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Abstract. We consider a data communication network model in which a source
starts a process of transmission of some data at the renewal time point Sy, &k > 1, and
continues for a period of random length 7). Transmissions are assumed to occur either
at unit rate or at the random rate & corresponding to the source that starts at time
Si. The processes of interest are the number of active sources at time ¢, the cumulative
number of active sources upto time ¢, the amount of work inputted at time ¢, and the
cumulative amount of work inputted upto time . We present a detailed study of the
asymptotic behaviors of all these processes in a suitable unified framework, under the
assumption that the common distribution of the iid 7} is very heavy tailed and further
appropriate assumptions on the common distributions of inter-renewal times and the

transmission rates &.

1 INTRODUCTION

The present paper is directly related to Mikosch and Resnick (2004), as will be made
clear below (but see further the references given in that paper). We begin by recalling

the framework in that work. Consider

k
So=0, Sp=> Xi k>1,
i=1
where { Xy, k > 1} is a sequence of iid nonnegative random variables with common dis-
tribution F'. Here S; has the interpretation of the renewal time point at which an event
begins and continues for a period of random length 7T}, that is, the event terminates

at Sy + Tk. It is assumed that T}, k > 1, are iid (nonnegative) random variables with



common distribution G. It is further assumed, without further mentioning, that
X} and Ty are independent for each k£ > 1.

In the context of communication network, Sj is the renewal time at which a source
starts a process of transmission of some data, which process is continued for the period

of length 7). Then the number of active sources of transmission at the time z is given
by
o0
M (Z) = Z]I{skgz<sk+Tk}-
k=1
(Here and below I 4 stands for the indicator function of the event A. ) Also

Mn (Z) = Z ]I{Skgz<5k+Tk}
k=1

is the number of active sources at the time z among the first n sources. (Here My (z)
and M, (z) are called activity rates. )

In the insurance context, if S; is the time of occurrence of an accident and if T} is
the length of time it takes to settle the insurance claim, then M, (z) is the number of
active claims at time z among the first n claims.

Note that if we let
N(z)=sup{l>0:S <z}=inf{l>0:S,1>z}= Z]I{SkSw},
k=1
then
Moo (Z) = MN(z) (Z) .

Further, the processes

A (2) = /0 " Mo, () du, A, (2) = /0 "M, (u)du

have the interpretation of cumulative input processes upto the time z. We note that

An (Z) = Z/ H{Sk§u<5k+Tk}du = Z ]I{SkSZ} (min (Sk + Tk, Z) - Sk)
k=170 k=1

= ZH{SkSZ} min (Ty, z — Sg) = Z min (T, (z — Si)¥)

k=1 k=1
where we define zt =z if £ > 0, = 0 if z < 0. Further,

N(z)

Ax (2) = Angy (2) = Z min (Ty, z — Sk) -

k=1



Above, it is assumed that the data transmissions occur at unit rate. Now assume
more generally that the rate corresponding to the source that starts at time Sy is &,

where & are iid nonnegative random variables, with
& independent of X and T} for each k£ > 1.

Then the cumulative input process upto the time z takes the form

N(z) 2
A;(z)=2min(Tk,z—Sk)§k=/ M* (u) du
k=1 0

where

Mz, (u) =) s, <ucs,+13hs
k=1

and that upto the time z among the first n sources takes the form
Ay (z) = Zmin (Tk, (2 — Sp)") & = / M (u) du
k=1 0

with .
My (w) =Y Tise<ucsiim) -
k=1
Here M} (u) has the interpretation of the rate of work inputted at time u, and that
M} (u) as the rate at time u among the first n sources.
It will be assumed throughout that the distribution function G of T is very heavy

tailed in the sense that
Gz)=1-G(z)~zPLg(z), 1 —00,0< B <1,

for some slowly varying function Lg (z). Regarding the distribution F' of X, we shall

assume that either
F(z)=1-F(z) ~2*Lp(z),2 = 0,0 < a <1, (1)

for some slowly varying function Lg (), or E[X;] < oc.

As in Mikosch and Resnick (2004) we shall consider the following three cases sepa-
rately.

Case I: F and G are very heavy tailed with comparable tails: 0 < f=a < 1
and F (z) ~ ¢G (z) as * — oo for some ¢ > 0. For simplicity, we shall assume that

c=1.



Case II: F and G are very heavy tailed with G heavier tailed: 0 < f < a < 1,

0r0<6=a<1with%—)0asx—>oo.
Case III: F has finite mean and G is very heavy tailed: 0 < § < 1 and

E[X,] < 0.

In addition, appropriate moment conditions on &; will also be imposed when we deal
with M} (z), MZ% (z), Af (z) and A% ().

The results obtained in Mikosch and Resnick (2004) for the preceding three cases

may be roughly summarized as follows, where the limit is taken as s — oo.

Some Results of Mikosch and Resnick (2004)
Case I My (sz) = random limit.

ggg My, (sz) = random limit,
Case II =
5@((88)) Ay (sz) = random limit.
ﬁ(s)Moo (sz) = constant,
Case 111
sG(s) (Moo (SZ) — random Center) — (Gaussian.

(These results correspond to (28) of Section 3, (38) and (39) of Section 4 and (52) and
(53) of Section 5 below. )

In the present paper, we obtain the limiting behaviors of the processes
(t, 2) = Mg (an2), My (an2), Ay (anz) and Apy (an2) (2)

as n — oo (here in the Cases I and II a,, is such that nF (a,) — 1 and in the Case III,

a, = n.), which will also allow us to deduce the limiting behaviors of those of
2z +— My (82), MZ (sz), Ax (sz) and A% (s2) (3)

as s — 0o in a continuous manner. In addition, in Cases II and III we also obtain second
order type limit results (such a result for My, (sz) in the Case I1I is already in Mikosch
and Resnick (2004, Proposition 3.2); see the table above with Gaussian limit.)

We would like to mention that many of the problems dealt with in the present paper
are, in some form or other, either posed or alluded to (in the form of unresolved problems)
in Mikosch and Resnick (2004, Section 5). However, the approach taken in the present
paper is different and is based on certain general results obtained in Jeganathan (2006),
which framework appears to be particularly suitable for the present situation.

The plan of the paper is as follows. In section 2 we recall some preliminary results, in

particular a result from Jeganathan (2006), specialized in a form directly applicable in

4



the present context. This result will be a main framework to obtain the limit theorems.
Sections 3 - 5 respectively treat the Cases I - I1I. We shall deal with the Cases I and 11
in detail, dealing each of the four quantities in (2) or (3) separately. But it will become
clear that the results, as well as the technical details, of Case III are almost identical to
those of Case I, and therefore its detailed treatment will become unnecessary.

Among the three cases, the Case I appears to be more relevant for practical purposes
than the other two in the context of communication network or in the insurance context,
because in Cases II and I1I, the activity rate M, (z) introduced earlier increases without
bound when z does so.

For the detailed references together with some discussions to the empirical works
that motivate the present model with very heavy tails, see Mikosch and Resnick (2004)
and Resnick (2003). It may be noted that the present work, following Mikosch and
Resnick (2004), assumes the independence of the sequences {Xy,k > 1}, {T}, k > 1}
and {&, k > 1}. We do not know to what extent this restriction can be relaxed, but see
Maulik, Resnick and Rootzén (2002).

Notations. In addition to the natations I 4 for the indicator function of the event A,
c(s) ~ d(s) to mean % —~1lass—o00, F(z)=1— F(x) and G (z) =1 — F (z) that
we have already used above, we shall also use in what follows the following additional
notations.

2, stands for the convergence in probability. Further, by e 20 as n — oo first and
then € — 0, we mean lim,_,q limsup,_,oo P [|&n,e| > 1] = 0 for every n > 0. Convergence
in distribution of a sequence of random vectors (of the same order) will be denoted
by =>. The notation 4 tands for the convergence in distribution of a sequence
of random processes in the sense of convergence in distribution of all finite dimensional
distributions. Also, if the index set of the processes involved is not clear from the context

it will be explicitly indicated; for example in the form A, (¢) ELLY (t), t € J, instead of

An () 22 A 1),
The notation “ = in Dgq [0,1] 7, for ¢ > 1, means the convergence in distribution
of a sequence of random processes in the Skorokhod space Dgq [0,1] (Dge [0, 1] is by
definition the collection of all functions from [0, 1] to R? that are right continuous and
admit left-hand limits, equipped with the Skorokhod topology, see Billingsley (1968, Ch.
3) for Dg [0, 1] and Jacod and Shiryayev (1987, Ch. ?) for Dg. [0,1], ¢ > 1.)
Corresponding to the arrays {F,x, k = 1,2,...} of o-fields defined in (13) below, the

abbreviations Fj,_{ [ . ] and P, 4 [ ) } stand respectively for the conditional expectation



and the conditional probability given the o-field F, 1, that is, E [ ) ‘fn,k_l] and
pl. ‘fn,k_l}.
2 PRELIMINARY RESULTS

Consider the situation in which (1) is satisfied, where recall that 0 < o < 1. Then

recall that the constants a,, are such that

nF (za,) = 27%, x>0, (4)
and (see Lemma 2.4 below)
na,'E [X11{x,<ran}] — . faTl_a. (5)
Let
Xpp =0 Xpar, k>0, (6)

with X, as specified earlier. Note that, with S, = Z?Zl X as defined earlier,

k
—1
E Xok = a,,” Sg41-

k=0
We first recall the familiar facts that underlie the convergence of the process ZEZ}O Xok-
(These facts will motivate the conditions (C1) and (C2) below.) In view of (4), we have,
for all z € (0,00) and ¢ € [0, 00),

