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Abstract

We construct a certain ‘cobordism category’ D whose morphisms are suitably decorated

cobordism classes between similarly decorated closed oriented 1-manifolds, and show that

there is essentially a bijection between (1+1-dimensional) unitary topological quantum

field theories (TQFTs) defined on D, on the one hand, and Jones’ subfactor planar

algebras, on the other.
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1 Introduction

It was shown a while ago, via a modification by Ocneanu of the Turaev-Viro method, that

‘subfactors of finite depth’ give rise to 2+1-dimensional TQFTs. On the other hand, it

has also been known that 1+1-dimensional TQFTs (on the cobordism category denoted

by 2Cob in [Koc]) are in bijective correspondence with ‘Frobenius algebras’.

The purpose of this paper is to elucidate a relationship between ‘unitary 1+1-dimensional

TQFTs defined on a suitably decorated version D of 2Cob’ and ‘subfactor planar alge-

bras’. These latter objects are a topological/diagrammatic reformulation - see [Jon] - of

the so-called ‘standard invariant’ of an ‘extremal finite-index subfactor’. These planar

algebras may be described as algebras over the coloured operad of planar tangles which

satisfy some ‘positivity conditions’. (We shall use the terminology and notation of the

expository paper [KS1].) For this paper, the starting point is adopting the point of view

that planar tangles are the special building blocks of more complicated gadgets, which

are best thought of as compact oriented 2-manifolds, possibly with boundary, which are

suitably ‘decorated’, and obtained by patching together many planar tangles. These

gadgets are the ‘morphisms’ in the category D, which is the subject of §2. In order to

keep proper track of various things, it becomes necessary to regard the morphisms of

this category as equivalence classes of the more easily and geometrically described ‘pre-

morphisms’. A lot of the subsequent work lies in ensuring that various constructions on

pre-morphisms ‘descend’ to the level of morphisms.

§3 is devoted to showing how a subfactor planar algebra gives rise to a TQFT defined

on D, which is unitary in a natural sense, while §4 establishes that every unitary TQFT

defined on D arises from a subfactor planar algebra as in §3 provided only that it satisfies

a couple of (necessary and sufficient) restrictions.

The final §5 is a ‘topological appendix’, which contains several topological facts

needed in proofs of the results of §3.

2 The category D

All our manifolds will be compact oriented smooth manifolds, possibly with boundary.

We will be concerned here with only one and two-dimensional manifolds, although we

will be interested in suitably ‘decorated’ versions thereof. We shall find it convenient to

write C(X) to denote the set of components of a space X.

Definition 2.1 A decoration on a closed 1-manifold σ is a triple δ = (P, ∗, sh) -

where

(i) P is a finite subset of σ,
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(ii) ∗ : C(σ) → P ∪ {B,W}, and

(iii) sh : C(σ\P ) → {B,W} -

with these three ingredients being required to satisfy the following conditions:

(a) if J ∈ C(σ), then |J ∩ P | is even, and

∗(J) ∈

{
J ∩ P if J ∩ P 6= ∅

{B,W} if J ∩ P = ∅
, and

(b) if p ∈ P , then

{sh(J) : J ∈ C(σ\P ), p ∈ J−} = {B,W} ;

thus, ‘sh’ yields a ‘checkerboard shading’ of σ \ P .

If φ : σ → σ′ is a diffeomorphism of one-manifolds, and if δ = (P, ∗, sh) is a decoration

of σ, define φ∗(δ) to be the transported decoration δ′ = (P ′, ∗′, sh′) of σ′, where

P ′ = φ(P )

sh′ = sh ◦ φ−1

{∗′(φ(J))} =





{∗(J)} if φ is orientation preserving

or J ∩ P 6= ∅

{B,W} \ {∗(J)} if φ is orientation reversing

and J ∩ P = ∅

Finally, if φ : σ → σ′ is an orientation-preserving diffeomorphism of one-manifolds,

and if δ = (P, ∗, sh) is a decoration of σ, then we shall consider the two ‘decorated

1-manifolds’ (σ, δ) and (σ′, φ∗(δ)) as being equivalent.

Define sets C and Col by

C = {0+, 0−, 1, 2, 3, ...}

Col = {k : k ∈ C}
∐

{k̄ : k ∈ C}

(We shall refer to the elements of Col as ‘colours’.)

Suppose now that (σ, δ) is a decorated one-manifold, with δ = (P, ∗, sh), and that σ

is non-empty and connected. Define k(σ, δ) = 1
2
|P |. We define an associated col(σ, δ)

by considering two cases, according as whether k(σ, δ) is positive or not.

Case (1) k = k(σ, δ) > 0:
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In this case, we define

col(σ, δ) = k (resp., k)

if, as one proceeds along σ in the given orientation and crosses the point labelled ∗(σ),

one moves from a black region into a white region (resp., from a white region into a black

region) - where we think of an interval J - and a similar remark applies to colours of

regions, as well - as being shaded black (resp., white) if sh(J) = B (resp., sh(J) = W ).

