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N.S. Narasimha Sastry and R.P. Shukla

Abstract
We determine the socle and the radical series of the binary code associated with
a finite regular generalized quadrangle of even order, considered as a module for the

commutator of each of the orthogonal subgroups in the corresponding symplectic group.

1 Introduction and Statement of the result

Let V(q) = ]Fg, g = 2", be the vector space of dimension four over I, endowed with a
non-degenerate symplectic bilinear form 7 and W(q) denote the incidence system with
the set P of all one dimensional subspaces of V (q) as its point-set, the set L of all two
dimensional subspaces of V' (¢) which are isotropic with respect to ki as its line-set and
symmetrized proper inclusion as the incidence. Then, W(q) is a regular generalized
quadrangle of order ¢ ([12], p.37). Further, elements of the symplectic group G defined
by & act as incidence preserving permutations on the sets P and L.

Let k be an algebraically closed extension field of F,. We denote by C the image
of the kG—module homomorphism from the permutation G— module k% on L over k
to the permutation G— module k”on P over k, taking | € L to ) ,p € k”. The
endomorphism of kF taking each element of P to the ‘all-one’ vector 1 = Zpepp in
k¥ is a G— module homomorphism onto the trivial G—submodule k1 of kF. If Yp is the

kernel of the ‘augmentation map’ from k” to k taking p € P to 1 € k , then
k" =kle Yp.
Since every element of P is incident with ¢ + 1 elements of L, it follows that 1 € C and
C=k1aC,

where C = Yp N C. The Loewy structure of the kG—module C is determined in ([14],
Theorem 2, p.486). Here, we determine the Loewy structure of C as a k§(f)-module,
where (f) is the commutator subgroup of the orthogonal group O(f) C G defined by a
non-degenerate quadratic form f on V(¢) polarizing to i. That is, i (z,y) = f (z + y) —
f(z) — f(y) holds for all z,y € V(q). There are two such quadratic forms on V'(g), up
to G—equivalence (see [3|, Theorem 6, p.214). They are distinguished by the presence
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(hyperbolic case) or otherwise (elliptic case) of isotropic projective lines in the set V,(f)
of zeroes of f in the projective 3— space P(3, ¢) over F,; that is, they correspond to the
cases when the Witt index of f is 2 or 1 ([3], 4.1, p.218). The subgroups O(f) and Q(f)
of G are isomorphic to (SL(2,q) x SL(2,q)) - 2 and SL(2,q) x SL(2,q), respectively,
when the Witt index of f is 2; and to SL(2,¢?) - 2 and SL(2, ¢*), respectively, when the
Witt index of f is 1.We also mention that Sp(4, ¢) contains exactly 2 conjugacy classes
of subgroups of each of the types SL(2,¢?) and SL(2,q) x SL(2,q) (see [6], Corollary,
p.247).

To state our theorem, we describe the simple kG—modules. Let N = {0,1,---,2n —
1}, with addition taken modulo 2n. Let V =V (q) ® k ~ k* and extend the symplectic
form & to V. Then G is the subgroup of the algebraic group Sp(V) ~ Sp(4, k) fixed by
the n—th power of the Frobenius map o (which is the ‘square-the-matrix-entries’ map
on GL(4,k) ). It is well known that Sp(V') has an endomorphism 7 with 72 = o ([19],
Theorem 28, p.146). For any non-negative integer i, we denote by V; the Sp(V')- module
(i-th Frobenius twist of V') whose vector space structure is the same as that of V' and
an element g of Sp(V) acts on V; as 7%(g) acts on V. For I C N, let V; denote the kG-
module ®;c;V,; (with Vy = k). Then, by Steinberg’s tensor product Theorem ([18], §11),
{Vr: I C N} is a complete set of inequivalent simple kG-modules.

Let N; ={0,1,---,n — 1}, with addition taken modulo n. For I C N, define I, =
{ie Ny:2iel}andI,={i € N;:2i—1 € I}. For n > 1, we denote by N the set of all
subsets I of N which has no consecutive elements, that is, all I such that I, and I, are
disjoint and if i € I, then i+1 ¢ I,,. For each subset I of N7, the subset Ny \ (JU{i+1]i €
I}) of Ny will be called the admissible complement of I and will be denoted by 7. We
observe that for I C Nj, the subset K = {2i: 4 € I} U{2i —1:4¢ € I*} is the unique
maximal subset of N such that K, = I and K, = I*. Also, I*“ = if |I| > n—1 or if
N\I={i,j},i<jand j#i+1. Foreachm € {0,1,--- ,n—2,n}, let A,, denote the
set of all subsets I of Ny such that || = m. We observe that A, = {0} and A,_; = 0.
For a module M admitting a chain of submodules M = My, 2 M; O --- O M,, we
indicate the chain of factor modules E; = M;/M;,; as E,_1\---\Eq or Ey/---/E,_;.
For a kG-module M, we write M as rad’(M), denote by rad'(M) the radical of M
(that is, the smallest submodule of M with semi-simple quotient) and, for a positive
integer 4, define the i-th radical rad'(M) of M recursively as rad' (rad**(M)). Dually,
we write soc’(M) = {0}, denote by soc' (M) the socle of M (that is, the largest semi-
simple submodule of M) and, for a positive integer 4, define the i-th socle soc'(M) of
M recursively by soc'(M)/soc= (M) = soc(M/soc'='(M)). The radical length (resp.ly
socle length) of M is the positive integer r such that rad"(M) = 0 but rad"~'(M) # 0