[n1]

ZP [Xnk > 2] = [nt] F (za,) — to~® = L (z,t), say. (7)
k=1
Also, because 1 — a > 0, (5) implies, for all ¢t > 0,
[nt]
ZE [Xnk]l{xnk«ﬂ = [nt] a;lE [X1]I{X1<mn}] — 0 asn — oo first and then ¢ — 0.
®

The preceding two facts entail that

[nt]

E [Xnk]I{Xnk<T}] —>/ zL (dz,t) < occ.
k=1 0

In addition, because in the preceding convergence both sides are monotone in ¢ (recall
Xnr > 0) and the limit is continuous in ¢,

[n1]

sup ZE[XMH{X”KT}} —/0 zL (dz,t)| — 0 9)

0<t<M |1



for all M > 0. Further (noting X, > 0 ),

[nt]
Y B [Xuklpx,eny]| = 0 (10)
k=1

for all 7 > 0 because of (9) and because sup;<;<png E [Xntlix,,<r3] — 0 which follows
from the fact sup;y<y £ [Xnk > 1] — 0 for all n > 0. In addition, in view of (8),

[nt] [nt]
ZE [Xik]I{Xnk<€}:| < eZE [Xnk]I{Xnk<e}] — 0 as n — oo first and then ¢ — 0.
k=1 k=1 (11)

As is well-known (see for instance Gikhman and Skorokhod (1969)), (7) and (9) -(11)
entail that

]
> Xuk = a5 Spuy1 = S (t) in Dg[0,00) (12)

k=0

where S () is a stable process with index «, 0 < o < 1, that is, a process with stationary

independent increments such that
. o0 .
log F [e“’s(t)] = t/ (e™ —1) az™* 'da.
0

We next present a specialization of a result from Jeganathan (2006), which will be
the main framework in Sections 3 -5 below. For this purpose, we let F,; to be the o-field
generated by (X1, ..., Xgr1, 11y ooy Ti, &1,y -y &), that s,

fn():O'(Xl), ]:nk:0(X1,---,Xk+1,T1,---,Tk,&,---,fk), k Z 1. (13)

with X;, T; and & as in Section 1. For each m > 1, consider the array of random
variables { X, Yok, Znk, £ = 1,2, ...} adapted to the array {F,x, k = 1,2,...} of o-fields.

Here X,z = a,' Xy 1 is as defined in (6) but Y,z and Z,, will depend on the particular
quantity in (2) under consideration. Further, for the present purpose it is enough to

confine to the restricted situations where
Yoe >0, E[Z2] <00, Ep_1[Zu]=0. (Note X, >0 already.)

(Recall that By [ . | = B[ | Fur] and Py [ ] =P [ | Fos] )

We assume, for each ¢ € [0, c0),

sup Py 1 [Yar > 1] 20 for all n > 0. (14)
1<k<[nt]



We next list the further assumptions on these arrays, where the process
S=(S(t),0<t<1)
is as in (12).

(C1). There are families {7y (y,t,S) : y > 0,t > 0} and {B (¢,S) : t > 0} of functionals
of the process S and a dense subset J of (0,00) such that

[nt] [nt] [nt]
ZXnka Zpk—l Yok > 9], ZElc—l [Zn]
k=1 k=1 k=1

2L (S(t),7(5:1,5),B(%S5)), (ty) € [0,00) x J, (15)

as n — 00, where
Plt— B(t,S) and t — v (y,t,S) are continuous] = 1

for each y > 0 and, for all ¢ > 0,
v (00,1, 5) =0 as., / yy (dy,t,S) < oo a.s. (16)
0

(C2). For each t € [0, 00),

[nt]
Z FEy_1 [Ynk]l{ynk<€}] 20 asn — oo first and then € — 0.
k=1

(C3). For every bounded closed intervals I1, I, C (0, c0),

nt]
Y Pii[Xu €L, Yo € L] B 0.
k=1

(C4). For each t € [0, 00),

[nt]

> Eer [ 221z, 05m] 20 forallp> 0.
k=1

Note that (C4) entails that

[n4]
> Pt [[Znkl =] 50 foralln >0,
k=1



and hence for every closed intervals I; C (0,00) and I, C (0,00) U (0, 00),

[nt] [nt]
Y P X €0, Zu€h] B0, > PV €h, Zuehl B0 (17)
k=1 k=1

(C4) also entails that, in view of Eyx_1 [Znx] = 0,

[n?]

sup ZEk_l [Z"k]I{IanKT}] £>O (18)
0<t<M 1

for every 7 > 0. Furthermore, (15) together with (C2) entails that

[nt]

ad [T .. )
N B [Yaly,en] 22 / yy (dy,t,S), jointly with (15), (19)
k=1 0

and because the left hand side in this convergence is monotone in ¢ and the limit is
continuous in ¢ with probability one,
[nt]
t— > By [Yarlgy,,<r}] s tight in Dg [0,00) (20)
k=1
(see Jacod and Shiryayev (1987, Ch. VI, Theorem 3.37 (Statement (a)), page 318.)
Further, (19) entails (noting Y,; > 0 ), similar to (10),

[nt]

S B [Yalgpeny ][ 20 (21)
k=1

for all 7 > 0 and (C2) implies

nt
i E._, [Yfk]l{ynk«}] 20 asn — oo first and then € — 0. (22)
k=1
Before stating the result it is convenient to recall a criterion for the tightness of a
sequence of processes in Dgq [0, 00). The criterion is due to Aldous (1978) (as modified
in Jacod and Shiryayev (1987, Ch. VI, Section 4a, page 320)).
Aldous Criterion: The sequence of processes (A, (t) = (An1 (t) 5., Ang (1)) ,0 <t < 00)
taking values in Dgq [0, M| adapted to an increasing and right-continuous family of o-
fields {fnkn(t);t € [0, M]} is tight if the following two requirements hold:

lim, o0 limsupy, 0o P | sup max [A,; (t)] >v| =0 (23)
o<t<M 1<i<q



and for every n > 0,
limgs_,q limsup, 00 sup P |max [A,; (T) —Ap;i (T7)|>n| =0 (24)
T*<T<T*44 1<i<q
where the supremum Supp«<p<r-45 1S with respect to all stopping times T and T* satis-
fying T* <T < T*+ 6 and adapted to {Fop,m;t € [0, M]}.

Note that (23) and (24) hold if they hold for each of the components A,, ; (t) separately
(but it is important to note that the class of stopping times are the same for all the
components.) This fact will be used repeatedly below in establishing tightness.

Thus we obtain the following Theorem 2.1, as a corollary to Theorem 2 and Remark
10 in Jeganathan (2006). The result involves functions g; (u,v), j = 1,...,1, each of
which are assumed to be continuous (jointly in w and v) such that, for each x > 0,
j=1,..,1

1 v?

gj (u,0) =0, sup sup — gj(u,v)—vg;j——ggj —0
ful<x 0<|v|<n ¥ vo2T

as n — 0, for suitable u — g, ;, g, ; that are continuous in u. Here g, ; and g,/ ; may
respectively be viewed as first and second partial derivatives of g; (u,v) with respect to
vatov=0.

We recall that ch"jl Xk = a, " Spng41-

Theorem 2.1. Assume that the assumptions (C1) - (C3) stated above are satisfied.
Let the functions g; (u,v), j =1,...,1, be as above. Then

[nt] [nt] [nt] k—1
S Xokr D Zuks Y5 (Z X, Ynk) L i=1,..,1
k=1 k=1 k=1 j=1

= (S(t),Z(t),R;(t), j=1,..,1) in Dges [0,00)

J

where S (t) is as in (12) and, conditionally on S = (S(t),0<t<1), the process
(R;f t),7=1,..., l) is independent of the process Z (t) such that for reals 01, ..., 0y, 23:1 0, R; (t)
is (conditionally) additive such that, with v (x,z,S) as in (C1),

t o]
5| = (=i 0060 1) 5 (dr. dr, ),
0 0

and Z (t) is (conditionally) Gaussian additive with mean 0 and, with B (t,S) as in (C1),

logE [6iv i1 0 R; (1)

E[Z*(t)|S] =B(t,5S).

Proof. By taking ¢ (u,v) = 2221 8,9; (u,v), with g/, = 22:1 0;9,,; and g, =

Zézl 8,4, ;, the conditions of Theorem 2 (and Remark 10) in Jeganathan (2006) hold for

UNE
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g (u,v), in view of (7), (9) - (11), (C1), (C3), (C4) and (17) - (22). Hence the convergence
of finite dimensional distributions follows (though the convergence in Dg2+: [0, 00) itself
is not). The limiting form for the characteristic function for ) 0; R} (¢) in the statement
is obtained by noting that the terms (in Theorem 2 in Jeganathan (2006)) that involve
gv will vanish because of (21) and (22), and those that involve g/, will cancel out because
of (16).