Case (2) k = k(σ, δ) = 0:

In this case, there are four further possibilities, acording as whether (a) ∗(σ) and

sh(σ) agree or disagree, and (ii) sh(σ) is white or black. Specifically, in case k = 0, we

define

col(σ, δ) =





0+ if ∗ (σ) = sh(σ) = W

0+ if ∗ (σ) 6= sh(σ) = W

0− if ∗ (σ) = sh(σ) = B

0− if ∗ (σ) 6= sh(σ) = B

.

Remark 2.2 We wish to make the fairly obvious observation here that the equivalence

class of a decorated one-manifold (σ, δ) - where the underlying manifold σ is connected

- is completely determined by its colour as defined above.

Let Obj denote a set, fixed once and for all, consisting of exactly one decorated 1-

manifold from each equivalence class. Let F denote the set of functions f : Col → Z+ =

{0, 1, 2, · · ·} which are ‘finitely supported’ in the sense that f−1(Z+ \ {0}) is finite; given

an f ∈ F , let Xf denote the element of Obj which has f(k) connected components of

colour k (in the sense of Remark 4) for each k ∈ Col. It is then seen that f ↔ Xf is a

bijection between F and Obj. Given f ∈ F , let us define σ(f) and δ(f) by demanding

that Xf = (σ(f), δ(f)).

If k0 ∈ Col, we shall write k0 for the element of F given by

k0(k) =

{
1 if k = k0

0 otherwise
(2.1)

To be specific, we shall assume that σ(k) is the unit circle in the plane - given by

{(x, y) ∈ R2 : x2 +y2 = 1} - for every k ∈ Col, oriented anti-clockwise. Further, writing

|k| =





m, if k = m ∈ C

0 if k = 0±

|m|, if k = m̄,m ∈ C

,
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we define

shδ(k)(J) =





B if k ∈ {0−, 0̄−}

W if k ∈ {0+, 0̄+}

B if J = {(cosθ, sinθ) : (2m)2π
2|k|

} < θ < (2m+1)2π
2|k|

} & k /∈ C

W if J = {(cosθ, sinθ) : (2m)2π
2|k|

} < θ < (2m+1)2π
2|k|

} & k ∈ C

,

Pδ(k) =

{
{(cos(m2π

2|k|
), sin(m2π

2|k|
) : 0 ≤ m < 2|k|} if |k| 6= 0±

∅ if |k| = 0±
,

and finally,

{∗δ(k)(σ(k))} =





{(1, 0)} if |k| 6= 0

{shδ(k)(σ(δ(k)))} if k = 0±

{B,W} \ {shδ(k)(σ(δ(k)))} if k = 0̄±

.

All this is seen best in the following diagrams - where the cases 3̄, 3, 0+, 0−, 0̄+, 0̄−

are illustrated:

0+
−

0−

sh

shshsh

*

* *

=

=

=

=

=

=

=

W

W

W

WB

B

B

B
0

0+

−
−

* =

3 3
−

* *

2

We ‘transport’ natural algebraic structures on F via the bijection described above,

to define two operations, one binary and one unary, on the set Obj. To start with, note

that F inherits a semigroup structure from Z+; we use this to define the disjoint union

of elements of Obj by requiring that

Xf

∐
Xg = Xf+g . (2.2)

It must be noticed that if 0 denotes the element of F corresponding to the identically

zero function, then

Xf

∐
X0 = Xf , ∀ f ∈ F .
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In other words, the element X0 of Obj - which is seen to be the empty set viewed as a

‘1-manifold’ endowed with the only possible decoration - is the empty object and acts

as identity for the binary operation of disjoint sum.

Next, there is clearly a unique involution ‘−’ on the set Col given by

m̄ =

{
k̄ if m = k ∈ C

k if m = k̄, for some k ∈ C

This gives rise to an involution F 3 f 7→ f̄ ∈ F defined by

f̄ = f ◦ − ;

this, in turn, yields an involution on Obj defined by

X̄f = Xf̄ , ∀ f ∈ F . (2.3)

It should be observed that if Xf = (σ, δ) and X̄f = (σ̄, δ̄), then there is an orientation

reversing diffeomorphism φ : σ → σ̄ such that φ∗(δ) = δ̄. (This may be thought of as

one justificaton for our definitions of (a) the transported decoration φ∗(δ), in the case

of orientation reversing diffeomorphisms, and (b) the colour, in the case of connected

decorated one-manifolds.)

Definition 2.3 A decoration on a 2-manifold Σ is a triple ∆ = (`, ∗, sh) - where

(i) ` is a smooth compact 1-submanifold of Σ such that (a) ` ∩ ∂Σ = ∂`, and (b) `

meets ∂Σ transversally.

