lindeberg condition of this CLT and the proof
of Proposition 5 are presented in Section 3 because they involve the similar ideas as well as similar
computations. (It may noted that in the special case H = 1

α , in which Λ(t) =
∫ t

0
Zα(du) = Zα(t),

many of the computations of this paper will become unnecessary and the method itself will take a much
simpler form.)

Notations. In addition to the notation =D used above for the equality of the finite dimensional
distributions of two random processes,

fdd
=⇒ stands for the convergence in distribution of all finite dimen-

sional distributions of a sequence of random processes.
Et will stand for the conditional expectation given the σ-field σ (Z(s); s ≤ t).
Throughout below we let

Λ(s1,s2](t) =
∫ s2

s1

(t− u)H−1/α
Z(du), 0 ≤ s1 < s2 ≤ t,

and more generally, for −∞ < s1 < s2 ≤ t,

Λ(s1,s2](t) =
∫ s1∨0

s1

{
(t− u)H−1/α − (−u)H−1/α

}
Z(du) +

∫ s2

s1∨0

(t− u)H−1/α
Z(du).

Note that

Λ(s1,s2](t) and Λ(t1,t2](t) are independent if (s1, s2] and (t1, t2] are disjoint.

We also have the self-similarity property (already used in some form)

Λ(s1,s2](t) =D a−HΛ(as1,as2](at) for any constant a > 0.

In particular ∣∣∣E [eiµΛ(t)
]∣∣∣ ≤ E

[
eiµΛ(0,t](t)

]
= E

[
eiµtHΛ(0,1](1)

]
≤ e

−|µtH |α ∫ 1
0

∣∣∣uH− 1
α

∣∣∣α
du,

7



where in obtaining the last inequality, we have used the fact that Λ(0,1](1) has the stable distribution with

scale parameter σ such that σα =
∫ 1

0

∣∣∣uH− 1
α

∣∣∣α du, see (1). The preceding inequality and its analogues
will be used extensively below.

2 Convergence of finite dimensional distributions
It follows from the discussions of Section 1, and as will be indicated at the end of this section, that

the convergence of finite dimensional distributions in both the theorems 1 and 2 will follows from the
following result.

Proposition 6. Assume that 1/3 < H < 1, and let F (µ) be such that

|F (µ)| ≤ C min (|µ| , 1) . (13)

Then, for any distinct reals u1, ..., uq,

t 7−→
(

κ−
1−H

2

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHui)F (µ) dµds, i = 1, ..., q

)
fdd
=⇒

(√
b∗W (ui) (Lui

t ) , i = 1, ..., q
)

where W (ui) (t) , i = 1, ..., q, are independent standard Brownian motions, independent of the process
Λ(t), and

b∗ = 2
∫ ∞

0

∫ ∞

−∞
|F (µ)|2 E

[
e−iµΛ(t)

]
dµdt.

The proof of this result given below is directly based on Jeganathan (2006), see Proposition 7
below, and therefore, one actually has the following more general statement, where F1 (µ) is such that
|F1 (µ)| ≤ C. (

κ−HΛ(κHt), κ−(1−H)

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHui)F1 (µ) dµds,

κ−
1−H

2

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHui)F (µ) dµds, i = 1, ..., q

)
fdd
=⇒

(
Λ(t), F1 (0)Lui

t ,
√

b∗W (ui) (Lui
t ) , i = 1, ..., q

)
. (14)

This will give the generalizations (5) and (6) of Theorems 1 and 2 stated earlier.
It is convenient to present the detailed proof for the case ui = 0, i = 1, ..., q, and then indicate the

required modifications for the general case. For this particular case we need to show that

t 7−→ κ−
1−H

2

∫ κt

0

∫ ∞

−∞
e−iµΛ(s)F (µ) dµds

fdd
=⇒

√
bW

(
L0

t

)
where W (t) is a standard Brownian motion independent of the process Λ(t). More specifically, for each
finite 0 < t1 < ... < tr < ∞ and for each reals v1, ..., vr, we first show that

κ−
1−H

2

r∑
i=0

vi

∫ κti

κti−1

∫ ∞

−∞
e−iµΛ(s)F (µ) dµds =⇒

√
b∗

r∑
i=0

vi

(
W
(
L0

ti

)
−W

(
L0

ti−1

))
. (15)

As in Jeganathan (2006), we shall reduce this problem to the application of a martingale CLT. For this
purpose, let, for integer m > 1,

ζκml = κ−
1−H

2

∫ κ l
m

κ l−1
m

∫ ∞

−∞
e−iµΛ(s)F (µ) dµds, l = 1, 2, ....

8



Let `1m, ..., `rm be integers such that such that

`im

m
≤ ti <

`im + 1
m

. (16)

Then it is clear from Proposition 5 of Section 1 above that, in order to obtain (15), we need to show
that

r∑
i=0

vi

`i,m∑
l=`i−1,m+1

ζκml =⇒
√

b∗
r∑

i=0

vi

(
W
(
L0

ti

)
−W

(
L0

ti−1

))
(17)

as κ →∞ first and then m →∞.
For this purpose we shall show that the following requirements hold (recall that Et stands for the

conditional expectation given σ (Z(s); s ≤ t) ).

(R1) There is a nonrandom ∆ (κ, m,L) such that, for each m and L > 0,

[mL]∑
l=1

∣∣∣Eκ l−1
m

[ζκml]
∣∣∣ ≤ ∆ (κ, m,L) → 0 as κ →∞.

(R2) For the integers `im as in (16),

r∑
i=0

v2
i

`i,m∑
l=`i−1,m+1

Eκ l−1
m

[
ζ2
κml

]
=⇒ b∗

r∑
i=0

v2
i

(
L0

ti
− L0

ti−1

)
as κ →∞ first and then m →∞, where the constant b∗ is as specified above in Proposition 6.

Here recall that the convergence in distribution of a sequence of distribution functions is metrizable,
for example by the Lévy distance (see Loève (1963, page 215)). Then the preceding convergence means
that the distribution of the left hand side converges in such a metric to that of the right hand side as
κ →∞ first and then m →∞.

(R3) For every L > 0,

lim
m→∞

lim sup
κ→∞

[mL]∑
l=1

E
[
ζ4
κml

]
= 0.

The next condition (R4) pertains only to the case α = 2, in which case Z (t) reduces to a Brownian
motion. To state it define

χκml =
1√
κ

(
Z

(
κ

l

m

)
− Z

(
κ

l − 1
m

))
. (18)

(R4) When α = 2

lim sup
κ→∞

P

[mL]∑
l=1

∣∣∣Eκ l−1
m

[ζκmlχκml]
∣∣∣ > ε

 = 0 for each m, L > 0 and ε > 0.

Proposition 7. Suppose that (R1) - (R4) above are satisfied. Then the convergence (17), and hence
that in (15) holds. (Actually the more general convergence (14) holds for ui = 0, i = 1, ..., q.)

Proof. This statement (including the generalization (14)), as well as its detailed proof, is essentially
contained in Jeganathan (2006, Section 2) because the above requirements (R1) - (R4) are the same as
the (R1) - (R4) stated there. �

9



We next consider the verification of (R1) - (R4). In the rest of the paper,

we shall assume without further mentioning that (13) holds.

Verification of (R3). (R3) follows from Proposition 5, by choosing the integer l such that 2l > 4
and l (1−H) > 1 and taking s = κ l−1

m , t = κ l
m . However, this will require the computation of the

moments of order greater than 4. We shall indicate later (see the Remark at the end of Section 3) that
the computation of the fourth moment is sufficient. �

The next lemma verifies (R1).
Lemma 8. One has ∣∣∣Eκ l−1

m
[ζκml]

∣∣∣ ≤ Cκ−
1−H

2 + Cm2H−1κ
1−3H

2 ,

and hence, because 1
3 < H < 1, (R1) holds.