It only remains to show the tightness in Dge+i [0, 00), that is, (23) and (24) with
g = 2+ 1. As noted earlier, it is enough to verify (23) and (24) for each one of these
2 + [ components separately. Now each g; (u,v) is of the form g (u,v) of Theorem 2 in
Jeganathan (2006), for which the required tightness has been verified (in Sections 4.4
and 5.2 of that paper). Hence the proof is complete. H

Remark 1. Note that when [ = 1 and ¢; (u,v) = v, the preceding result in par-
ticular gives the convergence (ZEZ]I KXo, M Z, S Ynk> = (S(t),Z(t),R(1))
in Dgs [0,00). The limiting processes R (t) and Z (t) are, given (S (t),0 <t < 1), con-
ditionally additive and independent. Further R () induces a random measure v on the
Borel o-field of (0,00) x (0, 00) which is conditionally Poisson with intensity measure
E v (dzdr,S)| S] = v (dzdr, S) where v (z,t,S5) is as in (C1). In addition, because of
(16), R (t) has the well-known stochastic integral representation with respect to v, in
the form (see for instance Sato (1999, Chapter 4, Theorem 19.3, page 121))

R (1) :/Ot/ooo:w(dxdr,S).

In terms of this representation, the limits R (¢) in Theorem 2.1 have the representations

R;f(t):/o /Ooogj (S (). 2) v (dadr,S), j=1,..1,

by noting that the conditional joint characteristic function of this coincides with that
given in the statement of Theorem 2.1. W

Remark 2. Note that in the case Y, = b, 1Ty, where T}, are as before and b,, is such
that nG (b,) = nP [T} > b,] — 1, the 7y (y,t, S) in the condition (C1) will take the form
v (y,t,S) = ty~#. In addition, in this case when the component ch":ﬂl Z,1 is absent, all
the requirements of Theorem 2.1 are satisfied.

Remark 3. We shall need this remark in order to obtain results for the quantities
in (3). Theorem 2.1 holds also when the index n is replaced by [s] where s — oo in
a continuous manner. In such a situation, Zf;ll Xpj = a[_s]lsk and the first component

takes the form Zgﬂtﬂ X = a[_s]lS[[s]t]H. Here the normalizing constant af;) can be
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replaced by any d; such that % — 1 without affecting the limiting behaviors in Theorem
2.1, as is easily seen, because the change pertains only to the normalizing constant a.
In the case Y, = b[’s]lT,c as in the preceding Remark 2, the same remark applies to the
normalizing constant b,;. W
We shall also need the following result. It is essentially a restatement of Theorem
1.1, Chapter III, in Borodin and Ibragimov (1995, pages 80 - 83), which itself is related
to Theorem 1, Section 7, Chapter 9 in Gikhman and Skorokhod (1969).
Proposition 2.2. Suppose that the processes Uy, (t), Y, (t), n > 1, and U (t), Y (t),
t € [0,00), are possibly vector valued such that (U, (t),Y, (t)) 14 (U (t),Y (t)) and
such that, for every M >0 and n > 0,
sup P|Yn (v) = Yo (u)| >n] =0 (25)
lu—v[<8, |u|<M,|v|<M
as n — oo first and then 6 — 0. Assume that Y, (t), n > 1, and Y (t), t € [0,00), are
measurable processes.
In addition, assume that for each t > 0, the distribution of Y (t) is absolutely con-
tinuous with respect to Lebesgue measure.

Then for any compactly supported Riemann integrable function h (u),

(Un ®),Y, (t),/oth(Yn (v))dv) L4 (U(t),Y(t),/Oth(Y(v))dv).

This conclusion holds also for any locally Riemann integrable function h (u) provided
that either there is a compact set outside which h (u) is uniformly bounded and uniformly
continuous or suPy<i< s |Yn (t)| is stochastically bounded for every M > 0.

Proof. For convenience, we restrict to showing that

(Un t),Y, (t),/olh(Yn (v))d'u) L4 (U(t),Y(t),/Olh(Y (U))dv). (26)

First suppose that h (u) is compactly supported and continuous. Then it is also uniformly

continuous, so that given & > 0 there is a 1 such that |h(u) — h(v)| < 6 whenever
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|lu — v| <. In addition |k (u)| < C for some constant C' > 0. Hence

[ a5 (3)]

sup Ellh (Yo () = b (Yo (v))]]

E

<
u—o| <3, Jul<1,0|<1
< §+20 sup P Hh(Yn (v))—h(Yn (%))‘ >5}
u—v|<, [u[<1,[v[<1
< d+2C sup P[Yn(v)—Yn<l)‘>n}.
u—vl<t, [ul<1,jol <1 l

Thus

1
lim;_, o limsup,_,o F

[ a5 (2)] <o

J
Also, (25) entails Supy,_, <s, juj<ar,wj<ar P IIY (v) =Y (u)] > n] — 0 as § — 0 by Fatou’s

1 1 -1 ]
Y (v)dv— - Y= =
[ rea-i3y () u
7=0
The preceding two facts together give (26) because, for each I,

( ,%l - ()) Jaq (U(t),Y(t),%gy(%».

Jj=0

lemma, and hence as above

In the general case where h (u) is compactly supported Riemann integrable, one can
find, for each € > 0, functions hy . (u) and hy.(u) that are continuous and compactly
supported such that

hie (u) < h(u) < hye (u)

and such that

/ (hoe (1) = hae (w)) duu — 0 a5 € = 0. (27)
Without loss of generality we can take sup, ,, (|h1,e (u)| + |ha, (u)]) < C for some constant
C > 0, for instance by changing hi . (u) to min (max (hy.(u),—2M),2M), and the
same change for hy . (u), where the constant M is such that |h (u)| < 2M. (Recall that

Riemann integrability of & (u) entails that h (u) is bounded.). Because we have proved
that (26) holds for Ay (u) and ho (u),

5[ (o (Y (0)) = by (¥ () w| e (o (¥ (0)) = B (¥ (o) dos

13



as n — oo, where, with f, (u) the Lebesgue density of YV (v),
B[ et @)= o (v () ]
- /0 / " (o () = o (w)) fo (u) dudy

00 1 oo
< M/ (hoe (u) — hye (u)) du + C’/ / It towy>my fo (u) dudv — 0
—00 0 —00

as € — 0 first and then M — 0o, because of (27) and because [ f, (u) du = 1 for all v so
that Lebesgue dominated convergence becomes applicable for fol [ fooo It t >y fo (0) dudv
as M — oco. We have thus shown that fol (hoe Yy (v)) = hye (Vi (v))dv 5 0. This
establishes (26) for the compactly supported Riemann integrable function A (u), com-
pleting the proof of the first part of the conclusion of the proposition.

Regarding the second part, note that the argument used earlier for compactly sup-
ported continuous function A (u) holds also when h (u) is assumed to be uniformly
bounded and uniformly continuous. Also when sup,<;<,s [Yx (2)| is stochastically bounded,
h (u) can be assumed without loss of generality to have a compact support. Hence the
second part of the conclusion follows from that of the first, completing the proof of the
proposition. W

Next, let

U(r) =) _ P[Sy <7].

Note that (recall G (y) = P [T} > y] )

E[MOO(T)]z/OTU(dx)é(T—m).

As a further preliminary, it is convenient to reproduce the following result (together
with a sketch of its proof for completeness), established in Mikosch and Resnick (2004,
Section 1.2).
Lemma 2.3. (i). In the Cases I and I, for every 0 < 6 < 1,
F(r)

' 2)G (T — ) ~ 1 — ) Pas®ds, T — .
e [ v@Gir—a~ [Ca-97 s 7o

(i1). In the Case III, for every 0 < ¢ < 1,

1

! /TU(dx)é(T-x)N(E[Xl])IA(1—8)%, 00

14



Proof. According to Feller (1971, page 471), when 0 < o < 1,
UMNFr)~T1-a)T(14+a)™", z— .

Hence, in the Cases I and II,

T Glr_a) — ! AN T (r(1— s)) = T (r VG (1 (1—38))U(rds)
[ UG- = [v@acera ) Goue [ LS
~ (F(l—a)F(l—i—a))_lgE:;/d (1—s)"as*'ds, 7— .

In the Case III, U (1) ~ 7 (F[X1])~". Hence

/;U(dx)é(T—x) _ G /5 G(%(z—) DU ()

~ G (r) (E[Xl])_l/é (1) ds.

Hence the proof is complete. W

The following fact (Feller (1971, (5.22), page 579)) will be needed below in a few
places below. For convenience we state it separately.

Lemma 2.4. Suppose that Y > 0 is a random variable such that x — P[Y > z] is
reqularly varying with index —v, 0 <y < 2. Then for any 6 > v,

PV >7] asT — oo

B [YLyen] ~ 52

3 THE CASE I
Recall that in this case 0 < = o < 1 and F (z) ~ G (z) as ¥ — oo. Also recall

that the constants a, are such that nF (a,r) — 2. In view of F (z) ~ G (z), we also

have nG (a,z) — 2~%. Then, with Sint) = 211221 X}, as in Section 2 and

[nt]
Ry = Ty,
P

one has, because of the independence of (X, k > 1) and (T}, k > 1),

(a;ls[m}, a;lR[m]) = (S(t),R(t)) in Dgz[0,00),
(a;lS[mHl, CL;IR[M]) = (S(¢t),R(t)) in Dg2[0,00),

where R (t) is also a stable process. In addition the limits S (¢) and R (t) are independent.