(ii) ∗ : C(∂Σ) → (∂Σ ∩ `) ∪ {B,W}; and

(iii) sh : C(Σ\`) → {B,W} -

with these three ingredients being required to satisfy the following conditions:

(a) if J ∈ C(∂Σ), then |J∩`| = |J∩∂`| is even, with all intersections being transversal,

and

∗(J) ∈

{
J ∩ ` if J ∩ ` 6= ∅

{B,W} if J ∩ ` = ∅
, and

(b) ‘sh’ is a ‘checkerboard shading’ of Σ \ `.

Remark 2.4 Notice that every decoration ∆ on a 2-manifold Σ induces a decoration

δ = ∆|σ on every closed 1-submanifold σ of ∂Σ by requiring that

Pδ = σ ∩ ∂`∆

∗δ = (∗∆)|C(σ)

shδ(J) = sh∆(Ω) , if J ∈ C(σ \ Pδ), J ⊂ Ω, Ω ∈ C(Σ \ `) .
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For any integer b ≥ 0, we shall write Ab for the (compact 2-manifold given by the)

complement in the 2-sphere S2 of the union of (b+ 1) pairwise disjoint embedded discs.

(Thus, A0 is a disc, A1 is an annulus, and A2 is a ‘pair of pants’.)

Definition 2.5 By a planar decomposition of a 2-manifold Σ, we shall mean a finite

(possibly empty) collection Π = {γi : i ∈ I} of pairwise disjoint closed 1-submanifolds of

Σ \ ∂Σ such that each component of the complement of a small tubular neighbourhood of

(∪i∈I γi) is diffeomorphic to some Ab, b ≥ 0.

We shall call a triple (Σ,∆,Π) a planar decorated 2-manifold if ∆ is a decora-

tion of a 2-manifold Σ, and Π is a planar decomposition of Σ satisfying the following

compatibility condition:

if γ ∈ Π, then γ meets ` transversely, and in at most finitely many points.

Let M denote the collection of all tuples (Σ,∆,Π, φ0, φ1), where:

(1) (Σ,∆,Π) is a planar decorated 2-manifold;

(2) φ0 (resp., φ1) uniquely determines an f0 ∈ F (resp., f1 ∈ F) such that φ0 (resp.,

φ1) is an orientation reversing (resp., preserving) diffeomorphism from σ(f0) (resp., σ(f1))

to a closed submanifold of ∂Σ, satisfying:

(i)

∂Σ = φ0(σ(f0))
∐

φ1(σ(f1)) ;

and

(ii)

(φi)∗(δ(fi)) = ∆|φi(σ(fi)) , i = 1, 2. (2.4)

(Here again, it is crucially important that the ‘transport’ φ∗(δ) of a decoration on a

closed 1-manifold be defined differently, and as we have done, in the cases when the

diffeomorphism φ preserves or reverses the underlying orientations.)

A tuple (Σ,∆,Π, φ0, φ1) ∈ M as above, will be referred to as a pre-morphism from

Xf0 to Xf1 . The reason for the prefix is that we will want to think of several different

pre-morphisms as being the same.

Thus, a morphism from Xf0 to Xf1 will, for us, be an equivalence class of pre-

morphisms, with respect to the smallest equivalence relation generated by three kinds of

‘moves’. More precisely:

Definition 2.6 (a) Two pre-morphisms (Σ(i),∆(i),Π(i), φ
(i)
0 , φ

(i)
1 ) ∈ M, i = 1, 2, with

∆(i) = (`(i), ∗(i), sh(i)), say, are said to be related by a:

(i) Type I move if there exists an orientation-preserving diffeomorphism φ : Σ(1) → Σ(2)

such that

∆(2) = φ∗(∆
(1)) − i.e., `(2) = φ(`(1)), ∗(1) = ∗(2) ◦ φ, sh(1) = sh(2) ◦ φ,
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Π(2) = φ∗(Π
(1)) ( = {φ(γ)) : γ ∈ Π(1)}), and φ(2)

j = φ
(1)
j ◦ φ , j = 0, 1;

(ii) Type II move if

Σ(1) = Σ(2), ∆(1) = ∆(2), φ
(1)
i = φ

(2)
i

and there exists a (necessarily orientation preserving) diffeomorphism φ of Σ(1) onto itself

which is isotopic via diffeomorphisms to idΣ, such that Π(2) = φ∗(Π
(1)); and

(ii) Type III move if

Σ(1) = Σ(2), ∆(1) = ∆(2), φ
(1)
i = φ

(2)
i

and

Π(1) ∪ Π(2) ∈ {Π(1),Π(2)} .

(b) Two pre-morphism (Σ(i),∆(i),Π(i), φ
(i)
0 , φ

(i)
1 ) ∈ M, i = 1, 2, are said to be equiv-

alent if either can be obtained from the other by a finite sequence of moves of the above

three types.

(c) An equivalence class of pre-morphisms is called a morphism.

It must be observed that equivalent pre-morphisms have the same ‘domain’ and

‘range’, so that it makes sense - and is only natural - to say that the equivalence class of

the pre-morphism (Σ,∆,Π, φ0, φ1) defines a morphism from Xf0 to Xf1 .