(resp.ly soc" (M) = M but soc" (M) # M). We refer to M/rad*(M) as the head of M
and write it as hd (M).

Theorem 1 (a) Let n = 1. As kQU(f) -modules,

(i) when f is of Witt index 1, Vy and Vi are semi-simple; C is multiplicity - free and
is isomorphic to the direct sum of Vo and a kQ(f)-module X with head(X) ~ Vi and
rad(X) ~ k; and

(ii) when f is of Witt index 2, C is semi-simple and each composition factor of C
appears with multiplicity one.

(b) Let n > 2. As a kQ(f)-module,

(i) Vi is semi-simple for each I € N and C is multiplicity - free;

(ii) socle length of C is n+1 and its j*- socle layer soc’ (C)/soc’ *(C), 1 < j < n+1,
1$ 1somorphic to
S

IeN and |I,|=j—1

C = @ X,, and X,, = @ X,

me{oala"'zn_2!n} IeAm

where X, is the unique indecomposable kQ(f)-submodule of C with head Vi with K
denoting the unique element of N such that K, = I and K, = I°°. The radical length
of Xmr 18 m + 1 and its j-th radical layer rad’(Xpr)/rad™ (Xm1),0 < j < m, is

1somorphic to
D Vi

JEN, Jo=I, JoCI% and |Jo|=m—j

(iii)

and

(iv) sodd (Xp,r) = rad™ (X, 1),1 < j < m.
To prove this, we use

Theorem 2 ([14], Theorem 2) The radical series of C as a kG— module has length
2n + 1. The radical layers are

rad (C)/radt*(C) = @ Vi (0<j <2n)

IeN and |Ic|—|lo|+n=j

Moreover,
soc (C) = rad*™*7(C).



The crucial observation is that if E is a section of C which is a nonsplit extension of
Vi by Vi, then E is a nonsplit £ (f)-module if and only if L = K U {2t — 1} for some
t € Ny (see the the first para of the proof of b(ii) in Section 3). Thus either each or none
of the simple £S2 (f) —factors of V7, descends.

In Section 2, we study the structure of V; as a k2(f)-module and prove Theorem 1 in
Section 3. We also write the socle structure of C as a k) (f) —module forn = 1,2,3,4. We
view this work as part of the program of determining the module structure of permutation
modules for finite groups of Lie type. See ([15], [16]) and references in them for a few

other cases considered in the literature.

2 Vi as kQ(f)—modules

2.1.Throughout, we choose the nondegenerate symplectic bilinear form % on Fy x F; to
be

A((21, T2, T3, T4), (Y1, Y2, Y35 Y1) = T1Ya + Tay1 + ToYs + YoTs.
The quadratic forms f, and fj on 15‘3 polarizing to i and of respective Witt indices 1 and

2 are chosen to be

1.2 1.2,
fe(w1, 29,3, 74) = 174 + o x5 + ox3 + @9 235 and

fn(x1, xe, T3, T4) = X124 + Tox3,

where « is an element of F2 \ F, such that a4+ a4 = 1.

This choice of f. and f, entails no loss of generality in view of the uniqueness of
a nondegenerate symplectic form 7 on V (¢), up to GL (V (¢)) — equivalence (see [11],
Corollary 8.2, p.587); and the uniqueness of a quadratic form on V (¢) of a given Witt
index and polarizing to %, up to G— equivalence (see [3], Theorem 6, p.214 and [4], p.39).

2.2 The case f,: The polynomial a?"'23 + 2,23 + a?t123 is irreducible over F, but
factors as (s + afz3)(afz, + axs) over Fp. So, the zero set £ of f, in P(3,¢) is an
elliptic quadric and the zero set £ of fe in P(3,4¢%) is a hyperbolic quadric. Since f,
polarizes to fi, £ is an ovoid in the generalized quadrangle W (q) defined by 7% ([2], p.51).

(A) Recall that Q(f,) = SL(2,q¢*). We now interpret the kQ (f.) —modules V; as
kSL(2,¢*)-modules. For this, we construct:

(i) anisomorphism from SL(2,4?) to Q (fe), following ([7], Theorems 15.3.11 and 15.3.18);

and

(ii) a graph automorphism 7 of G, following ([5] , pp.58-60; also see [20], Chapter 12).