15



In this section we shall apply Theorem 2.1 with the component Z,; is absent and
with Yo = a, 'T,. Thus we are in the situation of Remark 2, so that in Theorem 2.1
v (y,t,S) = ty~P. Further, in view of Remark 1, the Poisson random measure v on
the Borel o-field of (0, 00) x (0, 00) induced by R (¢) has the intensity measure (because
F(z) ~G(z))

E v (dzdr)] = Bz=P 'dadr = ax™* ‘dzdr.

As noted earlier, the second statement M, (sz) ELLEY (z) as s — oo in the next
result (see (28)) is already contained in Mikosch and Resnick (2004, Corollary 2.3).

Theorem 3.1. Let z,1 < ... < zy be such that (z1, ..., 2n1) = (21, .-, 21) with z; > 0.
Then

(a,le[nt]H, M[nt] (anznl) y ---M[nt] (anznl)) - (S (t) ,Mt (21) y ...,Mt (Zl)) in DR1+I [0, OO)

where M, (z) is as defined in Section 1 and
] o]
Mt (Z) = / ]I{S(r)gz}/ v (dl‘d?‘)
0 z—S(r)
In addition, for zg < ... < zg such that (2, ..., 29) — (21,...,21) as s — oo with

z1 >0,
(My (8251) 5 ---Muo (8251)) = My (21) ..., My (21)) as s — o0, (28)
(where My (2) = [ Iis(r)<z) fzofs(r) v (dzdr).)

Proof. We first consider the proof of the first statement, which consists of reducing
to the situation where Theorem 2.1 becomes applicable. For convenience we obtain this
reduction for the case (a; 1S[nt]+1, Mg (anzn)) with z, — 2z > 0. It is enough to take
2z, = z for all n > 1, for otherwise we simply need to replace a,, 'Sy, by a, 'Sy + 2z — 2, in
the arguments below.

Then, recall that

[nt]
My (an2) = Zﬂ{a;15k5z<a;15k+a;1Tk}'
k=1

Because z > 0 is fixed, without loss of generality assume that z > 2n for some n > 0.

Then note that the expected value of the difference between > 1 {an
and ZH{a;15k<z—n}]l{z—a;15k<a;1Tk} is bounded by

lsk§z<a;15k+a;1Tk}

i_o:E []I{z—n<a;15k§z}@ (an (2 - a;lsk))]

= / U (dz) G (apz —x) — 0, by part (i) of Lemma 2.3,

nz(1-2)
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as n — oo first and then n — 0. In addition fg It pes(r)<z) fzofs(r) v (dzdr) 5 0.
Therefore, it is enough to show, for each n > 0, that

[nt]
-1
Ay Sint)+1, Z ]I{a;lskgz_n}ﬂ{z—a;15k<a;1Tk}
k=1

t o0
= (S (t) ,/ ]I{S(T)SZ—U}/ v (dxdT)) in Dge [0, 00) .
0 z

—5(r)

For this purpose, note that

ZH{uglskSz—n}H{z—azlsk<a;1Tk} = ZH{nSz—a;ISk<a;1Tk} =D 90" Sk, ' Ti)

where
g (U” U) = ]I{ngz—u<v}-

This function satisfies the conditions stated in Theorem 2.1 (with g, = 0 = g,, ) except
that (u,v) — ¢ (u,v) is not continuous, but for each ¢ > 0, it is easily seen that there
are continuous functions ¢ . (u,v) and gs ( (u, v) and satisfying the remaining conditions
of Theorem 2.1, such that

gl,e (U'a U) S g (UJ U) S 92,6 (UJ U) J 92,6 (’LL, ’U) - gl,e (’LL, U) — 0

as € — 0. This proves the first statement, because the intensity measure of the Poisson
measure associated with R (¢) has the Lebesgue density Sz=#~1.
Regarding the second statement, note that a,, defined for integers n can be extended

to s € (0,00) such that

inf{z: F(z) <1} Cases I andII
as ~ :
s Case II1.

Further a5, s € (0,00), can always be chosen such that s — a, is continuous and
strictly increasing (see Mikosch and Resnick (2004, Section 1.3, for the references)).
Also observe that % — 1. Hence in view of Remark 3 in Section 2 and in view of what
we have proved above, for any z, — 2z as s = 00, Mg« (a52;) = M (2) as s = oo for
each k > 0. In addition M (2) & My (2) as & — oo. Thus

Mgy (as2s) = Mo (2) (29)

17



as s — oo first and then kK — co0. Now

oo

Moo (ast.s) - M[[s]ﬁ,] (asZs) = Z ]I{aQISkst<aZISk+as_lTk}
k=[[s]k]+1

T

o0
]I{as‘lsks/zs}H{zs—a;15k<a;1Tk}
k=[[s]k]+1
N(aszs)
S
[s]K]+1

>

k=[[s]x

Z*a;15k<a;1Tk} =0on {N (aszs) < [[S] K]}a

where N (a,2,) =sup {l : S; < a,z,}. Now recall that s7'N (a,z,;) converges in distribu-
tion (see Feller (1971, page 373)), so that

PN (aszs) < [[s]&]] =P [s_lN (aszs) < s7! [[s] K,H —1
as s — oo first and then k — oc. Hence
My (aszs) — Mg (aszs) 20

as s — oo first and then xk — oo. In view of (29), this gives the second statement of the
theorem because s — ag is continuous and strictly increasing, completing the proof.
[ |

Remark 4. It may be noted that the situation considered in Theorem 3.1 is a
particular case of Theorem 3.3 below, because M, (z) reduces to M, (2) when the
rate & = 1 for all £ > 1. However, a direct application of Theorem 2.1 as done above
allows us to express the limits in terms of the Poisson measure v of Remark 1, whereas
this does not seem to be possible for the limits in Theorem 3.3. The same remark applies
regarding the relationship between Theorems 3.2 and 3.4 below. W

In the next result note that the quantities involved are the integrals of those in
Theorem 3.1, but unfortunately we are unable to exploit this fact in order to directly
deduce the result from Theorem 3.1, though it is possible to use Proposition 2.2 to
deduce the convergence of finite dimensional distributions.

Theorem 3.2. For any z, < ... < zy such that (zn1, ..., 2n1) — (21, .., 21) with
z1 >0,

t — (CL,,:IS[nt]+1, a;lA[m] (Anzn1) 5 - a;lA[m] (anznl))
= (S(),A (21),., A (7)) in Dgiw: [0,00),

where A, (z) is as defined in Section 1 and
z t 00
A () = / M, (u) du = / / Lis(r)<ny min (, 2 — S (r)) v (dadr)
0 0 Jo

18



In addition
Z — a;lA[nﬂ (anz) = Ay (z) in Dg [0, 00)

for each 0 <t < o0, and
z > 5 Ay (52) = Ay (2) in Dg|0,00) s — oo.

Proof. The proof is similar to that of Theorem 3.1. First consider the first statement.
Recall that

—lAm (anz) = a, / Mg (u) du-%I{a 1S<}m1n( T,z — a; Sk)
For simplicity we restrict to (a,,*Spt+1, a;  Apy (anz)). For 0 <n < z,
> I yeastsocey min (0, Ty 2 = 0, Sy)
= ZI{zfn<a;15k§z} /OZ H{a;15k§u<a;15k+a;1Tk}d“
= /z; Z I{zfn<a;15k§u}]I{u<a;15k+aﬁlTk}du’

the expected value of which is

/Zz f: [I{z n<a; ISk<u} {u<a;15k+a;1Tk} /Z n/a dz) G (apu — ) du

N = n(z—m)

- / / (antdy) G (ayu (1 — y)) du
s// U (anudy) @ (apu (1 — y)) du — 0

as n — oo first and then n — 0, by part (i) of Lemma 2.3. Further,

C)I

/ / I(,—p<s(ry<zy min (r, 2 — S (r)) J (drdz) 2 0 as n — 0.
0 Jo

On the other hand, in the same manner as was done in the proof of Theorem 3.1,

Theorem 2.1 becomes applicable to obtain, for each n > 0,

[n1]

a;IS[nt]H, Z I{aglsksﬁn} min (a;lTk, z— a;lSk)
k=1

(s 1), /0 t /0 " Listycomn min (r, 2 — S (r)) J(dxdr)) in Dye [0, 00)
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because g (u,v) = Ity<, ) min (v, z — u) satisfies the conditions stated in Theorem 2.1,

—
T

with g, = 1 and g/] = 0, except that (u,v) — ¢ (u,v) is not continuous but it can be
remedied in a way similar to that in the proof of Theorem 3.1. Hence the first statement
follows follows.

Regarding the second statement, it follows from the first statement that z ——
ay, At (an2) L4 A, (2). Because both a, ' Apy (anz) and A, (z) are monotone in z
and because z — A (z) is continuous, this will entail convergence in Dy [0, 00), in view
of Jacod and Shiryayev (1987, Ch. VI, Theorem 3.37 (Statement (a)), page 318)). In
the same way, using the same arguments in the proof of Theorem 3.1, the last statement
z+— s Ay (82) = Ay (2) in Dg|[0,00) s — oo also follows, completing the proof of
the theorem. W

We remark that, conditionally on {S (¢),0 < t < co}, the Lévy measure L, on [0, c0)'—
{0} of the conditional distribution of the process ¢t — (A; (21), ..., A; (%)) is given by,

for (z1...,x;) € [0,00)" — {0} (note that max (z;...,2;) #0)

Ly ([21,00) X ... x [11,00)) = (max (xl...,x,))—a/o | "

This will be a special case of Theorem 3.3 below, but can also be verified directly.