Proof. We have

Eκ l−1
m

[ζκml] = κ−
1−H

2

∫ κ l
m

κ l−1
m

∫ ∞

−∞
Eκ l−1

m

[
e−iµΛ(t)

]
F (µ) dµdt.

Recall that Λ(t) = Λ(−∞,κ l−1
m ](t) + Λ(κ l−1

m ,t](t) where Λ(−∞,κ l−1
m ](t) and Λ(κ l−1

m ,t](t) are independent.
Hence ∫ ∞

−∞

∣∣∣Eκ l−1
m

[
e−iµΛ(t)

]∣∣∣ |F (µ)| dµ

≤
∫ ∞

−∞

∣∣∣∣E [e−iµΛ[κ l−1
m

,t](t)
]∣∣∣∣ |F (µ)| dµ =

∫ ∞

−∞

∣∣∣E [e−iµ(t−κ l−1
m )H

Λ(0,1](1)
]∣∣∣ |F (µ)| dµ

=
(

t− κ
l − 1
m

)−H ∫ ∞

−∞

∣∣∣E [e−iµΛ(0,1](1)
]∣∣∣ ∣∣∣∣∣F

((
t− κ

l − 1
m

)−H

µ

)∣∣∣∣∣ dµ

≤
(

t− κ
l − 1
m

)−H ∫ ∞

−∞
e−c|µ|α

∣∣∣∣∣F
((

t− κ
l − 1
m

)−H

µ

)∣∣∣∣∣ dµ. (19)

Suppose that κ l
m − κ l−1

m = κ
m ≤ 1. Then, using |F (µ)| ≤ C, the preceding bound is bounded by

C
(
t− κ l−1

m

)−H
, and hence∣∣∣Eκ l−1

m
[ζκml]

∣∣∣ ≤ Cκ−
1−H

2

∫ κ l
m

κ l−1
m

(
t− κ

l − 1
m

)−H

dt

≤ Cκ−
1−H

2

∫ κ l−1
m +1

κ l−1
m

(
t− κ

l − 1
m

)−H

dt ≤ Cκ−
1−H

2 .

If κ l
m − κ l−1

m = κ
m > 1, then∣∣∣Eκ l−1

m
[ζκml]

∣∣∣ ≤ Cκ−
1−H

2

∫ κ l−1
m +1

κ l−1
m

(
t− κ

l − 1
m

)−H

dt

+Cκ−
1−H

2

(∫ ∞

−∞
|µ| e−c|µ|αdµ

)∫ κ l
m

κ l−1
m +1

(
t− κ

l − 1
m

)−2H

dt,

where the first factor of the sum on the right hand side is obtained from (19) using |F (µ)| ≤ C as in
previous inequality, and the second factor is obtained from (19) using |F (µ)| ≤ C |µ|. Now

κ−
1−H

2

∫ κ l
m

κ l−1
m +1

(
t− κ

l − 1
m

)−2H

dt ≤ Cκ−
1−H

2
(
1 + m2H−1κ1−2H

)
= Cκ−

1−H
2 + Cm2H−1κ

1−3H
2 .

10



This completes the proof of the lemma. �

The next lemma verifies (R4), where recall that (R4) pertains only to the case α = 2.
Lemma 9. Assume α = 2 and let χκml be as in (18). Then∣∣∣Eκ l−1

m
[ζκmlχκml]

∣∣∣ ≤ Cκ−
1−H

2 − 1
2 + Cm2H− 3

2 κ
1−3H

2 ,

from which (R4) follows, because 1
3 < H < 1.

Proof. First note that because α = 2, Z (t) is a Brownian motion, and also recall that Λ(t) is an
integral with respect to Z (t). We have

κ
1−H

2 + 1
2 Eκ l−1

m
[ζκmlχκml]

=
∫ κ l

m

κ l−1
m

∫ ∞

−∞
Eκ l−1

m

[(
Z

(
κ

l

m

)
− Z

(
κ

l − 1
m

))
e−iµΛ(s)

]
F (µ) dµds.

Here

Eκ l−1
m

[(
Z

(
κ

l

m

)
− Z

(
κ

l − 1
m

))
e−iµΛ(s)

]
= e

−iµΛ(−∞,κ l−1
m ](s)E

[(
Z (s)− Z

(
κ

l − 1
m

))
e
−iµΛ(κ l−1

m
,s](s)

]
= e

−iµΛ(−∞,κ l−1
m ](s)

(
s− κ

l − 1
m

) 1
2

E
[
Z (1) e−iµ(s−κ l−1

m )H
Λ(0,1](1)

]
where in obtaining the first equality we use Eκ l−1

m

[(
Z
(
κ l

m

)
− Z (s)

)
e−iµΛ(s)

]
= 0, which is a conse-

quence of E
[
Z
(
κ l

m

)
− Z (s)

]
= 0 and the independence of Z

(
κ l

m

)
−Z (s) with respect to σ (Z (t) ; t ≤ s).

Therefore

κ
1−H

2 + 1
2

∣∣∣Eκ l−1
m

[ζκmlχκml]
∣∣∣

≤
∫ κ l

m

κ l−1
m

∫ ∞

−∞

(
s− κ

l − 1
m

) 1
2−H ∣∣∣E [Z2 (1) e−iµΛ(0,1](1)

]∣∣∣
×

∣∣∣∣∣F
((

s− κ
l − 1
m

)−H

µ

)∣∣∣∣∣ dµds.

Suppose that κ l
m − κ l−1

m = κ
m ≤ 1. Then, using |F (µ)| ≤ C, the preceding bound is bounded by

∫ κ l−1
m +1

κ l−1
m

(
s− κ

l − 1
m

) 1
2−H

ds ≤ C.

Here we have used the fact that
∫∞
−∞

∣∣E [Z (1) e−iµΛ(0,1](1)
]∣∣ dµ < ∞, which is a consequence of the fact

that
(
Z (1) ,Λ(0,1](1)

)
has a non-degenerate bivariate normal distribution. In the case κ l

m − κ l−1
m =

κ
m > 1, using in addition |F (µ)| ≤ C |µ| and the fact

∫∞
−∞ |µ|

∣∣E [Z (1) e−iµΛ(0,1](1)
]∣∣ dµ < ∞, we have

the bound∫ κ l−1
m +1

κ l−1
m

(
s− κ

l − 1
m

) 1
2−H

ds +
∫ κ l

m

κ l−1
m +1

(
s− κ

l − 1
m

) 1
2−2H

ds ≤ C + C
( κ

m

) 3
2−2H

.

Thus ∣∣∣Eκ l−1
m

[ζκmlχκml]
∣∣∣ ≤ Cκ−

1−H
2 − 1

2

(
1 +

( κ

m

) 3
2−2H

)
,

11



which is the same as the inequality in the statement of the lemma. �

We next verify (R2). We begin with some preliminaries. We have

κ1−HEκ l−1
m

[
ζ2
κml

]
= Eκ l−1

m

(∫ κ l
m

κ l−1
m

∫ ∞

−∞
e−iµΛ(s)F (µ) dµds

)2


= 2
∫ κ l

m

κ l−1
m

∫ κ l
m

s1

{∫ ∞

−∞

∫ ∞

−∞
Eκ l−1

m

[
e−iµ1Λ(s1)−iµ2Λ(s2)

]
F (µ1) F (µ2) dµ1dµ2

}
ds2ds1.

We write (Λ(s1),Λ(s2)), κ l−1
m < s1 < s2 < κ l

m , in the form(
Λ
(

κ
l − 1
m

+ t1

)
,Λ
(

κ
l − 1
m

+ t1 + t2

))
, 0 < t1 <

κ

m
, 0 < t2 <

κ

m
− t1.