Before verifying that we have a ‘cobordism category’ with objects given by Obj, and

morphisms defined as above, it will help for us to define what is meant by disjoint unions,

adjoints and boundaries of morphisms. As is to be expected, we shall first define these

notions for pre-morphisms, verify that the definitions respect the three types of moves

above, and conclude that the definitions ‘descend’ to the level of morphisms.

Define the disjoint union of premorphisms by the following completely natural

prescription:

(Σ(1),∆(1),Π(1), φ
(1)
0 , φ

(1)
1 )

∐
(Σ(2),∆(2),Π(2), φ

(2)
0 , φ

(2)
1 )

= (Σ,∆,Π, φ0, φ1) ,where

Σ = Σ(1)
∐

Σ(2) , `∆ = `∆(1)

∐
`∆(2)

∗∆|C(∂Σ(i) = ∗∆(i) , for i = 1, 2

sh∆|C(Σ(i)\`
∆(i) )

= sh∆(i) , for i = 1, 2

Π = Π(1)
∐

Π(2) , φj = φ
(1)
j

∐
φ

(2)
j , for j = 0, 1 .
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Next, define the adjoint of a pre-morphism - which we shall denote using a ‘bar’

rather than a ‘star’ - by requiring that

(Σ,∆,Π, φ0, φ1)
− = (Σ,∆,Π, φ0, φ1) , where

`∆ = `∆

{∗∆(J)} =

{
{∗∆(J)} if J ∩ ∂`∆ 6= ∅

{B,W} \ {∗∆(J)} if J ∩ ∂`∆ = ∅

sh∆ = sh∆

Π = Π

φ0 = φ1 , φ1 = φ0 ,

where we write Σ̄ for the manifold Σ endowed with the opposite orientation; it is in this

sense that equations such as Π = Π are interpreted.

Finally define the boundary of a pre-morphism by requiring that

∂(Σ,∆,Π, φ0, φ1) = X̄f0

∐
Xf1 .

Some painstaking verification shows that, indeed, these definitions ‘descend to the

level of morphisms’. (For instance, to see this for disjoint unions, one verifies that if

M ′
1 and M ′

2 are two pre-morphisms which are related by a move of type j for some

j ∈ {I, II, III} and if M ′′ is any other pre-morphism, then also M ′
1

∐
M ′′ and M ′

2

∐
M ′′

are related by a move of type j; and then argues that this is sufficient to ‘make the

descent’.) In particular, we wish to emphasise that if M is the morphism given by the

equivalence class of the pre-morphism (Σ,∆,Π, φ0, φ1), then M is a morphism from Xf0

to Xf1 - which we denote by M ∈Mor(Xf0 , Xf1) - while M̄ ∈Mor(Xf1 , Xf0).

Our next step is to define ‘composition of morphisms’. This will be done in two

stages:

Step 1: This consists of the ‘Assertion’ below, which asserts the existence of what

may be called a semi-normal form of a pre-morphism; the prefix ‘semi’ is necessitated

by this ‘form’ not quite being a canonical form, and the adjective ‘normal’ is chosen for

obvious reasons. This assertion is really not much more than a re-statement of the fact

- see condition (i) of Definition 2.3 - that `∆ meets ∂Σ transversally, so we shall say

nothing about the proof.

Assertion : Suppose (Σ,∆,Π, φ0, φ1) is a pre-morphism. Let any enumerations J
(k,i)
1 , · · · , J (k,i)

fi(k)

be given, of all the components of φi(σ(fi)) of colour k, for each i = 0, 1, k ∈ Col. Then

there exists an orientation-preserving diffeomorphism φ : Σ → Σ0 such that:

(i) Σ0 ⊂ R
2 × [0, 1];
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(ii) φ ◦ φi(σ(fi)) is Xi ×{i}, where Xi is the union of the circles with radius equal to
1
4

and centres in the set S(i) = S
(i)
+ ∪ S(i)

− , for i = 0, 1, where

S
(i)
+ = {(|k|, l) : 1 ≤ l ≤ f(i)(k), k ∈ (C \ {0−})}

∪ {(−1, l) : 1 ≤ l ≤ f(i)(0−)}, and

S
(i)
− = {(|k|,−l) : 1 ≤ l ≤ f(i)(k̄), k ∈ (C \ {0−})}

∪ {(−1,−l) : 1 ≤ l ≤ f(i)(0̄−))} ;

further, we may arrange matters such that φ(J
(k,i)
l ) is the circle in Xi with centre

(|k|, l), (|k|,−l), (−1, l) or (−1,−l) according as k ∈ C \ {0−}, k̄ ∈ C \ {0−}, k = 0−

or k = 0̄−;

(iii) there exists an ε > 0 such that, for i = 0, 1, {(x, y, z) ∈ Σ0 : |z−i| < ε} is nothing

but the family of cylinders given by {(x, y) : ∃(m,n) ∈ S(i) such that (x−m)2+(y−n)2 =

(1
4
)2} × {t ∈ [0, 1] : |t− i| < ε} ; and

(iv) For i = 0, 1, {(x, y, z) ∈ φ(`∆) : |z− i| < ε} is nothing but the set of verical lines

given by {(k+ 1
4
cos( jπ

k
), l+ 1

4
sin( jπ

k
))}× {t ∈ [0, 1] : |t− i| < ε} , where (k, l) ∈ S(i), k >

0, 1 ≤ j ≤ 2k.