(i) (a) The inversive planes (P(1,¢%),£) and (£, ®)

Recall that a subline of the projective line P(1,¢?) over F, is the set of all one
dimensional subspaces of ]Fg2 generated by the F,— span of a fixed basis of ]Fzz. Equiv-
alently, it is a nonsingular Hermitian variety V4 = V(zA(z(®)) in P(1,¢?) defined by

g+1

. 1
an equation of the form a;z?"" + baxd + b9xlas + apzl™, where z = (z1,1,) € F2,,

q

ai

7@ = (29, 21) and A = with a; € Fy,b € Fp, a1as # bb? ([8], Lemma 6.2,

)
p.138). Let £ denote the set of all sublines of P(1,¢%). Then, the incidence structure
(P(1,4¢%), L), with symmetrized inclusion as incidence is an inversive plane of order g;
that is, a 3 — (¢* +1,¢+1,1) design ([2], p.257 ).This is isomorphic to the incidence
system (€, ®), where £ is as above, ® is the set of all planes in P(3,¢) which are not

tangent to £ and the incidence again is symmetrized containment ( [2], p.257).

(b) An isomorphism between (P(1,4¢%),£) and ( £,®). To construct this, we
follow ([7] , see Theorem 15.3.11, p. 21). Let ¢ be the injective map from P(1,¢?) to
P(3,¢%) defined by

i(P(zy,25)) = P(a?™, 2122, 2%2,, 277
and 1) be the involutory projectivity of P(3,¢?) defined by
W(P(x1, 22, T3,24)) = P(z1, axe + lz3, azy + axs, x4).

We identify P(3,¢) with its image in P(3,¢*) under the map F,a — Fpa; where a =
(a1, aq,a3,a4) € IF;. We treat i chosen in (2.1) also as a nondegenerate symplectic form
on 15‘32. For z in P(3,4?), we denote by h (z,—) the plane in P(3,¢?) consisting of all
points y of P(3,¢?) such that i (z,y) = 0. Since % stabilizes &, ¥ (h (z,—)) = h(+ (z), —)
for each z in P(3,¢%). Let j be the map from L to ® taking Vs to h(¢) (P(d’), —))NP(3,q),
where a' = (a1,b,0,a5) € 15‘32. These planes are not tangent to £ because : f, takes
the nonzero value ajas — bb? on 9 (P (a')) and so ¢ (P (a')) ¢ &; it is known that the
tangent planes to £ in P(3,q) are all of the form % (z,—) N P(3,q9), x € &; and the
correspondence « <— fi (o, —) N P(3, q) between the points of P(3,¢) and the planes of
P(3,q) is incidence preserving and bijective. The map 1 o7 from P(1,¢?) to £ and the
map j from £ to ® are both bijective and form an incidence preserving pair; that is, if
peVy€e L, thenpoi (p) €j(Vy) € D.

(c) The isomorphism from SL(2,¢*) to Q(f.)

The full automorphism group of the incidence structure (P(1,4?%), £) is PT'L (2, ¢?)
~ SL(2,¢%) (€), where £S67! = S® = (s%) for all S = (s;;) € SL(2,¢%) ([2], 6.4.1,
p.274 ). We give an explicit isomorphism ¢ from its (unique) subgroup K isomorphic to
SL(2,q?) -2 into Sp(4,4¢?) such that ¥ (im §)1p~! equals the stabilizer O (f.) of £ in G
(see [7], Theorem 15.3.18, p.27 ).



For S = (s;;) € SL(2,¢?), let Ps denote the projectivity of P(1,¢?) taking P(z) to
P(xS). Then, (Ps : S € SL(2,¢?)) = SL(2,¢?). If # is the involutory projectivity of
P(1,¢?) taking P(z1,x9) — P(zi,29), then §Ps0~! = Py, where S is as above and
Sl = (sz(-g)). So (Ps: S € SL(2,¢%)(0) is the subgroup of PT'L(2,¢?) of index n.

Now Ps induces a bijection Ts on £ which takes V4 to VsA((S(q))—l)tr. With the
correspondence A <+ a', with a’ as above, the map A — SA((S@)~1) can be written
as a’ — a'Rg, where

11511 51185 S21811 S215%)

Rg = 811532 3113%2 321832 8215%2 = 5" @ (S@).