Here recall that Λ
(
κ l−1

m + t1
)

= Λ(−∞,κ l−1
m ]
(
κ l−1

m + t1
)
+ Λ(κ l−1

m ,κ l−1
m +t1]

(
κ l−1

m + t1
)

and similarly for

Λ
(
κ l−1

m + t1 + t2
)
. We observe that(

Λ(κ l−1
m ,κ l−1

m +t1]
(
κ l−1

m + t1
)
,Λ(κ l−1

m ,κ l−1
m +t1+t2]

(
κ l−1

m + t1 + t2
))

is independent of σ
(
Z(t); t ≤ κ l−1

m

)
,

and in addition has the same distribution as that of(
Λ(0,t1](t1),Λ(0,t1+t2](t1 + t2)

)
=D

(∫ t1

0

uH−1/αZ(du),
∫ t1

0

(u + t2)
H− 1

α Z(du) +
∫ t2

0

uH− 1
α Z∗(du)

)
,

(20)

where Z∗(du) is an independent copy of Z.
Hence one can write

Eκ l−1
m

[
e−iµ1Λ(κ l−1

m +t1)−µ2Λ(κ l−1
m +t1+t2)

]
= E

[
e−iµ1(y1+Λ(0,t1](t1))−µ2(y2+Λ(0,t1+t2](t1+t2))

]
with

(y1, y2) =
(

Λ(−∞,κ l−1
m ]

(
κ

l − 1
m

+ t1

)
,Λ(−∞,κ l−1

m ]

(
κ

l − 1
m

+ t1 + t2

))
. (21)

Thus

Eκ l−1
m

[
ζ2
κml

]
= 2κ−(1−H)

∫ κ
m

0

∫ κ
m−t1

0

I (y1, y2; t1, t2) dt2dt1, (22)

where we set

I (y1, y2; t1, t2)

=
∫ ∞

−∞

∫ ∞

−∞
e−iµ1y1−µ2y2E

[
e−iµ1Λ(0,t1](t1)−µ2Λ(0,t1+t2](t1+t2)

]
F (µ1) F (µ2) dµ1dµ2

=
∫ ∞

−∞

∫ ∞

−∞
e−iµ1y1−µ2(y2−y1)

×E
[
e−iµ1Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))

]
F (µ1 − µ2) F (µ2) dµ1dµ2. (23)

Note that

|I (y1, y2; t1, t2)|

≤
∫ ∞

−∞

∫ ∞

−∞

∣∣∣E [e−iµ1Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]∣∣∣ |F (µ1 − µ2)F (µ2)| dµ1dµ2

= I∗ (t1, t2) , say. (24)
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The requirement (R2) is then a consequence of the following four statements, stated in the form of
Lemmas 10 - 13.

Lemma 10. For each m, with I∗ (t1, t2) as in (24) above,

lim
q→∞

lim sup
κ→∞

κ−(1−H)

∫ κ
m

0

∫ κ
m

q

I∗ (t1, t2) dt2dt1 = 0.

Lemma 11.
lim

q→∞

∫ ∞

q

∫ ∞

−∞

∣∣∣E [e−iµΛ(t)
]∣∣∣ |F (µ)|2 dµdt = 0.

Lemma 12. For each m and q > 0, the difference between

κ−(1−H)

∫ κ
m

0

∫ q

0

I (y1, y2; t1, t2) dt2dt1, with (y1, y2) as in (21),

and

1
m1−H

∫ 1

0

∫ ∞

−∞
e
−iµ1mHκ−HΛ(−∞,κ l−1

m ](κ l−1
m +κ

t1
m )

E
[
e−iµ1Λ(0,t1](t1)

]
dµ1dt1

×
(∫ q

0

∫ ∞

−∞
E
[
e−iµ2Λ(t2)

]
|F (µ2)|2 dµ2dt2

)
(25)

converges to 0 in probability.

In the preceding lemma 12, note that

κ−HΛ(−∞,κ l−1
m ]

(
κ

l − 1
m

+ κ
t1
m

)
=D Λ(−∞, l−1

m ]

(
l − 1
m

+
t1
m

)
.

Lemma 13. With the integers `i,m as in (16),

r∑
i=0

v2
i

1
m1−H

`i,m∑
l=`i−1,m+1

∫ 1

0

[
1
2π

∫ ∞

−∞
e
−iµmHΛ(−∞, l−1

m ](
l−1
m + t

m )
E
[
e−iµΛ(0,t](t)

]
dµ

]
dt

=⇒
r∑

i=0

v2
i

(
L0

ti
− L0

ti−1

)
as m →∞.

Proof of Lemma 13. Taking (16) into account, lemma 13 is essentially the Lemma 18 in Jeganathan
(2006), and therefore we shall not give the details of its proof. �

Proof of Lemma 11. Recall that
∣∣E [e−iµΛ(t)

]∣∣ ≤ ∣∣E [e−iµ(0,t]Λ(t)
]∣∣ =

∣∣∣E [e−iµtHΛ(0,1](1)
]∣∣∣ ≤

e−c|µtH |α , so that, using |F (µ)| ≤ C |µ| and making the transformation µtH 7−→ µ,∫ ∞

q

∫ ∞

−∞
|F (µ)|2

∣∣∣E [e−iµΛ(t)
]∣∣∣ dµdt ≤

∫ ∞

q

1
t3H

∫ ∞

−∞
|µ|2

∣∣∣∣∣∣E [e−iµΛ(0,1](1)
]∣∣∣∣∣∣ dµdt

≤ C

∫ ∞

q

1
t3H

dt → 0,

as q →∞ because 3H > 1. �

The proof of Lemma 10 will be given in the next Section 3 because the ideas involved are similar to
the verification of (R3) or the proof of Proposition 5. We next concentrate on the proof of Lemma 12.

Note that, using |F (µ)| ≤ C, for I∗ (t1, t2) as defined in (24),

I∗ (t1, t2) ≤ C

∫ ∞

−∞

∫ ∞

−∞

∣∣∣E [e−iµ1Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]∣∣∣ dµ1dµ2

= I∗∗ (t1, t2) , say.
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We next show that
I∗∗ (t1, t2) ≤ C

1
tH1 tH2

. (26)

Using (20), one has ∣∣∣E [e−iµ1Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]∣∣∣

≤ e
−

∫ t1
0

∣∣∣µ1uH− 1
α +µ2

(
(u+t2)

H− 1
α−uH− 1

α

)∣∣∣α
du−

∫ t2
0

∣∣∣µ2uH− 1
α

∣∣∣α
du. (27)

Hence, making the transformations µ1 7−→ µ1
tH
1

, µ2 7−→ µ2
tH
2

,

I∗∗ (t1, t2)

≤ C

tH1 tH2

∫ ∫
e
−

∫ t1
0

∣∣∣∣ µ1
tH
1

uH− 1
α +

µ2
tH
2

(
(u+t2)

H− 1
α−uH− 1

α

)∣∣∣∣α

du−
∫ t2
0

∣∣∣∣ µ2
tH
2

uH− 1
α

∣∣∣∣α

du
dµ1dµ2.

We have ∫ t2

0

∣∣∣∣µ2

tH2
uH− 1

α

∣∣∣∣α du =
∫ 1

0

∣∣∣µ2u
H− 1

α

∣∣∣α du

≥
∫ 1

1
2

∣∣∣µ2u
H− 1

α

∣∣∣α du =
1
2

∣∣∣µ2u
H− 1

α
2

∣∣∣α ,

for 1
2 ≤ u2 ≤ 1, where we have used the mean value theorem for integrals. Similarly∫ t1

0

∣∣∣∣µ1

tH1
uH− 1

α +
µ2

tH2

(
(u + t2)

H− 1
α − uH− 1

α

)∣∣∣∣α du

=
∫ t1

0

∣∣∣∣∣ µ1

t
H− 1

α
1

uH− 1
α + tH1

µ2

tH2

1

t
H− 1

α
1

(
(u + t2)

H− 1
α − uH− 1

α

)∣∣∣∣∣
α

1
t1

du

=
∫ 1

0

∣∣∣∣∣µ1u
H− 1

α + tH1
µ2

tH2

((
u +

t2
t1

)H− 1
α

− uH− 1
α

)∣∣∣∣∣
α

du

≥ 1
2

∣∣∣∣∣µ1u
H− 1

α
1 + tH1

µ2

tH2

((
u1 +

t2
t1

)H− 1
α

− u
H− 1

α
1

)∣∣∣∣∣
α

for 1
2 ≤ u1 ≤ 1. Thus

tH1 tH2 I∗∗ (t1, t2)