Finally, we shall refer to (Σ0, φ∗(∆), φ∗(Π), φ ◦ φ0, φ ◦ φ1) as a semi-normal form of

[(Σ,∆,Π, φ0, φ1)]. 2

We now proceed to define composition of morphisms. SupposeM ′ = [(Σ′,∆′,Π′, φ′
0, φ

′
1)] ∈

Mor(Xf ′
0
, Xf ′

1
), and M ′′ = [(Σ′′,∆′′,Π′′, φ′′

0, φ
′′
1)] ∈Mor(Xf ′′

0
, Xf ′′

1
), and suppose f ′

1 = f ′′
0 .

Then let f = φ′′
0 ◦ (φ′

1)
−1, so that f is an orientation reversing diffeomorphism from the

closed submanifold φ′
1(σ(f ′

1)) of ∂Σ′ to the closed submanifold φ′′
0(σ(f ′′

0 )) of ∂Σ′′.

Define

Σ = Σ′ ∪f Σ′′ ,

`∆ = `∆′ ∪f |∂`
∆′∩im(φ′

1
)
`∆′′

∗∆(J) =

{
∗∆′(J) if J ⊂ Σ′

∗∆′′(J) if J ⊂ Σ′′

sh∆(Ω) =

{
sh∆′(Ω ∩ Σ′) if Ω ∩ Σ′ 6= ∅

sh∆′′(Ω ∩ Σ′′) if Ω ∩ Σ′′ 6= ∅

Strictly speaking, we should, for instance, have written not sh∆′′(Ω∩Σ′′), but instead

sh∆′′(Ω′′) where (Ω∩Σ′′) ⊃ Ω′′ ∈ C(Σ′′ \`∆′′). We need to verify that the above definition

of the shading on Σ is unambiguous - for which we only need to observe that every

component of (Σ′ ∩Σ′′) \ `∆ inherits the same shading from ∆′ and ∆′′.3 This will follow

3When dealing with such compositions, we shall identify Σ′ and Σ′′ with their images in Σ.
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once we check that

f∗(∆
′|(Σ′∩Σ′′)) = ∆′′|(Σ′∩Σ′′) ;

but this is a consequence of two applications of equation (2.4) - to (φ′
1)

−1 and φ′′
0, re-

spectively.

Finally, define

Π = Π′ ∪ Π′′ ∪ C(Σ′ ∩ Σ′′)

φ0 = φ′
0 ,

φ1 = φ′′
1 .

Step 2: Given two morphisms M ′ = [(Σ′,∆′,Π′, φ′
0, φ

′
1)] ∈Mor(Xf ′

0
, Xf ′

1
), and M ′′ =

[(Σ′′,∆′′,Π′′, φ′′
0, φ

′′
1)] ∈ Mor(Xf ′′

0
, Xf ′′

1
), we shall appeal to the assertions in Step 1 to

assume that the pre-morphisms (Σ′,∆′,Π′, φ′
0, φ

′
1) and (Σ′′,∆′′,Π′′, φ′′

0, φ
′′
1) are in semi-

normal form, with the enumerations of the boundary components of φ′
1(σ(f ′

1)) and of

φ′′
0(σ(f ′′

0 )) having been chosen in a compatible fashion. The definitions and the nature

of ‘semi-normal forms’ show then that (Σ,∆,Π, φ0, φ1), as defined in the paragraphs

preceding Step 2, is indeed a pre-morphism (with `∆ being smooth (and without kinks

at the ‘glueing places’) and transverse to Π). Finally, we shall define

M ′′ ◦M ′ = [(Σ,∆,Π, φ0, φ1)] .

What remains is to ensure that this rule for composition is an unambiguously de-

fined operation, which is independent of the choices (of semi-normal representatives) in-

volved. Suppose (Σ(0)′,∆(0)′,Π(0)′, φ
(0)′
0 , φ

(0)′
1 ) and (Σ(0)′′,∆(0)′′,Π(0)′′, φ

(0)′′
0 , φ

(0)′′
1 ) are also

semi-normal forms of M ′ and M ′′. Then, by definition, there exists an orientation pre-

serving diffeomorphism φ′ : Σ′ → Σ(0)′ which ‘transports’ one pre morphism structure to

the other. Next, by a judicious application of Lemma 5.2 - to a neighbourhood of the