812511 512891 522511 522591

S128Ty S1283 S2251Ty S225%
Let Rs denote the projectivity of P(3,¢?) taking P(x1, T2, T3, T4) to P((x1, T2, T3, 74) Rs).Note
that : ¢ and Rg both stabilize fi; Rs fixes the quadratic form g (1, o, 23, 24) = 124 +
T2x3; 1 is a bijection between the varieties V2 (g) and Ve (f.) ;and ¥Rt~ is a projec-
tivity of P(3,¢q) also. So, ¥Rt~ is in the stabilizer of £ in G. If R is identity, then so
is Ts. These facts imply that the map S — Rst ! is a monomorphism from SL(2, ¢%)
to O(f.). Now, the map A — A can be written as a’ — a'R, where R denotes the
projectivity of P(3,q?) taking P(x1, T2, T3, T4) to P(x1, T3, T, T4). Further, R is in the
stabilizer of € in G, 1 and R commute and RRsR '= R4 for each S € SL(2,¢?). So,
(YyRsp™': S € SL(2,4¢%)) (R) is a subgroup of O (f,) and is isomorphic to SLy (¢?) - 2.
Now equality holds by order considerations and the isomorphism follows.

(ii) We now describe a graph automorphism 7 of Sp(V'), following ([5], pp.58-60).
(The argument presented in loc. cit. constructs a graph automorphism for G =
Sp(V(¢q)). However the arguments are valid for Sp(V) also.) Let @ denote the non-

degenerate quadratic form on the exterior square A2V of V defined by
Q (21§i<j§4)\ijez' Aej) = A2Asa + A1z Aos + Agdos

(and whose zero set in P(A2V) is the well-known Klein quadric). Let 8 denote the
polarization of () and v = e; A ey + es A e3. Then the restriction of ) to the hyperplane
U= {x € A’V : B(z,7) = 0} of A?V is a nondegenerate quadratic form; and the
restriction of B to U is an alternating form with radical k7. The alternating form /3
induced by 8 on U = % is nondegenerate. So the symplectic space (U, B) is isometric
to (V,h). Let p : U — V be the isometric isomorphism induced by the linear map
p:U — V defined by

pler Aex) =e1, pler Aes) =ea, D(ea Aes) = es,
plesAey) =eq, p(y) =0.



Then the map taking g € Sp(V) to p(A2(g)) p~* € Sp(V) is a graph automorphism
7 of Sp(V') which, on restriction to G, gives a graph automorphism of G.

(B) Let W denote the standard two dimensional simple k£SL(2,¢?)-module. For
a non-negative integer i, let WW; denote, as in Section 1, the kSL(2, ¢?)- module whose
underlying vector space structure is the same as that of W and the action of g = (a;m) €
SL(2,¢%) on W; is the usual action of ¢@) = (a?q‘m) on W. For any subset I of N, let W;
denote the kSL(2,¢?)—module ®;c;W,. Then, by Steinberg’s tensor product Theorem,
{W; : I C N} is a complete set of inequivalent simple kSL(2, ¢>)-modules. The following

decomposition was suggested to the first named author by Peter Sin.

Lemma 3 Fori € Ny,
Vailagr) =~ Wi @ Ways

and
Vaitla(r) = Wi © Wayi

Proof. We prove this by using the above interpretation of V; as kSL(2, ¢?)- modules.
The group H = (Rgs : S € SL(2,4?)), where Rg is as in (2.2A.i(c)) and Q(f.) are
both isomorphic to SL(2,¢?) and are conjugate in Sp(4,k) (in fact in Sp(4,¢?)) (see
the last paragraph of 2.2.A. i(c)). So, for I C N, V; considered as a kH— module and
Vi considered as a k§2(f.)—module are isomorphic SL(2, ¢?)-modules. Let (eq, e, €3 €4)
be the standard ordered basis for V' and (v1,v2) be an ordered basis for W. For S €
SL(2,¢%), S® S represents not only the action of S on V with respect to the ordered
basis (e, ez, €3 e4) of V but also the action of S on Wy ® W, with respect to the ordered
basis (va ® va,v2 @ V1,11 ® va,v1 ® v1) of Wo ® Wy, So, Vola) ~ Wo ® W,. Now, an
application of 7% to V yields the first part of the lemma.

A simple calculation shows that R% leaves the subspaces M! = ke, + ke, and M? =
kea + kez invariant. Further, the matrix representation of Ry on M*' with respect to the
ordered basis (e4, €;) is S and it is S(@ on M? with respect to the ordered basis (es, es).
So, an application of 7%~! to V yields the second part of the lemma. m

For I C Ny, let N; denote the set of 21/ subsets .J of N of size |I| such that, for each
t €1, only oneoft andn+tisin J. Let I = IU(n+I). Then, for K € N, Lemma 3
yields

VK‘Q(}(‘E) ~ (Les\%( WL) ® W*e (16)

Notice that each irreducible component in (1.) determines both the sets K, and K,.. So

we have the following

Corollary 4 Let K,K' € N be distinct. Then Vi and Vi are semi-simple kQ(fe)-

modules with no irreducible factors in common.
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2.3 The case f, : We now study V; as a kQ (f,) —module. The zero set of f, in
P(3,q) is a quadric of Witt index 2. Since f;, polarizes to ki, the projective lines contained
in this quadric are isotropic with respect to h. Further, Q(f,) = HiHs,[Hy, Hy] =
H, N Hy = (1), where Hy (resp.ly Hy) »x» SL(2,q) is the stabilizer of the subspace
kuy + kug (resp.ly kvy + kvg) of V. Here u; = e; + e3, ug = €9 + €4,v; = €1 + €3 and
v = e3 + e4. Further, the action of H; (resp.ly Hs) on kuy + kus (resp.ly kvy + kvy) with
respect to its ordered basis (ui,us) (resp.ly (vi,v2)) is the standard SL(2,g)-action on
k2.