Next consider limiting behavior of M, (a,z). Recall that

[nt]
M[tzt] (anz) = ZI{a;15k5z<a,;15k+a;1Tk}{fk’
k=1

Mcfo (anz) = M]t/'(anz) (anz) = ZI{a;15k3z<a;15k+a;1Tk}§k
k=1

where & are iid nonnegative random variables. We shall assume that
E[¢]] < oo for some 6 > . (30)

Theorem 3.3 Let the sequence &,k > 1, be as above. Then for any z,1 < ... < zy
such that (zn1, -y 2Zn1) = (21, -y 21) with 21 > 0,

t —> (a;ls[nt]+1, M[jl.t] (anznl) g eeny M[tlt] (anznl))
= (S(t),M} (1),..,M (%)) in Dgi+: [0,00),

where, conditional on S (t), the process t — (M (21) , ..., M} (2;)) is conditionally addi-
tive with the Lévy measure Ly on [0,00)" — {0} given by, for (z1...,a;) € [0, 00)" — {0},

L ([x1,00) X ... X [7,00)) = P [&; > max (21, ...,xl)]/o (zy— S (r)) “dr.
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In addition, for zg < ... < zg such that (21, ..., 251) — (21,...,21) as s — oo with
z1 >0,
(M (szs1) ..M (s24)) = (M (21), ..., M} (%)) as s — oo,
Proof. We verify the conditions (C1) - (C3) of Section 2 above, where note that in

the present context the component Z,, in the array { Xz, Yok, Zuk, £ = 1,2, ...} is absent

R . _
and we take Y, = ijl 9]1{@15109]_<a;15k+a;1Tk}§k

First consider (C1). Define, for (..., ;) € [0,00)" — {0},

for reals 0;.

[nt]

L[nt] (xla '-axl) = ZPT1,§1 [I{aﬁlskfzj‘<a;15k+aﬁlT1}§1 > Ty, .7 = ]-a :l
k=1

1
= — Z gn (a,r_llSk)
n
k=1
where
In (T) = nP [I{rgzj<r+a;1T1}§1 >z, j =1, ,l]
— P [51 >0, I rrarim} 6 > 5 5= 1, z] .

Here the second equality follows because (zi...,z;) € [0,00) — {0} implies z; > 0 for
some 1 <4 <[, so that the event {I{T52j<,r+a;1Tl}€1 >x5,] =1, ...,l} entails & > 0.
First suppose that z; > 0 for all 1 <4 < [. Then,

P [I{TSZj<r+a;1Tl}§1 > xj, =1, ---,l]
= P [r <z <r+ a;lTl, & > max (11, ...,xl)]
= P I:gl 2 max (fEl, ...,fL‘l), T S Zj <r +a;1T1, ] — 1, ,lj|

= P& > max(z,...,5)|P[r<z <r+a,Ty, j=1,..,1]
where, noting that min (21, ..., 2;) = 21, max (21, ..., z1) = 2,

P [7‘ <z < T+a;1T1, Jj = 1,...,l]
= P [r < min (21, ...,2;), max(zy,...,2) <r+ a;lTl}

= P [a;lTl >z — ’f'i| = F(an (Zl - T)) .
Therefore,

sup |9n (1) = h (r)| =0 (31)
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where we let
h(r)=(z—r)"*P[& > max (z1, ..., x1)] -

(Note that r < z; < 2.)
Now consider the general case in which some of z; = 0 but max (zy, ..., z;) > 0. For

concreteness, suppose that x1 = 0 and x5 > 0,...,z; > 0. Then

P [I{r52j<r+a;1T1}£1 Z Xy, j = 1, ,l:| =P [I{T§Zj<r+a;1T1}§1 2 L, ] = 2, ,l] .

Hence (31) holds because max (2, ..., ;) = max (x1, ..., z;).

Thus
[nt] [nt]
1 1 1 . [nM]
iy A n(@n Sk) =~ ) hla, Si)| < sup |g, (1) — h (r)| — 0.
ogtgpM nkz::lg ( k) nkz_:l ( k) n Tp\g (r) ()]

Now note that in view of Proposition 2.2,

[nt] t
a;lS[m],%Zh(a;lSk) Tl <s t), / h(S (z))dz).
k=1 0

Here we have used the fact that (z; —7) > (2, — 21) > 0, and therefore A (r) is uniformly
continuous and uniformly bounded. This completes the verification of (C1).
Next, we note that in the present context (C3) follows from (C1). To see this note

that, with Ynk = I{a;ISk§z<a;15k+aﬁlTk}§k for simplicity,

Ppoi [Xok >0, Yor 2] = Plag' X1 > 0] Py [I{a;15k5z<a;15k+a;1Tk}‘5’“ = 77}

= P [a';le > 77:| PT1,£1 [I{a;15k§z<a;15k+a,§1ﬂ}51 > 77]

for any n > 0, where P[a,'X; > n] — 0 and Y Pr, ¢, [I{azlskgzm;lsﬁa;ln}51 > 77} is
stochastically bounded by (C1). Hence 3" Py_1 [Xnx € I, Yyr € Io] 5 0 for any bounded
closed I; and I, in (0, 00).

It remains to verify (C2). It is enough to consider Y, = I{azlsk5z<a;15k+a;1Tk}§’“'
Here Y, < € means either Y, = 0 or & < ¢. Hence

Ey1 [Yarlpyp<q] < E [I{agl S.<s<as's, M#Tk}gkﬂ{gkq}] <ePla,'Sk <z <a,'Sp+a,'Ti]

where in view of Lemma 2.3, >_ P [a,, 'Sy < z < a,;' Sk + a,,'T1] is bounded. This verifies
(C2) and hence the proof of the first statement is completed. As in the proof of Theorem
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3.1, the second statement follows from the first statement, completing the proof of the
theorem. W

Next consider limiting behavior of Af , (an2). Recall that

[nt] [nt]
Ay (@n2) = Iig,<apzy min (Tk, anz — S) & = Y min (Ti, (anz — Sp) ") &
k=1 k=1

where & are as previously satisfying (30).
Theorem 3.4 Let the sequence &g, k > 1, be as in (80). Then for any zp1 < ... < 2y
such that (zn1, .oy 2Z1) = (21, .oy 21) with 21 > 0,

t — (a'y_LlS[nt]+1a a’rleE(nt] (anznl) 3oty a'r_LlAE(nt] (a'nznl))

= (S(t),4A (z1),.... A} (z1)) in Dgi+i [0,00),

where, conditional on S (t), the process t — (A (21) , ..., Af (21)) is conditionally addi-
tive with the Lévy measure Ly on [0,00)" — {0} given by, for (z1...,z;) € [0, 00)" — {0},

Ly ([z1,00) X ... X [z,00))
t
— (maX (Il, . .Tl)) A E§1 |:€1 I{(zj—S(v))+usz, jZl,...,l}] dU,

where Eg, stands for the expectation with respect to &;.
In addition
Z— a;lAfm] (anz) = A} (2) in Dg |0, 00)

for each 0 <t < o0, and
2+ s TAX (s2) = A% (2) in Dg[0,00) as s — oo.

Proof. As in the proof of Theorem 3.3, we need to verify (C1) -(C3) of Section 2
above. First consider (C1). Define, for (z;...,z;) € [0,00)" — {0},

[nt]
Ling (21, -, 21) = ZPTl,& [min <a;1T1, (zj — a;lSk)+> &L >z, j=1,..,1
k=1

[nt]
= Y o (;150)
k=1

where

In (T) = PT1,§1 I:ar,:lTlfl 2 Zj, (Z] - ’f’)+§1 2 Zj,, .7 = 17 7l]
= PTl,fl [a;lTlgl 2 maXx (331, ...,l‘l), (ZJ — ’I‘)+ 61 Z Zjy, _] = ]_, ,l] .

23



Let
J C [0,00)" — {0} be the set of all continuity points of

(X1.ey ) —> Ly ([21,00) X ... X [17,00)) .

It is enough to show that
_ dd
(a’nIS[nt]; L[nt] (xla --axl)) f:> (S (t) 7Lt ([xla OO) X X [xla OO))) ’

where (¢, (21...,x;)) € [0,00) X J.
Now, for any x > 0,

Pla,'Ti& >z, a,'Ti& > 1, (2 — & >, §=1, oy 1]
— —1 X
_ / P [an T) > max <E’">] Tt ryusa, st} P (d)

where note that {(z] —r) Ty > zj, j =1, ...,l} entails u > 0, because max (1, ..., ;) >
0, that is, z; > 0 for some 1 < ¢ < [. Further

e [, e ()] - (s (21)

because max (£,7) > n and because sup,,, [nP [a;'T; > y] =y~ — 0. Thus

sup/ nP [a;lTl > max (g,n)} — <max (2,7]))7(1 1

where

sup — 0.

u

1 dFe, (du) =0,

{(Zj —r)tu>z;, j=1,..,

/ (max (% 7)) i {(zi-rytusas, j=1,.4} e (dU)

.....