‘end’ of Σ′ to be glued (let us call this the 1-end) - we may find another orientation-

preserving diffeomorphism ψ′ : Σ′ → Σ(0)′ which is ‘identity on a small neighbourhood

of the 1-end’ and ‘φ′ outside a slightly larger neighbourhood of the 1-end’. It is clear,

in view of the nature of semi-normal forms, that ψ′ also transports the pre-morphism

structure on Σ′ to that on Σ(0)′. In an entirely similar fashion, we can find an orientation-

preserving diffeomorphism ψ′′ which transports the pre-morphism structure on Σ′′ to that

on Σ(0)′′ (and is the ‘identity on a small neighbourhood of the 0-end’ and ‘φ′′ outside a

slightly larger neighbourhood of the 0-end’). Finally, it is a simple matter to see that

ψ′
∐

φ′
1(σ(f ′

1)) ψ
′′ defines a smooth orientation-preserving diffeomorphism which transports

the pre-morphism structure on Σ′
∐

φ′
1(σ(f ′

1)) Σ′′ to that on Σ(0)′
∐

φ
(0)′
1 (σ(f

(0)′
1 ))

Σ(0)′′. This

proves that our definition of the composition of two morphisms is indeed independent of

the choice, in our definition, of semi-normal forms, as desired.
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Only the definition of idXf
remains before we can proceed to the verification that we

have a ‘cobordism category’. If f ∈ F , we define

idXf
= [(Σ,∆,Π, φ0, φ1)] ,

where

Σ = σ(f) × [0, 1]

`∆ = Pδ(f) × [0, 1]

∗δ(f)(J) = ∗∆(J × {0}) = ∗∆ (J × {1})

sh∆(J × [0, 1]) = shδ(f)(J)

Π = ∅

f0 = f1 = f

φj(x) = (x, j) , for x ∈ σ(f), j = 0, 1 ,

where σ(f) × [0, 1] is so oriented as to ensure that φ0 (resp., φ1) is orientation-reversing

(resp., preserving).

Proposition 2.7 There exists a unique category D whose objects are given by members

of the countable set Obj, such that, if fj ∈ F , j = 0, 1, the collection of morphisms

from Xf0 to Xf1 is given by Mor(Xf0, Xf1), and composition of morphisms is as defined

earlier.

(Note that the objects of D are equivalence classes of decorated one-manifolds, while

morphisms between two such objects is an equivalence class of decorated cobordisms

between them - and thus D is a ‘cobordism category’ in the sense of [BHMV].)

Proof: To verify the assertion that D is a category, we only need to verify that

(i) composition of morphisms is associative; and that (ii) idXf
is indeed the identity

morphism of the object Xf .

The verification of (i) is straightforward, while (ii) is a direct consequence of the

definition of a move of type III.

As for the remark about ‘cobordism categories’, observe that D comes equipped with:

(a) notions of ‘disjoint unions’ - for objects as well as morphisms; this yields a bi-

functor from D ×D to D that is invariant under the ‘flip’;

(b) an ‘empty object’ ∅ as well as an ‘empty morphism’ - viz. id∅ - which act as

‘identity’ for the operation of ‘disjoint union’;

(c) notions of adjoints, of objects as well as morphisms, such that

M ∈ Mor(Xf0, Xf1) ⇒ M̄ ∈Mor(Xf1 , Xf0) ;
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and

(d) the notion of ‘boundary’ ∂ from morphisms to objects, which ‘commutes’ with

disjoint unions as well as with adjoints.

Finally, if we let 2Cob denote the category whose objects are compact oriented

smooth 1-manifolds, and whose morphisms are cobordisms, then we have a ‘forgetful

functor’ from D to 2Cob. This is what we mean by a ‘cobordism category in dimension

1+1’. 2

3 From subfactors to TQFTs on D

We wish to show, in this section, how every extremal finite-index II1 subfactor gives rise

to a unitary (1+1)-dimensional topological quantum field theory - abbreviated

throughout this paper to unitary TQFT - defined on the category D of the previous

section. This involves using the subfactor to define a functor from D to the category

of finite-dimensional Hilbert spaces, satisfying ‘compatibility conditions’ involving the

various structures possessed by D.

For this, we shall find it convenient to work with ‘unordered tensor products’ of vector

spaces. Although this notion is discussed in [Tur], we shall say a few words here about

such unordered tensor products for the reader’s convenience as well as to set up the

notation we shall use.

Given an ordered collection {Vi : 1 ≤ i ≤ n} of vector spaces, and a permutation

σ ∈ Sn, let us write Vσ = Vσ−1(1) ⊗ · · ·⊗Vσ−1(b) and define the map Uσ : Vε → Vσ - where

we write ε for the identity element of Sn - by the equation

Uσ(⊗b
i=1vi) = ⊗b

i=1vσ−1(i) .

We define the unordered tensor product of the spaces {Vi : 1 ≤ i ≤ n} by the

equation

⊗

unord

{Vi : i ∈ {1, 2, · · · , n}}

= {((xσ)) ∈ ⊕σ∈SnVσ : xσ = Uσxε , ∀σ ∈ Sn}

(In case xε = ⊗n
i=1vi is a ‘decomposable tensor’, we shall write ⊗unord{vi}i} for the

element ((Uσxε)).)