Let M! and M? be two copies of the standard 2- dimensional simple kSL(2, q)-
module. For j € Ny, define the j*"—standard Frobenius twist M} of M* as in 2.2.B . For
J C Ny, define M} as ®jc;M;. Further, for I and J C Ny, denote by M;# M7 the outer
tensor product of M} and M?. That is, M;#M? is the k—vector space M} ® M? with
the action of (hy, he) € SL(2,q) x SL(2,q) on it given by

(h1, ha) (M1 @ ma) = hy(my) @ ha(ms).

Then, {M]#M?% : I,J C N} is a complete set of pairwise nonisomorphic simple
k(SL(2,q) x SL(2,q)) — modules ([9], Theorem 9.14, p.136).

Lemma 5 Fori € Ny,
Vailap,) = Mi#M;

and
VQi—l‘Q(fh) = (le#]f) & (k#MZQ)

Proof. Let h; € H; be represented by the matrix A; € SL(2,q) with respect to the
ordered bases mentioned above. The matrix A; ® A, represents the action of h = hiho
on V with respect to its ordered basis (ei, e, €3, €4) as well as its action on (ku; +
kus)#(kus + kuyg) with respect to its ordered basis (u; ® v1,us ® vy, U1 ® Vg, Uy ® Vg) .
So, Vola(s,) =~ M'#M?. Now, an application of 7% to V yields the first part of the

lemma.

A simple calculation shows that each of the subgroups H; stabilizes the subspaces
key + keg and ke; + key. Further, the action of H] (resp.ly of H]) on ke, + ke (resp.ly
on ke; + key) with respect to the ordered basis (ey, e3) (resp.ly, (e, e4)) is equivalent to
the standard action of SL(2,q) on k? and the action on ke; + ke, (resp.ly on kes + kes)
is trivial. So, Vilas,) = (Mi#k) @ (k#MZ?). An application of 72071 to V; now yields
the second part of the lemma. m



For any subset I of N;, let M; denote the set of 2//' ordered partitions (4, B) of I.
By Lemma 5 , if K € N, then

Viclagn = (M #ME,) ® (@45, MA#M3 )
= (@(A5B)EMK0 Mll(euA#MIQ(eUB) . (1))

Note that for K € N, K, and K, are disjoint. Further K is determined by each
irreducible component in (1;). So, we have

Corollary 6 Let K, K' € N be distinct. Then Vi and Vi are semi-simple kQ)(fr)-

modules with no irreducible factors in common.

2.4. The core of the proof of the theorem is in Lemmas 7 and 8 we now state. Let
f € {fe, fn} and assume that n > 2 for Lemmas 7 and 8.

Lemma 7 Let J, K € N. If the symmetric difference of J and K is not equal to {2t—1}
for some t € Ny, then Extyg (Vy, Vi) = 0.

Now, let J = KU{2t—1} and 2t —1 ¢ K. Then, 2t —2 ¢ K and, by ([17], Theorem,
p.159), there exists a unique kG— module E, up to isomorphism, which is a nonsplit
extension of Vi by V;. Further,

Lemma 8 Sockq(y) (E|Q(f)) ~ Vilagy- In particular, as a kQ(f) — module, E is a
nonsplit extension of Vi|acr) by Vilacs-

Proofs of Lemmas 7 and 8 for the cases f = f. and f = f, are given separately.

(2.4.i) The case f = f.

For easy reference, we collect some results due to Alperin and due to Sin. Consider
the following condition on I, J C N:

IUJ=(InJ)U{r} and neither r nor r —1lisin I NJ (Cr, J)

Lemma 9 (a) For I,J C N, Extig; , »)(Wr, W) as well as Exty(Vr, Vi) are both k or

both zero according as whether the condition (Cr ;) holds or not.
(b) For i€ N,W; @ W; is a uniserial module with composition factors k\W;,1\k.
Proof. For (a), see ([1], Theorem 3, p.221) and ([17], Theorem, p.159). For (b), see
([1], Lemma 4, p.224). =