≤ C

∫ ∫
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1 +tH

1
µ2
tH
2

((
u1+

t2
t1

)H− 1
α−u

H− 1
α

1

)∣∣∣∣α

− 1
2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

dµ1dµ2. (28)

Here we have ∫ ∞

−∞
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1 +tH

1
µ2
tH
2

((
u1+

t2
t1

)H− 1
α−u

H− 1
α

1

)∣∣∣∣α

dµ1

=
∫ ∞

−∞
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1

∣∣∣∣α

dµ1 = Cu
−(H− 1

α )
1 ≤ C (29)

where we have used the fact that 1
2 ≤ u1 ≤ 1. Thus

I∗∗ (t1, t2) ≤ C
1

tH1 tH2

∫
e
− 1

2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

dµ2 ≤ C
1

tH1 tH2
,
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obtaining (26).
The following consequence is immediate.
Lemma 14

sup
y1,y2

κ−(1−H)

∫ κδ

0

∫ q

0

|I (y1, y2; t1, t2)| dt2dt1 ≤ Cq1−Hδ1−H .

Proof. Follows from |I (y1, y2; t1, t2)| ≤ I∗∗ (t1, t2) and (26). �

The next step consists of finding a suitable approximation to

κ−(1−H)

∫ κ

κδ

∫ q

0

I (y1, y2; t1, t2) dt2dt1

for each q > 0 and δ > 0, that will lead to the proof of Lemma 12. For this purpose note that, making
the transformations µ1 7−→ µ1

tH
1

, µ2 7−→ µ2 in (23), we have

I (y1, y2; t1, t2)

=
1
tH1

∫ ∞

−∞

∫ ∞

−∞
e
−i

µ1
tH
1

y1−µ2(y2−y1)

×E

[
e
−i

µ1
tH
1

Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]

F

(
µ1

tH1
− µ2

)
F (µ2) dµ1dµ2.

Define

Ia (y1, y2; t1, t2)

=
1
tH1

∫ ∫
{|µ1|≤a,|µ2|≤a}

e
−i

µ1
tH
1

y1−µ2(y2−y1)

×E

[
e
−i

µ1
tH
1

Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]

F

(
µ1

tH1
− µ2

)
F (µ2) dµ1dµ2.

(30)

Let us first obtain
Lemma 15.

sup
y1,y2

κ−(1−H)

∫ κ

κδ

∫ q

0

|I (y1, y2; t1, t2)− Ia (y1, y2; t1, t2)| dt2dt1 → 0

as κ →∞ first and then a →∞.
Proof. Similar to (28), we have

|I (y1, y2; t1, t2)− Ia (y1, y2; t1, t2)|

≤ C

∫ ∫
{|µ1|≤a,|µ2|≤atH

2 }c

1
tH1 tH2

×e
− 1

2

∣∣∣∣µ1u
H− 1

α
1 +tH

1
µ2
tH
2

((
u1+

t2
t1

)H− 1
α−u

H− 1
α

1

)∣∣∣∣α

− 1
2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

dµ1dµ2

≤
∫ ∫

{|µ1|<∞,|µ2|>atH
2 }

+
∫ ∫

{|µ1|>a,|µ2|≤atH
2 }

= J (1)
a (y1, y2; t1, t2) + J (2)

a (y1, y2; t1, t2) , say.

(In the first inequality above Ac stands for the complement of of the set A.) Using (29), we then see
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that

κ−(1−H)

∫ κ

κδ

∫ q

0

J (1)
a (y1, y2; t1, t2) dt2dt1

≤ C

(
κ−(1−H)

∫ κ

κδ

1
tH1

dt1

)∫ q

0

1
tH2

{∫
{|µ2|>atH

2 }
e
− 1

2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

dµ2

}
dt2

≤ C

∫ η

0

1
tH2

dt2 +
∫ q

η

1
tH2

{∫
{|µ2|>atH

2 }
e
− 1

2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

dµ2

}
dt2 → 0,

as a →∞ first and then η → 0.
Next note that when |µ2| ≤ atH2 ,

tH1
µ2

tH2

∣∣∣∣∣
(

u1 +
t2
t1

)H− 1
α

− u
H− 1

α
1

∣∣∣∣∣
≤ at

1/α
1

∣∣∣(t1u1 + t2)
H− 1

α − (t1u1)
H− 1

α

∣∣∣
≤ Cat

1
α +H− 1

α−1
1 = CatH−1

1 ≤ Ca (κδ)H−1 → 0, when κδ ≤ t1 ≤ κ.

Therefore, noting 1
2 ≤ u1 ≤ 1, when |µ2| ≤ atH2 ,∫

{|µ1|>a}
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1 +tH

1
µ2
tH
2

((
u1+

t2
t1

)H− 1
α−u

H− 1
α

1

)∣∣∣∣α

dµ1

≤
∫
{|µ1|> a

2}
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1

∣∣∣∣α

dµ1.

Hence

κ−(1−H)

∫ κ

κδ

∫ q

0

J (2)
a (y1, y2; t1, t2) dt2dt1

≤ C

(
κ−(1−H)

∫ κ

κδ

∫ q

0

1
tH1 tH2

dt2dt1

)∫
{|µ1|> a

2}
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1

∣∣∣∣α

dµ1

≤ C

∫
{|µ1|> a

2}
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1

∣∣∣∣α

dµ1 → 0,

as a →∞. This proves the lemma. �

In view of Lemma 15, we next consider the approximation to

κ−(1−H)

∫ κ

κδ

∫ q

0

Ia (y1, y2; t1, t2) dt2dt1, (31)

which will lead to the Lemma 16 below. For this purpose let νκ be such that

2νκ < κδ, νκ →∞ and
νκ

κ
→ 0 as κ →∞.

We have

E

[
e
−i

µ1
tH
1

Λ(0,t1](t1)−µ2(Λ(0,t1+t2](t1+t2)−Λ(0,t1](t1))
]

= E

[
e
−i

µ1
tH
1

Λ(0,t1−νκ](t1)−iµ2(Λ(0,t1−νκ](t1+t2)−Λ(0,t1−νκ](t1))
]

×E

[
e
−i

µ1
tH
1

Λ(t1−νκ,t1](t1)−iµ2(Λ(t1−νκ,t1+t2](t1+t2)−Λ(t1−νκ,t1](t1))
]

. (32)
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Here

Λ(0,t1−νκ](t1 + t2)− Λ(0,t1−νκ](t1)

=
∫ t1−νκ

0

{
(t1 + t2 − u)H− 1

α − (t1 − u)H− 1
α

}
Z(du)

=D

∫ −νκ

−t1

{
(t2 − u)H− 1

α − (−u)H− 1
α

}
Z(du)

= Λ(−t1,−νκ](t2),

where
sup

κδ≤t1≤κ,0<t2≤q
P
[∣∣Λ(−t1,−νκ](t2)

∣∣ > η
]
→ 0 for all η > 0.

Further

1
tH1

Λ(t1−νκ,t1](t1) =
1
tH1

∫ t1

t1−νκ

(t1 − u)H− 1
α Z(du)

=D 1
tH1

∫ νκ

0

uH− 1
α Z(du) =D νH

κ

tH1

∫ 1

0

uH− 1
α Z(du),

where
sup

κδ≤t1≤κ

νκ

t1
=

νκ

κδ
→ 0,

so that

sup
κδ≤t1≤κ

P

[∣∣∣∣ 1
tH1

Λ(t1−νκ,t1](t1)
∣∣∣∣ > η

]
→ 0 for all η > 0.