It is clear that the unordered tensor product is naturally isomorphic to the (usual,

ordered) tensor product; in case each Vi is a Hilbert space, so is the unordered tensor

product, and the natural isomorphism of the last sentence is unitary. In particular, for
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example, if we are given a collection {Ti ∈ L(Vi,Wi) : 1 ≤ i ≤ n} of linear maps, there

is a unique associated linear map

⊗unord{Ti}i ∈ L(
⊗

unord

{Vi}i,
⊗

unord

{Wi}i)

such that

(⊗unord{Ti}i)(⊗unord{vi}i) = (⊗unord{Tvi}i) , ∀i ∈ Vi, 1 ≤ i ≤ n .

In the interest of notational convenience, and in view of the isomorphism stated at

the beginning of the last paragraph, we shall be sloppy and omit the subscript ‘unord’

in the sequel.

Suppose now that we have an extremal subfactor N of a II1 factor M of finite index.

Following the notation of [Jon], we write δ for the square root of the index [M : N ], and

let

Pk =

{
C if k = 0±

N ′ ∩Mk−1 if k = 1, 2, · · ·
,

where of course

(M−1 =)N ⊂ (M0 =)M ⊂M1 ⊂ · · · ⊂Mk ⊂ · · ·

denotes the basic construction tower of Jones.

The sequence P = {Pk : k ∈ C} of relative commutants has its natural planar

algebra structure, as defined in [Jon]. (We shall find it convenient to primarily use

the notation described in [KS1], which differs in a few minor details from [Jon]. We shall

however consistently use the symbol Z(T ) - and not ZT - for the multi-linear operator

associated to a planar tangle T .) We shall further let

Pk̄ = P ∗
k , ∀k ∈ C ,

where the superscript ∗ denotes the dual - equivalently, the complex conjugate - Hilbert

space. Note that we have defined Pk for all k ∈ Col.

Let us write
⊗

{miVi : i ∈ I} to denote the unordered tensor product of a collection

containing exactly mi vector spaces equal to Vi, for each i ∈ I.

We define

V (Xf) =
⊗

{f(k)Pk : k ∈ Col, f(k) 6= 0} .

If M = (Σ,∆,Π, φ0, φ1) is a pre-morphism, then (∂Σ,∆|∂Σ) is a decorated 1-manifold,

which we denote by ∂(Σ,∆). It is to be noted that if the equivalence class of this

decorated 1-maniold is given by the element Xf of Obj, then the Hilbert space

V (Xf) =
⊗

{Pcol(J,∆|J) : J ∈ C(∂Σ)}
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depends only on (Σ,∆), owing to the ‘unordered nature’ of our tensor products; and

hence, we may write

V (∂(Σ,∆)) = V (Xf) .

Next, to a morphism M ∈ Mor(Xf0 , Xf1), we need to associate a linear map ZM ∈

L(V (Xf0), V (Xf1)) . To start with, we shall do the following: if M = [(Σ,∆,Π, φ0, φ1)],

we shall construct an element

ζM ∈ V (∂(Σ,∆)) ,

and then verify that this vector ζM depends only on the equivalence class defining the

morphism M . Finally, we shall appeal to natural identifications

V (∂(Σ,∆)) ∼= V (Xf0)
∗ ⊗ V (Xf1)

∼= L(V (Xf0), V (Xf1))

to associate the desired operator ZM to ζM , and hence to M .

All of the above will require some work. We start with a definition.

Definition 3.1 Given a planar decorated 2-manifold (Σ,∆,Π), and a component J ∈

C(∂Σ), we shall say that J is good if col(J,∆|J) /∈ C and bad, if it is not good.

We will arrive at the definition of the desired association M 7→ ZM by discussing a

series of cases of increasing complexity. We assume, in what follows, that we are given a

fixed planar decorated 2-manifold (Σ,∆,Π).

Case 1: Π = ∅ and all components J ∈ C(∂Σ) are good.

The assumption Π = ∅ implies that Σ is - diffeomorphic to, and may hence be

identified with - Ab for some b ≥ 0. The ‘goodness’ assumption says that the colour of

each of the components of ∂Σ belongs to the set {k̄ : k ∈ C}; suppose {col(J,∆|J) :

J ∈ C(∂Σ)} = {ki : 0 ≤ i ≤ b} where ki ∈ C ∀ i. For a point x ∈ Σ \ (∂Σ ∪ `∆), let

Nx denote the result of stereographically projecting Σ onto the plane, with x thought of

as the north pole. The assumption that all the J ’s are good has the consequence that

Nx is a planar network in the sense of [Jon] (with unbounded component positively or

negatively oriented according as the component of the point x is shaded white or black

according to Σ). The partition function of Nx - obtained from the planar algebra of the

subfactor N ⊂ M - yields a linear functional ηx of ⊗{Pki
: 0 ≤ i ≤ b}, and hence an

element ζ∆ ∈ ⊗{Pki
: 0 ≤ i ≤ b}.