A typographical error about the assumptions on I and J in the statement of part (a)
in ([1], Theorem 3, p.221) has been corrected here (see [1], p.229).
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Proof of Lemma 7: In view of the isomorphism Ext} . (Vy, Vi) ~ Extio (Viuk, Vink),
the biadditivity of the map (M, N) — Ezt'(M, N) and Lemma 9(a) above, we only need
to consider the case when J = KU {r}, r ¢ K. In this case, the lemma follows from
(1.) and Lemma 9(a). B

Proof of Lemma 8: From (1),

Vila(h) 2 (®ren, Wi) @ Wi

and
VJ|Q(fe) = [EBLGNKO (WLU{t} D WLu{n+t})] Q@ W
We need to show that
Homyqpy(Wy @ W, E) =0

for each L' € Nj,. Let D, denote the unique (up to isomorphism) kG— module which is
a nonsplit extension of k by Va;_; (see Lemma 9(a)). Then F = D; ® Vi ([14], Lemma
8, p-490). Since D is isomorphic to a submodule of the kG—module Vo 5 @ Vo;_o (see
[17], Lemma 2(a), p.161), D; ® Vi embeds in (Vo 2 @ Vo; o) ® V. Hence it is enough
to prove that

Homyq;) (W @ Wi, Va2 ® Var 2 ® Vi) = 0. (*)
Let L" € Nk, and L' = LU {r} where L € Ng,, r = t or n + t. Since simple
kQ (fe) —modules are self dual, by Lemma 3,

Hompas) (W @ Wi, Var 2 @ Vay 2 @ Wi @ W)
~ Homuo(s.)(Wr ® Wi sa=ip Wi ® WKeU{t—l}) = 0.
So (*) holds and the lemma follows.l
(2.4.ii) The case f = fj,
First we recall a useful result due to A. Jones ([10], Theorem 3, p.629).
Lemma 10 Let R be a Dedekind domain, G, and G4 be finite groups, G = G X Ga,
I =RG;, i =1,2, and I' = RG. Let M; and M] be (left) T';-modules. Then, as R—
modules,
Exty (M # M, M{#M3) ~ Homr, (M;, M{) ®g Extf, (M, Mj)
(&) Eﬂftllﬂl (Ml, M{) ®R Homp2 (MQ, Mé)

and
Homy (M, # M, M{#Mﬁ) ~ Hompr, (M, M{) ®gr Homy, (Ma, Mé)
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Proof of Lemma 7: As in the case f = f., we need only to consider the case when
J =K U{r}, where r ¢ K. If r = 2t for some ¢t € Nj, then (1) and Lemma 10 imply
Ext}m(fh) (V;,Vk) =01

Proof of Lemma 8:

From (1),

VK‘Q(fh) = O(4,B)eMx, (MII(EUA#MZEUB)
and
VJ|Q(fh) = EB(A,B)EMK0 [(MII{EUAU{t}#MIQ{EUB) > (MII{EUA#MIQ{GUBU{t})} .

We need to show that

Homkﬂ(fh)((MII(eUAU{t}#MIQ(eUB) & (Mll(eUA#MIZ(eUBU{t})a E)=0

for each (A, B) € Mg,. In view of the discussion regarding D; in the f = f,. case, we
prove that

Homkﬂ(fh)((Mll(eUAU{t}#MIZ(EUB) ® (Mll(eUA#M?(EUBU{t})a Vat—a ®@ Var—2 ® Vi)

is zero for each (A, B) € Mg,. Now if (4, B), (A", B') € Mk,, then

Homkﬂ(fh)((MII(EUAU{t}#M?(eUB) ® (Mll(euA#MIQ(euBu{t})a

Vor—o @ Vor_2 ® (MII(eUA’#MIQ(eUB’))

~ Homga(s,) (My, v #Mi,un) © Vara © (Mg ua# My, upugy) ® Vars,
Vares ® (Mo M2, )

= Homkﬂ(fh)((MkeuAu{t}#MieuB) ® (Mtl—l#MtZ—l) 8% (Mll(eUA#MIQ(eUBU{t})®
(M ## ML), (Mg # M) ® (Mg, oa# Mk, up))

= Homkﬂ(fh)((Mll(euAu{t—Lt}#MZeuBu{t—l}) ©® (MII{EUAU{t—l}#MQeUBU{t—l,t})v
MII(EUA’U{t—l}#M2eUB’U{t—l}) =0

by Lemma 10. Here we have used : (i) the duality between the functors ‘Hom’ and
‘Tensor’, namely for any group X and kX —modules U;, we have Homyx (U1,Us ® Uz) =
Homyx (U; ® Uy, Us), where U* is the dual of U; and (ii) the fact that each simple
module for G = Sp (4, q) is self-dual . So Lemma 8 holds for f = f, also. B