Moreover

Λ(t1−νκ,t1+t2](t1 + t2)− Λ(t1−νκ,t1](t1)

=
∫ t1+t2

t1−νκ

(t1 + t2 − u)H− 1
α Z(du)−

∫ t1

t1−νκ

(t1 − u)H− 1
α Z(du) because t1 − νκ > 0,

=D

∫ t2

−νκ

(t2 − u)H− 1
α Z(du)−

∫ 0

−νκ

(−u)H− 1
α Z(du)

=D

∫ 0

−νκ

{
(t2 − u)H− 1

α − (−u)H− 1
α

}
Z(du) +

∫ t2

0

(t2 − u)H− 1
α Z(du)

= Λ(−νκ,t2](t2),

where
sup

κδ≤t1≤κ,0<t2≤q
P
[∣∣Λ(−νκ,t2](t2)− Λ(t2)

∣∣ > η
]
→ 0 for all η > 0.

In addition, because supκδ≤t1≤κ
νκ

t1
= νκ

κδ → 0,

sup
κδ≤t1≤κ

P

[∣∣∣∣ 1
tH1

Λ(0,t1−νκ](t1)−
1
tH1

Λ(0,t1](t1)
∣∣∣∣ > η

]
→ 0 for all η > 0.

Thus from the preceding four approximations it follows that (32) is approximated, uniformly over
κδ ≤ t1 ≤ κ, 0 < t2 ≤ q, |µ1| ≤ a, |µ2| ≤ a, by

E

[
e
−i

µ1
tH
1

Λ(0,t1](t1)
]

E
[
e−iµ2Λ(s2)

]
In addition, we have supκδ≤t1≤κ,|µ1|≤a

∣∣∣F ( µ1
tH
1
− µ2

)
− F (−µ2)

∣∣∣→ 0.
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Thus, taking in addition Lemmas 14 and 15 into account, and using the preceding approximations
in (30), we have obtained the following lemma.

Lemma 16. Let Rκ (y1, y2, a, δ) to be the difference between

κ−(1−H)

∫ κ
m

0

∫ q

0

I (y1, y2; t1, t2) dt2dt1

and

1
κ1−H

∫ κ
m

κ
m δ

1
tH1

∫ q

0

{∫ ∫
{|µ1|≤a,|µ2|≤a}

e
−i

µ1
tH
1

y1−iµ2(y2−y1)

×E

[
e
−i

µ1
tH
1

Λ(0,t1](t1)
]

E
[
e−iµ2Λ(t2)

]
|F (µ2)|2 dµ1dµ2

}
dt2dt1. (33)

Then,

lim
δ→0

lim
a→∞

lim sup
κ→∞

(
sup
y1,y2

|Rκ (y1, y2, a)|
)

= 0.

We can now complete the proof of Lemma 12.
Proof of Lemma 12. The approximation in the preceding lemma 16 is uniform in y1 and y2, and

hence it holds also when (y1, y2) is as in (21). Note that

y2 − y1 = Λ(−∞,κ l−1
m ]

(
κ

l − 1
m

+ t1 + t2

)
− Λ(−∞,κ l−1

m ]

(
κ

l − 1
m

+ t1

)
=

∫ κ l−1
m

−∞

{(
κ

l − 1
m

+ t1 + t2 − u

)H−1/α

−
(

κ
l − 1
m

+ t1 − u

)H−1/α
}

Z(du)

=D

∫ 0

−∞

{
(t1 + t2 − u)H−1/α − (t1 − u)H−1/α

}
Z(du)

=D

∫ −t1

−∞

{
(t2 − u)H−1/α − (−u)H−1/α

}
Z(du)

= Λ(−∞,−t1] (t2) ,

where
sup

κ
m δ≤t1≤κ,0≤t2≤q

P
[∣∣Λ(−∞,−t1] (t2)

∣∣ > η
]
→ 0 for all η > 0.

Thus the factor µ1
tH
1

y1 + µ2 (y2 − y1) in (33), with (y1, y2) as in (21), can be replaced by

µ1

tH1
y1 =

µ1

tH1
Λ(−∞,κ l−1

m ]

(
κ

l − 1
m

+ t1

)
.

Taking this into account and by making the transformation 1
tH
1

(
κ
m

)H
µ1 7−→ µ1, the approximation (33)

takes the form

mH

κ

∫ κ
m

κ
m δ

∫ q

0


∫ ∫{

|µ1|≤ 1
tH
1

( κ
m )H

a,|µ2|≤a

} e
−iµ1( κ

m )−H
Λ(−∞,κ l−1

m ](κ l−1
m +t1)

×E
[
e−iµ1( κ

m )−H
Λ(0,t1](t1)

]
E
[
e−iµ2Λ(t2)

]
|F (µ2)|2 dµ1dµ2

}
dt2dt1.

Here note that E
[
e−iµ1( κ

m )−H
Λ(0,t1](t1)

]
= E

[
e−iµ1( κ

m )−H
tH
1 Λ(0,1](1)

]
. Hence making the further trans-

formation t1
(

κ
m

)−1 7−→ t1, and noting that E
[
e−iµ1tH

1 Λ(0,1](1)
]

= E
[
e−iµ1Λ(0,t1](t1)

]
, the preceding

18



approximation takes the form

1
m1−H

∫ 1

δ

∫ q

0


∫ ∫{

|µ1|≤ a

tH
1

,|µ2|≤a

} J (m,µ1, µ2, t2, t1) dµ1dµ2

 dt2dt1 (34)

where

J (m,µ1, µ2, t2, t1)

= e
−iµ1mHκ−HΛ(−∞,κ l−1

m ](κ l−1
m +κ

t1
m )

E
[
e−iµ1Λ(0,t1](t1)

]
E
[
e−iµ2Λ(t2)

]
|F (µ2)|2 .

Note that
1

m1−H

∫ 1

0

∫ q

0

{∫ ∞

−∞

∫ ∞

−∞
J (m,µ1, µ2, t2, t1) dµ1dµ2

}
dt2dt1

is the same as (25) of Lemma 12.
Now let K (a) be the difference between (34) and

1
m1−H

∫ 1

δ

∫ q

0

{∫ ∞

−∞

∫ ∞

−∞
J (m,µ1, µ2, t2, t1) dµ1dµ2

}
dt2dt1.

(Here m, q and δ are fixed.) Then noting that
∣∣e−iλ

∣∣ ≤ 1 and |F (µ2)| ≤ C, we have

m1−HK (a)

≤
(∫ q

0

∫ ∞

−∞

∣∣∣E [e−iµ2Λ(t2)
]∣∣∣ dµ2dt2

)∫ 1

δ

∫
{|µ1|>aδ}

∣∣∣E [e−iµ1Λ(0,t1](t1)
]∣∣∣ dµ1dt1

+

(∫ q

0

∫
{|µ2|>a}

∣∣∣E [e−iµ2Λ(t2)
]∣∣∣ dµ2dt2

)∫ 1

δ

∫ ∞

−∞

∣∣∣E [e−iµ1Λ(0,t1](t1)
]∣∣∣ dµ1dt1

≤ 2R (a)R (0) , (assume q > 1 )

where

R (a) =
∫ q

0

∫
{|µ2|>aδ}

∣∣∣E [e−iµ2Λ(0,t2](t2)
]∣∣∣ dµ2dt2

≤ C

∫ q

0

1
tH2

∫
{|µ2|>aδtH

2 }
e−c|µ2|αdµ2dt2

≤ C

∫ η

0

1
tH2

dt2 + C

∫
{|µ2|>aδηH}

e−c|µ2|αdµ2,

where the right hand side converges to 0 as a →∞ first and then η → 0. Also R (0) < ∞. Hence

m1−HK (a) → 0 as a →∞.

Next note that ∫ δ

0

∫ ∞

−∞

∣∣∣E [e−iµ1Λ(0,t1](t1)
]∣∣∣ dµ1dt1

≤ C

(∫ δ

0

1
tH1

dt1

)(∫ ∞

−∞
e−c|µ1|αdµ1

)
≤ Cδ1−H

1−H
→ 0 as δ → 0.