Further (recall o < 8 ),

nP [a;lT@l > .f,CLT_LlTl S 77] S n$_0E Ua;lTlfl‘aI{a;lTlgn}}

= a8 (6] B [ Iy

® B [|§1|9] 7~ = 0asn— 0.
0—«

where we have used Lemma 2.4, according to which

0 a o' 1
E | |Ty| I{anglgn} ~ e_aafbnaP [T}, > apn| ~ mafbnen Ine
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Thus, if we let

h (T’) = (ma’X (xh sy xl))_a / ual{(zj—r)+u2$j, j:l,...,l}del (du) )

then sup, |ng, (r) — h(r)| — 0, and hence

sup |ng, (r) — h (r)] — 0.
0<t<M -

[nt]
sup zgn 7150 = 23 h (a1 | < M
k=1

Now, the function 7 — h () has a compact support. In addition it is continuous be-
cause (z1,...,x;) € J. Therefore, an application of Proposition 2.2 gives the convergence

with the required limit

t t 00
[ rsEnn = )™ [ w0, 2P @) o
B t
= (max (z1,...,7;)) /()Eg1 |:€1I{(Zj—s(’u))+u2$j,jzl,...,l}] dv.

This completes the verification of (C1).

In exactly the same way as in the proof of Theorem 3.3, (C3) follows from (C1).

It remains to verify (C2). It is enough to consider Y, = min (a;lTk, (z — a;lSk)Jr) &,
We have

Eeor [Yaelgy,, <o ]
< ET1,§1 [min (angl’ (z - aglsk)+> & (I[{aZIT1£1<e} + H{(zanlSk)+§1<e}):| )
Here
ZETl,& [min (a’r_LlTl’ (Z - ar_LlSk)+) g1]I{a;1T1£1<eﬂ
< nPrg |0, 6 g ] =0

as n — oo first and then ¢ — 0, because y — P [T1&; > y| is regularly varying with
index 0 < a < 1. In the same way, for every e, > 0,

Z ET1,§1 [mln (CL;LITl, (Z — G,T:IS];)—'—) §1H{(z—a;15k)+§1<6}:|
< nETl,fl [a’rlelglﬂ{aﬁlﬂﬁﬂv}] + enPTlafl [a’r_lelgl 2 77}

where, for each n > 0, enPr, ¢ [a,;'T1& > n] — 0 as n — oo first and then € — 0,
and nEr ¢ [arlelgl]I{ar_llTngn}} — 0 as n — oo first and then n — 0. Hence (C2)
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is verified, completing the proof of the first statement of the theorem. The remaining
statements also follow in the same way as in Theorem 3.2. This completes the proof of
the theorem. W

4 THE CASE I1

In thiscase 0 < S < a <1, or0< f =a< 1 with £

G(an)
requirements are assumed in this section without further mentioning). Throughout this

K (ay) = (a").

(an)

We first consider the limiting behavior of M, (a,2). For this purpose, we let

— 0 as z — oo (these

section we let

Bl

Q)

M[ﬁt] (a”'z) = K (an) M[nt} (anz)

= ‘/[nt] (anz) + V K (an)W[nt} (anz) 3

where -
nt
Vint) (anz) = £ (an) Z H{aﬁlskﬁz}é (a’n ('Z - aEISk))
k=1
and
[nt]
Wing) (an2) = v/k (@n) D Gk (an2)
k=1
with

G (anz) = (]I{a;lskSz<}H{z<a;15k+a;1Tk} ~Tartse<} G (an (2 = “EIS’“))) '
Note that
M¥ (a,2) = Mﬁ(anz) (anz), Wu(an2) = Wha,z) (an2). (32)

We define M¥ (sz) and Wy, (sz) to be the same as MZ (a,z) and Wy (a,2) with s
substituted for a,,.

Theorem 4.1 For any z,1 < ... < 2y such that (zp1, ..., 201) — (21, ..., 21) with
z1 > 0,

(afy_LlS[nt]—Ha M[i:t] (anznq) aW[nt] (anznq) =1, .. l)
> (

S (1), MF (20), Wi (2) ;g =1,..,1) in Dgasa [0,00),
where

MY (2) = /O Lis(ry<zy (2 — S (r) P dr

26



and, conditionally on S = (S (t) ;0 <t < 1), the process (t, z) —> W, (2) is conditionally

Gaussian with
min(ty,t2) s
E(W,(2)|S)=0, E[Wy ()W ()8 = [ Lsie (- S0) i s <,
0
In addition, with MZ (sz) and Wy (sz) as defined above,
z— (MZ (s2), W (s2)) L4 (MZ (2) , Wy (2)) -

Proof. We first show the convergence of finite dimensional distributions of the first

statement. Because & (a,) — 0, this is equivalent to

(a'y_LlS[nt]+1a V[nt} (anznq) ) W[nt] (anznq) q=1,.. l)

L4 (5t), MF (29) Wi () g =1,...,1), (33)

which we now establish. (Note that the preceding convergence, as well as that in the

statement of the theorem, entails & (a,) Mg (@n2) — Viag (anz) = 0.) As in the proof of

Theorem 3.1, without loss of generality we can take 2, = 2, foralln >1,1<q <.
We first prove, with the help of Proposition 2.2 in particular, that

[nt]

a;ls[nt],lﬁ(an) Z]I{afskgzq:}a (an (Zj — a;lSk)) , 1<i <3<
k=1

t
L4 (s t), / Lisry<ay (7 — S (7)) Pdr, 1<i<j < z). (34)
0

Consider, for § > 0,

[n1]

[nt]
G - 1 Z ij) [ —
K(an)zﬂ{aﬂ;lskfzi—(s}G (an (ZJ _a’nlsk)) — E gﬁij(j) (anlsk)
k=1 k=1

where we let (a )
(i4) — G (7% Zj — U
u) =nkF (a,) Ty<,.— — )
gn,(5 ( ) ( ) { <z; 5} G (an)

We have nF (a,) — 1 and

G (0 (2 — )
G (an)

Thus, noting that u < z; — ¢ entails z; —u > ¢ because z; < z;,

— (2 — u)™” uniformly over Zj —u > 4.

1 nt] 1 [nt] 5
oi}tlspM n ;93,? (angk) T ;H{US%—J} (ZJ' - a;lSk)

< Msup g0} (u) — Lyuzs sy (2 — “)_6‘ —0

u
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for every M > 0. Hence applying Proposition 2.2 we have
@ Spua Zg (a7'Sk), 1<i<j<i

t
EL (S (t) ,/ Tfu<z—oy (25— S (r) Pdr, 1<i<j< l) : (35)
0

In addition, according to part (i) of Lemma 2.3, for all 1 <4 < j </,

[nt]
E & (an) ZI[{Zi—5<a;15kSZi}§ (a’" (Zj - a’r_blsk)) —0 (36)

k=1

as n — oo first and then 6 — 0, and similarly f(f I —6<sry<zy (25 — S (r) P dr %0 as
d — 0. Thus, in view of (35), (34) holds.
Now, note that

ZEk 1 [Gnk (26) Cak (25)] — K (an Z]I{a—15 <z }G (a” ( j CLEIS’C))
[nt]

= k(an Z]I{a ISe<a) {G (an( —a, Sk))} =0 (37)

because of (35) and, in view of (36) (note G (a,8) — 0 ),

[nt]
K (an) Z H{aﬁlSkSzi—J} {a (a" (zj - aglsk)) }2

< G U,n U,n Z]I{aﬁlsk<z 6}G (a”( aTZlSk)) ﬁ> 0

Having obtained (34) and (37), we next invoke Theorem 2.1. For this purpose, let

Znk = /K (ay) 2221 8,Ck (anzq), so that

l [nt]
Z qu[nt] (anzq) = Zan;
q=1 k=1

where 0,,¢ =1, ..., 1, are reals. Clearly Z,, are martingale differences such that
ZPk_l [ Zni| > 1] 20 for every n > 0

because « (a,) — 0. This implies, because Z, are uniformly bounded in absolute value

by a constant, that the condition (C4) holds. In view of this together with (34) and
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, the conditions o eorem 2.1 are satisfied (with the component _4 Yk absent,
(37), the conditions of Th 2.1 isfied (with th Sy, ab
and hence (C2) and (C3) are not required). Hence

(agls[nt]-}-l; W[nt] (anzq) yq = 1: ) l) g (S (t) 7Wt (Zq) yqd = 17 S l) :

This in turn implies the convergence (33), in view of the same arguments involved in
obtaining (34) based on Proposition 2.2 using a;, ' Sju B (t)-

The tightness in Dgai+1 [0, 00) follows in exactly the same way as was done in the
proof of Theorem 2.1 based on Aldous criterion. We note that this criterion holds for the
component M[fft] (anzg) because it is increasing in ¢ and its limit M’ (z,) is increasing
and continuous in ¢, see Jacod and Shiryayev (1987, Ch. VI, Theorem 3.37 (Statement
(a)), page 318)). This completes the proof of the first statement of the theorem. Using

the same arguments in the proof of Theorem 3.1, and in view of (32), the last statement

z+— (MZ (sz) , Wao (2)) L4 (MZ (2) , Wy (z)) also follows, completing the proof of

o0
the theorem. N

Note that last statement of Theorem 4.1 above contains the statement
M% (s2) L2 ME (2)  as s — oo (38)
Similarly the last statement Theorem 4.2 below contains the statement
/z MZ (su) du = /ZMfo (u)du in Dg[0,00) as s — oo. (39)
0 0

These two results are already contained in Mikosch and Resnick (2004, Corollary 2.7
and Theorem 4.4). W
In the next result we obtain both the first order and the second order limiting be-

haviors for Apny (anz2), in parallel to Theorem 4.1. To state the result, let

A[#fbt] (anz) = ar:lﬁ (an) A[nt] (anz) .