3 Proof of Theorem 1

(a) Let n = 1. Then dimg(C) =9 (see, for example, [13], p. 308). By ([14], Lemma 4,
p.488) and Frobenius reciprocity ([11], p.689) it follows that Vi, k£ and V4 (in descending
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order) are kG-composition factors of C. Semisimplicity of each composition factor of C
and its multiplicity freeness as a kQ(f)— module are proved in Corollaries 4 and 6. For
the remaining part of the proof, we treat the cases separately. Consider the case f = f..
Since Vyla(s) = Wo ® W1 (Lemma 3) is the Steinberg module ( and hence projective) for
Q(f), we need to prove that the kG-module E which is the unique (up to isomorphism)
nonsplit extension of £ by Vi remains nonsplit as a k§2(f) -module. Further, since E
is isomorphic to a submodule of the kG-module V4 ® V; (see [17], Lemma 2(a), p.161),
Vilagpy ~ Wo @ W, (Lemma 3) and Wy ® W, is the Steinberg module for kQ(f), by ([1],
Theorem 1, p. 220), we have

Homyqr)(V1, Vo @ Vp) = 0.

Now we consider the case f = f. Then M', M? and V]q() >~ M'#M? (see Lemma 5)
are the Steinberg modules for Hy, Hy and Q(f), respectively. Hence we need to prove
that E as a kQ(f)- module is split. But this is clear from Lemmas 5 and10.

(b) Let n > 2. By Theorem 2, {V;},cnr are the kG— composition factors of C and

they appear with multiplicity one. So, (i) follows from Corollaries 4 and 6.

We now prove (ii). Let Vi and V;, K,J € N, be in the i-th and j-th kG- socle
layers of C,1 < i < j < 2n. Assume that there is a kG- module E which is a nonsplit
extension of Vi by V;. Then, by Lemma 9(a), j = i+ 1. Further, F is a nonsplit kQ ( f)-
extension of Vi by V; if and only if J = K U {2t — 1} for some ¢t € N; (Lemma 7).
Further, if this holds, Socka(s) (E) = Vi (Lemma 8). That is, either all or none, of the
simple £ (f)- summands of V; descend. This observation together with the kG- socle
structure of C yields (ii).

Now, let m € {0,1,--- ;n—2,n} and I € A,,. In what follows, all modules considered
are over kQ(f). Since C is multiplicity free as a kQ(f)-module, it has a unique submodule
Xm,r with head Vi, where K is the unique element of N’ with K, = I and K, = I°°. First
Xo,r = Viauery (see (1c) and (1)) and is semisimple. Let m > 0 and write X, as L for
brevity. Since Head (L) is contained in the m-th socle layer of C, L is a submodule of
Soc™ (C). For each summand of rad*(L)/rad?(L) of the form V;, a nonsplit extension of
V; by Head (L) appears as a section of L. Further, Head (L) = V. So, J = K\{2t -1}
for some ¢ € I (Lemma 8). This proves that rad'(L) is contained in the unique

submodule L' of Soc™ ! (E) whose head is isomorphic to
S, V. (3.1)
JEN, Je=I, JoCIo¢ and |Jo|=m—1
The multiplicity freeness of C (as a kQ(f)-module) implies that L N L' = rad'(L). We
now show that L' = rad'(L). Since (L + L')/L' = L/(LNL') = L/rad' (L) = Vg,
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by uniqueness of L, L+ L' = L. Thus L'’ C L and L' = LN L' = rad'(L). Thus,
rad'(L)/rad?(L) is the module in (3.1). Now successive application of this argument
to rad’(L)/rad"'(L) yields the statement about the radical structure of X, ; in (iii).
Further, (iv) is also clear.

Since socle(Xm,1) = Vioutery is simple, X, is indecomposable. For I # J € A,
X1 N Xy, s is trivial because their socles are distinct and simple. (Infact X, ; and X, ;
have no composition factors in common.) Let

Xm= P X1

IeAn

For distinct m,m' € {0,1,---,n — 2,n}, X,, and X,y have no composition factors in
common and every composition of C occurs in some X,,. Thus sum of X,,’s equals C,
completing the proof of all parts of (iii) and of Theorem 1.1

Remark 11 (i) If n = 1, as a kQ(f)-module, Vo and V; are semi-simple and C is
multiplicity free. Further, if f is of Witt index 1, then C is isomorphic to the direct sum
of Vo and a kU (f)-module U with head(U) ~ k and rad(U) ~ V; . If f is of Witt index

2, then C is semi-simple .

(i) If n > 2, as a kY7 (f)-module, then Vi is semi-simple for each I € N' and C s
multiplicity free and is isomorphic to

D (DU

me{0,1,- ,n—2n} I€EAp,

where Up, 1 is a unique indecomposable module of radical length m + 1. Its j-th radical
layer rad’(Upy,1)/rad’ (Upyr) (0 < j < m) is isomorphic to

o) V.

JEN, Jo=I, JoCI% and |Jo|=j

Moreover, for each m € {0,1,--- ;n—2,n},
50¢! (Upn.1) = rad™ 7 (Upn.1).