This completes the proof of the lemma 12. �
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Completion of the proof of Proposition 6. We now indicate the modifications required in the
above proofs in order to obtain the general statement of the Proposition 6. First consider the process,
for u real,

t 7−→ κ−
1−H

2

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHu)F (µ) dµds. (35)

In this case we take

ζκml = κ−
1−H

2

∫ κ l
m

κ l−1
m

∫ ∞

−∞
e−iµ(Λ(s)−κHu)F (µ) dµds, l = 1, 2, ....

Then it is clear that only the verification of (R2) will require modification. It is easy to see that the
only change will be that the earlier (y1, y2) in (21) will now be replaced by

(
y1 − κHu, y2 − κHu

)
, that

is, the earlier factor e
−i

µ1
tH
1

y1−iµ2(y2−y1)
in the approximation (33) will now take the form

e
−i

µ1
tH
1

(y1−κHu)−iµ2(y2−y1)
.

As a result Λ(−∞,κ l−1
m ]
(
κ l−1

m + κ t1
m

)
in (25) will need to be replaced by

Λ(−∞,κ l−1
m ]

(
κ

l − 1
m

+ κ
t1
m

)
− κHu =D κH

(
Λ(−∞, l−1

m ]

(
l − 1
m

+
t1
m

)
− u

)
.

This means in Lemma 13, Λ(−∞, l−1
m ]
(

l−1
m + t1

m

)
will need to be replaced by Λ(−∞, l−1

m ]
(

l−1
m + t1

m

)
− u.

In this case the limit in Lemma 13 will be
∑r

i=0 v2
i

(
Lu

ti
− Lu

ti−1

)
. Thus

(35)
fdd
=⇒

√
bW (u) (Lu

t ) ,

where W (u) (t) is a standard Brownian motion independent of Λ(t).
To consider the general case of Proposition 6, for simplicity take q = 2. Then consider, for reals u1,

u2, a1 and a2, with u1, u2 distinct,

κ−
1−H

2

2∑
j=1

aj

∫ κt

0

∫ ∞

−∞
e−iµ(Λ(s)−κHuj)F (µ) dµds. (36)

Now take

ζκml = κ−
1−H

2

2∑
j=1

aj

∫ κ l
m

κ l−1
m

∫ ∞

−∞
e−iµ(Λ(s)−κHuj)F (µ) dµds, l = 1, 2, ....

Here also it is clear only the verification of (R2) will be different. The essential difference is that
Eκ l−1

m

[
ζ2
κml

]
will now involve a cross product term.

We now show that the contribution of this cross product term can be neglected asymptotically. First,
this term will be of the same form as that of (22) except that the earlier (y1, y2) in (21) will now be

replaced by
(
y1 − κHu1, y2 − κHu2

)
, that is, the earlier factor e

−i
µ1
tH
1

y1−iµ2(y2−y1)
in (33) will take the

form
e
−i

µ1
tH
1

(y1−κHu1)−iµ2(y2−y1)+iµ2κH(u1−u2)
,

where now u1−u2 6= 0. This means Λ(−∞,κ l−1
m ]
(
κ l−1

m + κ t1
m

)
in (25) will be replaced by Λ(−∞,κ l−1

m ]
(
κ l−1

m + κ t1
m

)
−

κHu1, and in addition the factor
∫ q

0

∫∞
−∞E

[
e−iµ2Λ(t2)

]
|F (µ2)|2 dµ2dt2 in (25) will be changed to∫ q

0

∫ ∞

−∞
eiµ2κH(u1−u2)E

[
e−iµ2Λ(t2)

]
|F (µ2)|2 dµ2dt2

=
∫ q

0

1
tH2

∫ ∞

−∞
e
i

µ2
tH
2

κH(u1−u2)
E
[
e−iµ2Λ(1)

] ∣∣∣∣F (µ2

tH2

)∣∣∣∣2 dµ2dt2, (37)
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where note that
∣∣∣F ( µ2

tH
2

)∣∣∣ ≤ C and
∫∞
−∞

∣∣E [e−iµ2Λ(1)
]∣∣ dµ2 ≤ C. In particular, each fixed η > 0,

∫ q

η

1
tH2

∫ ∞

−∞
e
i

µ2
tH
2

κH(u1−u2)
E
[
e−iµ2Λ(1)

] ∣∣∣∣F (µ2

tH2

)∣∣∣∣2 dµ2dt2 → 0

as κ → ∞, by the Riemann-Lebesgue Lemma. Further
∫ η

0
1

tH
2

dt2 → 0 as η → 0. Hence (37) converges
to 0.

Thus the cross product term indicated above can be neglected, so that the limit in Lemma 13 will
be
∑2

j=1 a2
j

∑r
i=0 v2

i

(
L

uj

ti
− L

uj

ti−1

)
. This means

(36)
fdd
=⇒

√
b

2∑
j=1

ajW
(uj)

(
L

uj

t

)
,

where W (uj) (t) , j = 1, 2, are independent standard Brownian motions, independent of the process Λ(t).
This completes the proof of Proposition 6 (except for the verification of (R3) and the proof of Lemma
10 ). �

Regarding the convergence of finite dimensional distributions in Theorem 1, it is a direct consequence
of Proposition 6, in view of the representation (8). The same is the case for Theorem 2, because for any
reals x1, ..., xk, c1, ..., ck the linear combination

∑k
j=1 cj

(
L

εxj+ui

t − Lyi

t

)
will have the representation in

Proposition 6 (see (10)), with

F (µ) =
k∑

j=1

cj

(
eiµxj − 1

)
.

It thus only remains to obtain the covariance structure of the limit in Theorem 2. It is enough to
obtain the limiting covariance for Lεx+ui

t − Lεy+ui

t for each t > 0. According to the representation (11)
and Proposition 6,

ε−
1−H
2H

(
Lεx+ui

t − Lεy+ui

t

)
=⇒

√
b∗ |x− y|

1−H
2H W (ui) (Lui

t ) ,

where note that the variance of
√

b∗ |x− y|
1−H
2H W (ui) (t) is the same as the variance of

√
b∗
(
B

(ui)
1
H−1

(t, x)−B
(ui)
1
H−1

(t, y)
)
.

This gives the required covariance structure.
Also, according to (12),

|F (µ)|2 =
∣∣eiµ − 1

∣∣2 = 4 sin2
(µ

2

)
.

3 The remaining proofs
Recall that to complete the proof of the convergence of finite dimensional distributions in Theorems 1

and 2, it remains to prove Lemma 10. This as well as the proof of Proposition 5 are given in this section.
As noted earlier (R3) is a consequence of Proposition 5, but we shall indicate that the computation of
the fourth moment is enough for the verification of (R3), see the Remark at the end of this section.

We shall need the following result (which is not required when H = 1
α ).

Lemma 17. Assume H 6= 1
α . Then

sup
t
2≤v≤t,s>0,r>0

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣ ≤ C.
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Proof. Noting H − 1− 1
α < 0, we have when t

2 ≤ v,∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣ ≤ C

∫ r

0

(v + s + x)H−1− 1
α dx

≤ C (min (t, s))H−1− 1
α

∫ r

0

dx

= C (min (t, s))H−1− 1
α r. (38)

Further, when H − 1
α < 0, we have, using t ≤ 2v,∣∣∣(v + s + r)H− 1

α − (v + s)H− 1
α

∣∣∣ ≤ (v + s)H− 1
α ≤ C (min (t, s))H− 1

α , (39)

and similarly when H − 1
α > 0, we have using v ≤ t,∣∣∣(v + s + r)H− 1

α − (v + s)H− 1
α

∣∣∣
≤ (v + s + r)H− 1

α ≤ CrH− 1
α if r > t ≥ s or r > s > t. (40)

We have using (38) and noting 1−H > 0,

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣ ≤ Ct
1
α r−HtH−1− 1

α r

=
(r

t

)1−H

≤ C, if r ≤ t.

In addition, using (39), we have

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣
≤ Ct

1
α r−HtH−

1
α = Cr−HtH ≤ C, if H − 1

α
< 0, r > t.