Recall that, with Vi, (a,u) and Wy, (a,u) as defined earlier,
Ait] (anz) = /0 M[ift] (anu) du
= / Ving) (anu) du + /& (ay) / Wiy (anu) du
0 0
= [ Vi 0w -+ VT W (002), (40)
0

where

W[_T;ft] (anz) = / W (anu) du = anl/ Wi (u) du.
0 0
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Further we define A% (sz) and WZ (sz) to be the same as A% (a,z) = Aﬁ(anz) (a,z) and
W (anz) = Wﬁ,&(anz) (anz) with s substituted for a,,.

Note that the limits occurring in the statement are the appropriate integrals of
those of Theorem 4.1, as is to be expected. Indeed it is possible to obtain the finite
dimensional convergence as a consequence of Theorem 4.1 by verifying the conditions of
the Proposition 2.2, but establishing tightness in the Skorokhod space for the component
W[fft] (anz) requires some extra work, which work essentially constitutes the proof given
below.

Theorem 4.2.For any z,1 < ... < zy such that (zn1, -y 2) — (21,..,21) with
z1 > 0,

(agls[nt]-l-la AE?;:] (anznq) ) W[fﬂ (anznq) q=1,.., l)

— (s (1), A (z) , WF (2,),q =1, z) in Dyais: [0, 00)

where Wy (2) = [ W, (u) du and
# L/ 18 "N
B 0= 15 [ Lswea (o= S0 Pdr = [ MF ()
0 0
with MI* (u) and W, (u) as defined in Theorem 4.1. Further

min(tl,tz)
B [WE G WE E)|S] = [ sl (5 () dr

where
h(zi,z]-) (U) = ﬁ ((Zz — U) (Zj _ u)l—ﬂ . 5 (Z,L — u)Z—/B> .

In addition, for each t > 0,

zZ— Ait] (anz) => AF (2) in Dg|[0,00),
and, with A% (sz) and WZ (sz) as defined above,

2 (A% (s2), W# (s2)) 22 (A% (2), WE (2)), A% (sz2) = A% (2) in Dg[0,00).

o0

Proof. The main steps of the proof parallel those of the proof of Theorem 4.1. We

have
[nt]

W[ft] (anzq) = Z G (Zq)

k=1



where, with (i (a,u) as defined earlier,
Gal) = Ve [ G(own)du
= VK (CLn)H{GZISkSZ} (min (a;lTk, z— a;lSk) — EBn, [min (a;lTl, z— a;lSk)]) .

Now, for reals 6,,q =1, ..., , consider Zflzl HqW[ft] (anzq) = Ej‘jl Z o Where

l
Ik = Z OqCak (24) -
qg=1

Clearly Z,, are martingale differences. Because « (a,) — 0 and because () (z,) is
bounded by 2z,+/k (a,), it is also clear that

ZP’“—l [ Zpel > 1] 20 for every n > 0.

We next show that

[nt] l
_ dd
an [nt]+1, E Ei_ 1 nk ( ; E

l t
U;Uj /0 Lisry<ziy Pz ) (S (1)) dr
1

1=1 1= 41)
where A, ..) (u) is as in the statement of the theorem. For this purpose, note that
11
ZEk 1 nk ZZQ,H ZEk 1[Gk (2i) Cok (ZJ)]
=1 =1

where

ZEk—l [C:k (ZZ) C;:k (ZJ)] =nkF (an) EZ {an15k<2} (gnl,] ( ap, S ) gnZ’J ( ap, Sk))

k=1 k=1
with

(.9) —_1 Er, [min (a 'Ty, z; — w) min (o 'Ty, 2z; — u
and )
gﬁé’j) (u) = = Er, [min (a;lTl, 2 — u)] Er, [min (a;lTl, zj — u)] )
G (an)

We have

é (a’n) g'r(zl,]) ( ) = a’;QETl [H{a£1T1Szi—U}T12:| + al;l (Zi B u) ETI |:]I{Z¢—u<aﬁlT1§Zj—U}T1:|
+ (zi —u) (25 — u) G (ay (zj — u)) .
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According to Lemma 2.4 of Section 2, for each constant 1 > 0, the following approxima-

tions hold uniformly over z; — u > 7,

2-p

1 9 ,
@(an) a, ET1 I:]I{a;ITISZi—U}Tl} — 5 _ /B (ZZ _ U) — 0’

Gty En [Hvasinzeny T - 25 (=0~ @ - w)'?) o

In addition, uniformly over z; — u > 7,

1
—Gl(ay, (z; —u)) — (z; —u 0.
Sy on (5 =) = (3 =)
Thus for each n > 0 we have, uniformly over u,
1 . .
sup ‘@( )]I{uszi—n} {ET1 [mln (aanl, 2 — u) min (aanl, 2 — u)] — b z) (u)}‘ -0
where
6 2— /B (Zz - U,) 1— 1—
Pz (W) = 2—5(Zi_U) ’H—i-ﬁ ((zj—u) P — (2 —u) ﬂ)

+(zi—u)(z—u) ",

(This expression for A, ..) (u) coincides with that given in the statement of the theorem.)

Thus by invoking Proposition 2.2 exactly as in the proof of Theorem 4.1, we have

l l [nt]
_ 1 -
”18[nt]+1’ZZnF (an) ; ZH{Gn Sk<z 77}97(11’]) ( nlsk)

=1 =1

( ZZ“% / Lis(ry<zs—ny (e zy) (S (7 ))dr) (42)

i=1 =1

a

Next note that
[nt]

K (an) Z ]I{z,-fn<a;15k§zi}ET1 [min (a;lTl, 2 — a;LlSk) min (a;lTl, zj — a;lsk)]
k=1

[nt]

< zik (ap) Z ]I{Zi_n@;151991_}ET1 [min (a,'T1, 2z — a,'Sk)] = 0 (43)
k=1

as n — oo first and then n — 0, where — 0 is obtained using the arguments (based on

Lemma 2.3) contained in the proof of Theorem 3.2. In the same way, for some constant
C >0,

t

t
/0 Lo estyaghions) (S () dr < / Lmnestean (C+ (5= S () ) dr 50

0
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as n — 0. Moreover,

[nt]
K (an) Z]I{Zi_")<a;15k52i}ET1 [mln (a’r_LlTl’ Zi — a,;lsk)] ETl [mln (a;lTl, Zj = a;lsk)} — 0
= (45)
because the same bound in (43) holds here also. In addition
[nt]
K (ay) Z ]I{aﬁlskfzi—n}ETl [min (a,,'"T1, 2; — a; ' Sk)] Ery [min (a,,'T1, zj — a,, ' S) ]
k=1

[n?]

< Ep [min (angl, n)] Kk (an) ZH{aZISkSZi—n}ETI [min (angl, 2 — a;lsk)] — 0 (46)
k=1

because Fr, [min (a,'T}, 2)] — 0 and because, using the same arguments involved in
obtaining (42), & (a,) S ]I{aglskgzi—n}ETl [min (a;'T1, z; — a, ' Sg)] is stochastically
bounded. Thus, in view of (42) - (46), (41) follows.

Now (41) together with 3 Py_1[|Zu| > 1] = 0 entail, using Theorem 2.1 in the

same way as in the proof of Theorem 4.1, that

fdd

(a;lS[m]H, W[ft] (anzq),q =1, ..., l) = (S (t), W# (24),9=1, ..., l)

where, conditionally on S, the process (¢,z) — W (2) is conditionally Gaussian as
specified in the statement of the theorem. This implies, using the same arguments
(with the help of Proposition 2.2 in particular) involved in (42) - (46) that led to this

convergence, that
2q
(anls[nt]-kla/(; ‘/[nt] (anu) d’U,, W[:’z:t] (anzq) yq = 1a ey l)

144 (S(t),/ozqw (u) du, W (2,),q = 1,...,1)

holds, where note that

[nt]

[ Vi @y = 5 00) D" P [ (0732 53]
0 k=1 -

and
; u)au 1 ; {S(r)<z} z — T T.

The convergence of W[ft] (a,z,) implies, in view of (40) and because & (a,) — 0,
A:I[jélt] (anzq) — /o Ving (anu) du 2 0.

33



This then gives the J4 part of the first statement of the theorem.

Thus to complete the proof of the first statement of the theorem it only remains to
obtain the tightness in Dga+1 [0,00), but this is done in the same way as is indicated in
the proof of Theorem 4.1 (note that the component A#Lt] (anz4) is increasing in ¢ and its
limit A¥ (z,) is increasing and continuous in ¢.)

Using the same arguments in the proof of Theorem 3.2, the remaining statements
are also obtained. (Note that Aﬁit] (anz) and A% (sz) are monotone in z and their limits
are continuous in z.) This completes the proof of the theorem. M

As in the earlier Case I, we next consider M, (as2) and Aj ; (an2). Recall that
these involve nonnegative iid weights &. The next result will assume a further moment
restriction on &, and gives what may be called the first order approximations.