(i) and (ii) follow from an argument similar to the proof of Theorem 1, using Theorem
2 and Lemmas 7 and 8.

Examples: We illustrate the descent of the composition factors V; in Theorem 2
when considered as a kQ(f)-module for the cases n = 1,2,3,4. For J = {iy,49,...} C N,

we write V; as J or 1,19, ... .
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If n =1, then
C =0+ (1/k).
If n =2, then

C=Xo®X,=[0+2+0,2]®[1,3/1®3)/k]

If n = 3, then

C=X;0X:®X3=[0,2+0,4+2,4®[(0,3 /0)
@ (2,5/2) & (1,4/4)] ®[1,3,5/(1,3+ 1,5+ 3,5)/(1 + 3+ 5)/k].

If n =4, then
E:Xo@Xl@XQ@X4,

Where

earlier version of this paper.

JCN1,|J|=3 OT 4
3

X1 = EP(2i,2i + 2,2 + 5)/(2i, 2 + 2);

B (_w /(0,39 0,5)/0) & (2,5,7/(2,5®2,7)/2)®
T (L4T/(L484,7) /4) @ (6,1,3 /(6,166,3)/6)

X4 = A4/A3/A2/A1/A0a

where A; is the direct sum of J as J runs over the subsets of {1,3,5,7} of size i.

Acknowledgement

We thank Professor Peter Sin for kindly pointing out an error in Theorem 1 in an

and computing facilities during the period of this work.

References

The second named author also thanks Harish-Chandra
Research Institute, Allahabad (India) for kindly permitting him the use of its library

[1] J.L. Alperin, Projective modules for SL(2,2"), J. Pure and Applied algebra 15

(1979) 219-234

[2] P. Dembowski, Finite geometries, Classics in Mathematics, Springer-Verlag, Berlin,

Heidelberg, New York, 1997 (reprint of 1968 edition)

[3] R.H. Dye, Interrelations of symplectic and orthogonal groups in characteristic two,

J. of Algebra 59 (1979) 202-221

14



[4] R.H. Dye, On the Arf Invariant, J. of Algebra 53 (1978) 36-39

[6] D.E. Flesner, The geometry of subgroups of PSp,(2"), Illinois J. Math. 19 (1975)
48-70

[6] D.E. Flesner, Maximal subgroups of PSp,(2"), containing central elations or non-
centered skew elations, Illinois J. Math. 19 (1975) 247-268

[7] J.W.P. Hirschfeld, Finite projective spaces of three dimensions, Oxford Univ. Press
Oxford, 1985

[8] J.W.P. Hirschfeld, Projective geometries over finite fields, Oxford Univ. Press, Ox-
ford, 1998

[9] B. Huppert and N. Blackburn, Finite groups, Vol.2, Springer-Verlag, New York,
1982

[10] A. Jones, Integral representations of direct product of groups, Canad. J. Math.
15(1963) 625-630

[11] S. Lang, Algebra, Third Edition, Addison-Wessley, 1999.

[12] S.E. Payne and J.A. Thas, Finite generalized quadrangles, Advance Publishing Pro-
gram, Pitman, Boston 1984

[13] N.S.N. Sastry, Codes and generalized polygons, in ‘Proc. of Seminar on combi-
natorics and applications’ in honour of Prof. S.S. Shrikhande, Indian Statistical
Institute, Calcutta (1982) 303-310

[14] N.S.N. Sastry and P. Sin, The code of regular generalized quadrangle of even order,
Proc. Symp. Pure Math. 63 (1998) 485-496

[15] N.S.N. Sastry and P. Sin, The binary code associated with nondegenerate quadrics
of a symplectic space of even order, J. Combin. Theory (A) 94 ( 2001) 1-14

[16] N.S.N. Sastry and P. Sin, On the doubly transitive permutation representations of
Sp(2n,Fy), J. of Algebra 257 (2002) 509-527

[17] P. Sin, Extension of simple modules for Sp,(2") and Sz(2"), Bull. Lond. Math. Soc.
24 (1992) 159-164

[18] R. Steinberg, Representations of Algebraic groups, Nagoya J. Math. 22 (1963) 33-56

15



[19] R. Steinberg, Lectures on Chevalley Groups, Mimeographed Notes, Yale Univ. Math.
dept., New Haven, Conn., 1968

[20] D.E. Taylor, The geometry of the classical groups, Sigma Series in Pure Mathemat-
ics, V.9, Helderman- Verlag, Berlin, 1992

N.S. Narasimha Sastry; Stat.- Math. Unit; Indian Statistical Institute;
8th Mile Mysore Road; R.V. College Post; Bangalore - 560 059

India

Email: nsastry@isibang.ac.in

R.P. Shukla; Department of Mathematics; University of Allahabad;
Allahabad - 211 002 India

Email: rps@mri.ernet.in

16