Further, using (40),

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣
≤ Ct

1
α r−HrH− 1

α = Cr−
1
α t

1
α ≤ C, , if H − 1

α
> 0, r > t > s.

From (38) we have,

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣ ≤ Ct
1
α r−HsH−1− 1

α r

= C
(r

s

)1−H
(

t

s

) 1
α

≤ C, if r ≤ s and t < s.

It remains to consider the case H − 1
α > 0, r > t, t < s, r > s. In this case we have from (40 ),

t1/α

rH

∣∣∣(v + s + r)H− 1
α − (v + s)H− 1

α

∣∣∣ ≤ Ct
1
α r−HrH− 1

α =
(

t

r

) 1
α

≤ C

because t < s < r. This completes the proof of the lemma. �

Next we present the proof of Lemma 10.
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Proof of Lemma 10. We have, similar to (28), with I∗ (t1, t2) as defined in (24),

I∗ (t1, t2) ≤ C
1

tH1 tH2

∫ ∫
e
− 1

2

∣∣∣∣µ1u
H− 1

α
1 +tH

1
µ2
tH
2

((
u1+

t2
t1

)H− 1
α−u

H− 1
α

1

)∣∣∣∣α

− 1
2

∣∣∣∣µ2u
H− 1

α
2

∣∣∣∣α

×
∣∣∣∣F (µ1

tH1
− µ2

tH2

)
F

(
µ2

tH2

)∣∣∣∣ dµ1dµ2. (41)

Here recall that 1
2 ≤ u1 ≤ 1 and 1

2 ≤ u2 ≤ 1. Let us write

µ1u
H− 1

α
1 + µ2

tH1
tH2

((
u1 +

t2
t1

)H− 1
α

− u
H− 1

α
1

)
= (µ1 + µ2h (t1, t2))u

H− 1
α

1 ,

with

h (t1, t2) = u
−H+ 1

α
1

tH1
tH2

((
u1 +

t2
t1

)H− 1
α

− u
H− 1

α
1

)

= u
−H+ 1

α
1

t
1
α
1

tH2

(
(t1u1 + t2)

H− 1
α − (t1u1)

H− 1
α

)
.

Then, in view of the above Lemma 17 and because 1
2 ≤ u1 ≤ 1,

sup
t1>0,t2>0

|h (t1, t2)| ≤ C.

(Note that h (t1, t2) = 0 when H = 1
α .) Noting,

∣∣∣F ( µ1
tH
1
− µ2

tH
2

)
F
(

µ2
tH
2

)∣∣∣ ≤ C
(
|µ1|
tH
1

+ |µ2|
tH
2

)
|µ2|
tH
2

and
making the transformation µ1 + µ2h (t1, t2) 7−→ µ1, µ2 7−→ µ2, we then obtain

I∗ (t1, t2) ≤ C
1

tH1 tH2

∫ ∫ (
|µ1|+ |µ2|

tH1
+
|µ2|
tH2

)
|µ2|
tH2

e−c|µ1|αdu−c|µ2|αdµ1dµ2

≤ C
1

tH1 tH2

(
1
tH1

+
1
tH2

)
1
tH2

=
C

t2H
1 t2H

2

+
C

tH1 t3H
2

.

Thus

κ−(1−H)

∫ κ
m

1

∫ κ
m

q

I∗ (t1, t2) dt2dt1 ≤ Cκ−(1−H)

∫ κ
m

1

∫ κ
m

q

(
C

t2H
1 t2H

2

+
C

tH1 t3H
2

)
dt2dt1.

We have

κ−(1−H)

∫ κ
m

1

∫ κ
m

q

1
t2H
1 t2H

2

dt2dt1 ≤ Cκ−(1−H)κ2−4H = Cκ1−3H ,

where 1− 3H < 0. Similarly

κ−(1−H)

∫ κ
m

1

∫ κ
m

q

1
tH1 t3H

2

dt2dt1 ≤ C

∫ ∞

q

1
t3H
2

dt2 ≤ Cq1−3H → 0 as q →∞.

Now, note that we also have I∗ (t1, t2) ≤ 1
tH
1 t2H

2
, using

∣∣∣F ( µ1
tH
1
− µ2

tH
2

)∣∣∣ ≤ C. Hence

κ−(1−H)

∫ 1

0

∫ κ
m

q

I∗ (t1, t2) dt2dt1 ≤ Cκ−(1−H)

∫ 1

0

∫ κ
m

q

1
tH1 t2H

2

dt2dt1 ≤ Cκ−H .

This completes the proof of the Lemma 10. �

It remains to prove Proposition 5.
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Proof of Proposition 5. We consider the case l = 2 in detail and then indicate the modification
required for the general case. It is enough to take u = 0. Then we have, assuming t > s,

E

[(
κ−

1−H
2

∫ κt

κs

∫ ∞

−∞
e−iµΛ(v)F (µ) dµdv

)4
]

≤ 4!κ−2(1−H)

∫ κt

κs

∫ κ(t−s)

0

∫ κ(t−s)

0

∫ κ(t−s)

0

I∗ (t1, t2, t3, t4) dt4dt3dt2dt1, (42)

where

I∗ (t1, t2, t3, t4) ≤
∫ ∫ ∫ ∫ ∣∣∣E [e−i

∑4
j=1 µjΛ(t1+...+tj)

]∣∣∣
× |F (µ1) F (µ2) F (µ3) F (µ4)| dµ1dµ2dµ3dµ4.

Here ∣∣∣E [e−i
∑4

j=1 µjΛ(t1+...+tj)
]∣∣∣

≤
∣∣∣∣E [e−i

∑4
j=1 µj

∑j
k=1 Λ(t1+...+tk−1,t1+...+tk](t1+...+tj)

]∣∣∣∣
(Here and below t1 + ... + tk−1 = 0 when k = 1.) Letting

λj = µj + ... + µ4,

we have

4∑
j=1

µj

j∑
k=1

Λ(t1+...+tk−1,t1+...+tk](t1 + ... + tj)

=
4∑

k=1

{
λkΛ(t1+...+tk−1,t1+...+tk] (t1 + ... + tk)

+
4∑

j=k+1

λj

(
Λ(t1+...+tk−1,t1+...+tk] (t1 + ... + tj)− Λ(t1+...+tk−1,t1+...+tk] (t1 + ... + tj−1)

) .

(Here and below
∑4

j=k+1 is empty when k = 4.) Here the summands on the right hand side are
independent, and the distribution of the k-th summand is the same as that of

λkΛ(0,tk] (tk) +
4∑

j=k+1

λj

(
Λ(0,tk] (tk + ... + tj)− Λ(0,tk] (tk + ... + tj−1)

)
.

We have, similar to (27) and the three steps subsequent to it,

E

[
e
i

(
λk
tH
k

Λ(0,tk](tk)+
∑4

j=k+1
λj

tH
j

(
Λ(0,tk](tk+...+tj)−Λ(0,tk](tk+...+tj−1)

))]

≤ e
−

∫ tk
0

∣∣∣∣ λk
tH
k

uH− 1
α +

∑4
j=k+1

λj

tH
j

(
(u+tk+1+...+tj−1+tj)

H− 1
α−(u+tk+1+...+tj−1)

H− 1
α

)∣∣∣∣α

du

= e
−

∫ 1
0

∣∣∣∣λkuH− 1
α +tH

k

∑4
j=k+1

λj

tH
j

((
u+

tk+1+...+tj
tk

)H− 1
α−

(
u+

tk+1+...+tj−1
tk

)H− 1
α

)∣∣∣∣α

du

≤ e
−

∣∣∣∣λku
H− 1

α
k +tH

k

∑4
j=k+1

λj

tH
j

((
uk+

tk+1+...+tj
tk

)H− 1
α−

(
uk+

tk+1+...+tj−1
tk

)H− 1
α

)∣∣∣∣α

= Jk (tk, ..., t4;λk..., λ4) , say,
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where 1
2 ≤ uk ≤ 1, 1 ≤ k ≤ 4. Further

tHk
tHj

((
uk +

tk+1 + ... + tj
tk

)H− 1
α

−
(

uk +
tk+1 + ... + tj−1

tk

)H− 1
α

)

is 0 when H = 1
α and, when H 6= 1

α , is of the form of Lemma 17 with t = tk, r = tj , v = tkuk and
s = tk+1 + ... + tj−1. Thus, similar to (41) together with a similar use of Lemma 17 therein and using
|F (λ)| ≤ C |λ|, we have (letting λ5 = 0)