Theorem 4.3. Assume that pe = E[§] < 0o. Let Vipg (anz) and Apy (an2) be as
in Theorem 4.1. Then, for each t > 0,

K (an) My (anz) — peVing (anz) 50 (47)
and
a, 'k (a,) Al (anz) — ,ug/ Ving (anu) du 5 0. (48)
0

(The limiting behaviors of Ving (anz) and a;t Apy (anz) are given in Theorem 4.1.)
Proof. In view of Theorem 4.1, & (a,) chn:t]l H{a;15k52<a;15k+a;1Tk} —Ving (anz) 2 0,
and hence to prove (47) it is enough to show that

[n1]

K (an) Z H{a;15k5z<a;15k+a;1Tk} (& — pe) 0. (49)
k=1

Define
&k = &kl 1, <(uany ) 0 <A<
Note that « (a,) [ {4 Sy<z<ar Setan T} (énk — E'[€n1]) are martingale differences and the
sum of their conditional variances is
[nt]

(Ii (an))Q Z H{a;15k5z<a;15k+a;1Tk}E [(fnk - F [57”])2]

[nt]
2 -2
< (K (an)” (6 (@) 7 g D Tgumig cocarsrariny} = O
k=1

34



where we have used B (& — B [&u))’] < PIE,] < (s (a0))™ g and (s (an)'™ = 0,
together with the fact that x (a,) Y 1L[a;lsk<z<a;1 Si-tariTi} is stochastically bounded.

Thus
[nt]

K (an) Z]I{aglskgz<a;15k+a;1Tk} (&uk — E [€m]) 2 0.
=1

This implies (47) because & —&,y, is nonnegative with the expected value pe—E [£,1] — 0.
The proof of (48) is similar. We need to show that

[nt] 2
p
k (an) Z (A H{a515k5u<a515k+a;1Tk}du> (gk - ,ng) — 0.
k=1

2
z V4 .
Because (fo H{aglskgu<a;15k+a;1Tk}du> <z, H{a;15k§u<a;15k+a;1Tk}du, the required

proof is the same as that of (47). This completes the proof of the theorem. N

The statements in Theorem 4.3 may be viewed as first order approximations to
My (anz) and A o (anz). We next obtain second order approximations analogous to
those in Theorems 4.1 and 4.2, under the condition E [¢?] < oo (or more generally if &
is in the domain of attraction of a normal distribution). Unfortunately we are unable
to obtain analogous result under more general moment conditions. We note that the
conditional covariance function of the limiting process (t, z) — W, (2) in the statement
below is the same as that in Theorem 4.1 except for a multiplicative constant.

Theorem 4.4. Assume that E[§}] < oco. Then for any z, < ... < zy such that

(Zn1s ey Zn1) = (21, -y 21) with 21 > 0,
(agls[m]ﬂ, K (an) (M[Zt] (an2ng) — e ( (an)) ™ Ving (@n2ng)) ,q = 1, .., l)
— (S (1), W, (2),q =1, z) in Dgrs1 [0, 00)
where, conditionally on S, the process (t,z) — W, (2) is conditionally Gaussian with

E [Wt (z)‘ S] = 0 and the conditional covariance

. . min(t1,t2)
E [th (2i) Wi, (25) S} = E [¢]] /0 Listry<zy (2 — S (r) P dr, 2 < 2.

In addition,
2> /K (s) (M:o (sz) — %Vw (sz)) 4 Wi (2) ass— 0.
K (s

Proof. Recalling Vi, (a,2) = & (an) ylnd ]I{aglskgz}@ (an (z — a,'Sk)), we have

Py [nt]
o) (M (002) = Vi (002)) =30 G 2
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where

an (Z) = K (an) {H{a;15k§2<a;15k+a;1Tk}gk - MgI[{GT—LlSkSZ}a (an (z — a;LlSk))} .

We first verify that, for each z > 0,

ZPk 1[Gk (2)] > ] = 0, (50)
and, for reals 64, ..., 0,
1 [nt]
CLEIS[nt], Z Z 0,0, Ex—1 [Cok (%) Gk (25)]
i=1 j=1 k=1
» Il - -
Ju (s ©,3° % 0:0,E [wt () W, (25) s]) (51)
i=1 j=1

where E [Wt (z) Wt (25)

S] is as defined in the statement of the theorem. Because

[nt]
Z E1 [Gak (21) G (25)]
[nt]
= E K (an ZH{G_15k<Z}G (an( , a,;ISk:))
[nt}
o) 3 V) o (037 4)) @ o 3 07154)

(51) follows from the arguments contained in the proof of Theorem 4.1.
Regarding (50), note that according to Theorem 4.3, by identifying & with &2, and
by using Theorem 4.1,

]
fdd
An (t) =K a’" ZH{an15k<z<a;15k+a_1Tk}§2 (t)
k=1
where we let A (¢ [E21MF (2) = E[€2] fot Lisiry<zy (2 — S (7)) P dr. (Mf (2) is de-

fined in Theorem 4.1.) In addltlon note that, for each n > 1, A, (¢) is nondecreasing in
t and its limit A (¢) is increasing and continuous in ¢. These facts will entail that, for
each M > 0,

sup |An (u) - An (U)| £> 0
lu—v <b,|u|<M,v|<M
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2 2oy

as n — oo first and then 6 — 0. Hence sup;;<py % (an) H{a;15k§z<a;15k+a;1Tk}§k

for every ¢t > 0, and hence

2 P
1§Sku§I[)nt] K (an) ]I{a;ISkSZ<a;ISk+a;1Tk}§k = lsskusf[)m] K (aln)]I{a;ISk5z<a;15k+a;1Tk}§k = 0.
In addition we have Sup; <y n(an)ﬂ{aglskq}@ (an (z — a;'Sk)) < kK (an) — 0.
Hence

sup  |Cur (2)] 0.
1<k<[nt]

It can be seen that this is equivalent to (50). As in the proof of Theorem 4.1, this
completes the proof. W

The next statement gives the result for AE‘nt] (anz). It is completely analogous to
Theorem 4.4, by invoking Theorem 4.2 in place of Theorem 4.1, and therefore its proof
is omitted.

Theorem 4.5. Assume that E[£] < oo. Then for any z, < ... < zy such that

(Zn1y ey Zn) = (21, -y 21) with 21 > 0,
(GZIS[nt]H, K (an) (aﬁlAfm] (anznq) — Mgk (an)/ V[nt] (a'nu) du) yq=1,.., l)
0
— B '
— (5 (t), WF (2,),q = 1,...,1) in Dgis1 [0, 00)

where, conditionally on S, the process (t,z) — W# (2) is conditionally Gaussian with
E [Wf& (z)‘ S] = 0 and the conditional covariance

__ __ min(tl,tz)
E Wi (z) W}, ()| 5] = B [¢}) / Listryeathiensy) (S (1) dr, i < j

with hz, z;) (u) as in Theorem 4.2.
In addition,

ZHF( ~1 4+ ( m()/ozvoo(su)du>ﬂ>%(z).

5 THE CASE III

Here 0 < 5 < 1 and px = E[X;] < co. The results as well as their proofs of this
case may be viewed in close analogy with those of the Case II, to the extent that it

would be sufficient to illustrate the statement of one result.
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More specifically, we now take
1
ap =N, RKlQp) = ——,
(an) nG (n)
and let all the processes Vi (n2), M[fft] (nz), Wy (nz), Ait] (nz), W[fft] (nz) be as de-
fined in Section 4, that is, the only difference being that a, is replaced by n.

Then all the statements of the results of Section 4 (with a, and &« (a,)
taken to be as above) remain true for the present case. The limiting forms
occurring in these limit theorems will also remain the same except that the
process S (r) will need to be replaced by the constant ruyx, in view of the fact
that

sup |n_1S (r) — T/,Lx‘ 20  forall M >0,
0<r<M

which follows because n~1S (r) is increasing in 7 and n='S (r) & rux for each r > 0.

As an illustration, we now state the result in analogy with Theorem 4.1 (and similar
restatements of the remaining results of Section 4 are omitted.): For each z > 0 and
t>0,

t
M, (n7) B M (2) = / Lpuy sy (2 = rix) =" dr,

and in fact, for each z >0 and M > 0,

sup ‘M[fﬂ (nz) =M (2)| & 0.
0<t<M
In addition
M¥ (sz) 5 M% (2)  as s — oo. (52)

Further, for any zp1 < ... < zy such that (zn1, -y 2n1) — (21, .-, 21) with 21 > 0,
(W[m] (nzng) ,q =1, ...,l) = (W; (2,),¢=1,...,1) in D [0,00),
where the process (t,z) — W, (2) is Gaussian with
min(tl,tz) 8
EW, (2)] =0, E[W, (2:) Wy, ()] :/ Lpx<ay (25 —rpx) " dr, 2 < z.
0
In addition,

2z — Wi (s2) L4 w,, (2) ass— o0, (53)
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where

wx' 2
EWy (2)] =0, E[Wq (21) Wy (25)] = / Tirux<ziy (25 — rux) P dr, 2z < 2.
0

(As noted earlier, the statements (52) and (53) are already contained in Mikosch and
Resnick (2004, Propositions 3.1 and 3.2).) The arguments of the proofs are also almost
identical except that the second part of Lemma 2.3 will need to be invoked in those

places where the first part was invoked in Case II.

Note that
M =y [ e
= -8 (2 - -t n ), (54)
t
E Wy, (z21) Wy, (22)] = /0 Lirpx<ay (22 — T,be)i’g dr for t; <to, 21 < 29.
= ux' (1-p)" {Z;ﬂ — (22 — tipx A 21)1_,3}
and

E Wy (21) Wy (22)] = px (1 — B! {z%_’g — (20 — zl)lfﬂ} . 21 < 2.
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