I∗ (t1, t2, t3, t4)

≤ C

tH1 tH2 tH3 tH4

∫ ∫ ∫ ∫ 4∏
k=1

Jk (tk, ..., t4;λk..., λ4)

∣∣∣∣∣F
(

λk

tHk
− λk+1

tHk+1

)∣∣∣∣∣ dλ1dλ2dλ3dλ4

≤ C

tH1 tH2 tH3 tH4

∫ ∫ ∫ ∫  4∏
j=1

(
|λj |+ ... + |λ4|

tHj
+
|λj+1|+ ... + |λ4|

tHj+1

)
×e−c

∑4
j=1|λj |αdλ1dλ2dλ3dλ4

≤ C

tH1 tH2 tH3 tH4

(
1
tH1

+
1
tH2

)(
1
tH2

+
1
tH3

)(
1
tH3

+
1
tH4

)
1
tH4

. (43)

The right hand side here is a sum of the terms of the form(
1

taH
1 tbH

j1

)(
1

tcH
j2

tdH
j3

)
, (44)

for an arrangement (j1, j2, j3) of (2, 3, 4), where a, b, c and d are integers satisfying the following con-
straints:

• 1 ≤ a ≤ 2 with a + b = 4, and 1 ≤ c ≤ 3 such that c + d = 4.

To proceed further, first suppose that

κ (t− s) > 1. (45)

Then, using the bound (43), we next obtain

κ−2(1−H)

∫ κt

κs

∫ κ(t−s)

1

∫ κ(t−s)

1

∫ κ(t−s)

1

I∗ (t1, t2, t3, t4) dt4dt3dt2dt1

≤ C (t− s)2(1−H) . (46)

We have, corresponding to the second factor in (44),

κ−(1−H)
∑

1≤c≤3,c+d=4

∫ κ(t−s)

1

∫ κ(t−s)

1

1
tcH
j2

tdH
j3

dtj2dtj3

≤ 2κ−(1−H)

∫ κ(t−s)

1

∫ κ(t−s)

1

(
1

tHj2t
3H
j3

+
1

t2H
j2

t2H
j3

)
dtj2dtj3

≤ Cκ−(1−H)
(
(κ (t− s))1−H + (κ (t− s))2−4H + 2

)
≤ C (t− s)1−H . (47)

The last bound is obtained as follows:

κ−(1−H) (κ (t− s))1−H = (t− s)1−H ,
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κ−(1−H) (κ (t− s))2−4H = κ1−3H (t− s)2−4H ≤ (t− s)3H−1 (t− s)2−4H = (t− s)1−H ,

where we use (45) together with the fact 1− 3H < 0, and similarly

κ−(1−H) ≤ (t− s)1−H .

Next, corresponding to the first factor in (44),

κ−(1−H)
∑

1≤a≤3,a+b=4

∫ κt

κs

∫ κ(t−s)

1

1
taH
1 tbH

j1

dtj1dt1

≤ κ−(1−H)

∫ κt

κs

∫ κ(t−s)

1

(
1

tH1 t3H
j1

+
1

t2H
1 t2H

j1

)
dtj1dt1

≤ Cκ−(1−H)
(
(κt)1−H − (κs)1−H + (κ (t− s))2−4H + 1

)
, (48)

where
κ−(1−H)

(
(κt)1−H − (κs)1−H

)
= t1−H − s1−H ≤ (t− s)1−H .

Thus (46) holds.
Next, note that

κ−2(1−H)

∫ κt

κs

∫ 1

0

∫ κ(t−s)

1

∫ κ(t−s)

1

I∗ (t1, t2, t3, t4) dt4dt3dt2dt1 ≤ C (t− s)2(1−H) . (49)

This follows, because, as in (43) but using
∣∣∣F ( λ1

tH
1
− λ2

tH
2

)∣∣∣ ∣∣∣F ( λ2
tH
2
− λ3

tH
3

)∣∣∣ ≤ C, the left hand side of (49)
is bounded by

C
(
t1−H − s1−H

)
κ−(1−H)

∫ κ(t−s)

1

∫ κ(t−s)

1

1
tH3 tH4

(
1
tH3

+
1
tH4

)
1
tH4

dt4dt3

≤ C
(
t1−H − s1−H

)
(t− s)(1−H) , using (47). (50)

In the same way the bound in (49) holds when the integral
∫ κt

κs

∫ 1

0

∫ κ(t−s)

1

∫ κ(t−s)

1
there is changed to∫ κt

κs

∫ κ(t−s)

1

∫ 1

0

∫ κ(t−s)

1
or to

∫ κt

κs

∫ κ(t−s)

1

∫ κ(t−s)

1

∫ 1

0
. Thus Proposition 5 holds when κ (t− s) > 1 (and

l = 2 ).
Next, in the remaining case

κ (t− s) ≤ 1,

the right hand side in (42) is bounded by, similar to (26),

Cκ−2(1−H)

∫ κt

κs

∫ κ(t−s)

0

∫ κ(t−s)

0

∫ κ(t−s)

0

1
tH1 tH2 tH3 tH4

dt4dt3dt2dt1

≤ Cκ−2(1−H) (κ (t− s))4(1−H) = Cκ2(1−H) (t− s)4(1−H)

≤ C (t− s)−2(1−H) (t− s)4(1−H) = C (t− s)2(1−H) . (51)

This completes the proof of Proposition 5 for l = 2.
The proof for the general l ≥ 1 is the same, except for notational differences. To see this, in the

general case the bound analogous to that in (43) will take the form

C

(
1∏2l

j=1 tHj

)
1
tH2l

2l−1∏
j=1

(
1
tHj

+
1

tHj+1

)
.
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This will be a finite sum of the products of the form

1
taH
1 tbH

j1

l−1∏
r=1

1
tcrH
j2r

tdrH
j2r+1

,

for an arrangement (j1, j2, ..., j2l−1) of (2, 3, 4, ..., 2l), where, as in (44), a, b, cr and dr are integers such
that 1 ≤ a ≤ 2 with a + b = 4, and each 1 ≤ cr ≤ 3 such that cr + dr = 4. Then it is clear that
Proposition 5 holds for l ≥ 1 also. This completes the proof. �

Remark. We now show that the computation of the fourth moment is sufficient for the verification
of (R3). Taking s = l−1

m and t = l
m , the bound C (t− s)1−H in (47) becomes CmH−1. Similarly, the

bound in (48) becomes((
l

m

)1−H

−
(

l − 1
m

)1−H

+ m4H−2κ1−3H + κ−(1−H)

)
,

and the bound in (50) becomes CmH−1
((

l
m

)1−H −
(

l−1
m

)1−H
)
, so that when κ (t− s) = κ

m > 1,

E
[
ζ4
κml

]
≤ CmH−1

((
l

m

)1−H

−
(

l − 1
m

)1−H

+ m4H−2κ1−3H + κ−(1−H)

)
.

We have

mH−1

[mL]∑
l=1

((
l

m

)1−H

−
(

l − 1
m

)1−H
)

= mH−1

(
[mL]
m

)1−H

with H − 1 < 0.

Further 1− 3H < 0. Hence (R3) follows when κ
m > 1.

When κ (t− s) = κ
m ≤ 1, the first bound Cκ−2(1−H) (κ (t− s))4(1−H) in (51) is bounded by

Cκ−2(1−H), and hence (R3) holds in this case also. �
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