Let f ∈ F be defined, as above, by requiring that V (Xf) = V (∂(Σ,∆)), and let

φ denote the identification of σ(f) with ∂Σ. Consider the pre-morphism (Σ,∆, ∅, φ∅, φ)
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fromX0 toXf - where φ∅ is the unique map from σ(0) to ∅. If we let M = [(Σ,∆, ∅, φ∅, φ)]

denote the associated morphism, then notice that ∂M = Xf , and that

V (Xf ) = V (∂(Σ,∆))

=
⊗

{Pki
: 0 ≤ i ≤ b} .

Thus, at least in this case, we have been able to associate an element ζ∆ of V (∂(Σ,∆))

to the pre-morphism (Σ,∆, ∅, φ∅, φ).

The following two observations ensure that ζ∆ is independent of various choices.

(a) If also x′ ∈ Σ\(∂Σ∪`∆), then the networks Nx and Nx′ are related by an diffeotopy

of S2 (corresponding to a rotation which maps x to x′); and since the partition function

obtained from an extremal subfactor is an invariant of networks on the 2-sphere - see

[Jon] -, we find that ηx = ηx′ .

(b) Two different identifications of Σ with Ab give the same ζ∆ since (i) any diffeo-

morphism of Ab to itself preserving the boundary is isotopic to the identity - by virtue

of triviality of the mapping class group of the sphere; and (ii) the partition function of

a tangle is ‘well-behaved with respect to re-numbering its internal discs’ - see eqn. (2.3)

in [KS1].

(The fact that the mapping class group of a compact surface is trivial only for genus zero

is one of the main reasons for our seemingly complicated definition - involving planar

decompositions - of the category D.)

For each k ∈ C, define a map βk : Pk → P ∗
k by the equation

βk(x)(y) = τk(xy) , (3.5)

where τk denotes the normalised trace on Pk defined by τk(z) = trMk
(z) - so δkτk agrees

with the result of applying the ‘trace-tangle’ (followed by the identification of P0+ with

C).

The non-degeneracy of the trace implies that βk is an isomorphism, and hence we

also have the isomorphism β−1
k : Pk̄ → Pk for k ∈ C. For later use, we observe here that

if {ei} is a basis for Pk with corresponding dual basis {ei} for P ∗
k , then

∑

i

τk(eiz)β
−1
k (ei) = z , ∀z ∈ Pk . (3.6)

Case 2: Π = ∅ and not all components J ∈ C(∂Σ) are necessarily good.

Define Cg,∆(∂Σ) = {J ∈ C(∂Σ) : J is good for (Σ,∆)} and Cb,∆(∂Σ) = {J ∈ C(∂Σ) :

J is bad for (Σ,∆)}. Also, suppose {col(J,∆|J) : J ∈ Cg,∆(∂Σ)} = {ki : 0 ≤ i ≤ bg}

and {col(J,∆|J) : J ∈ Cb,∆(∂Σ)} = {ki : bg + 1 ≤ i ≤ b} where ki ∈ C, 0 ≤ i ≤ b.
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The following bit of notation will be handy: if ∆ = (`, ∗, sh) is a decoration of a 2-

manifold Σ, let us define the ‘rotated ∗s’, denoted (∗+1)∆ (resp., (∗−1)∆) by demanding

that (a) if ` ∩ J = ∅, then {(∗ ± 1)∆}(J)} = {B,W} \ {∗∆}(J)}, and (b) if ` ∩ J 6= ∅,

then (∗ + 1)∆(J) (resp., (∗ − 1)∆(J)) is the ‘first point immediately after (resp., before)

∗∆(J)’ as one traverses J in the orientation induced by Σ.

Now define the ‘improved’ decoration ∆̃ on Σ by

`e∆ = `∆

she∆ = sh∆

∗e∆(J) =

{
∗∆(J) if J ∈ Cg,∆(∂Σ)

(∗ + 1)∆(J) if J ∈ Cb,∆(∂Σ)
.

The point is that all components J ∈ C(∂Σ) are good for (Σ, ∆̃). So, the analysis of

of Case 1 applies, and we we can construct the element

ζe∆ ∈
⊗

{Pki
: 0 ≤ i ≤ b}.

Finally, we define

ζ∆ =
(
⊗{{idP

ki
: 0 ≤ i ≤ bg} ∪ {β−1

ki
: bg + 1 ≤ i ≤ b}}

)
ζe∆

(3.7)

Observe that ζ∆ ∈ V (∂M) in this case too, if M, f, φ are defined as in Case 1.

Remark 3.2 Suppose (Σ,∆) is as in Case 2 above, suppose Cb,∆(∂Σ) = {J0} and

Cg,∆(∂Σ) = {J1, · · · , Jb}, and suppose

col(Ji,∆|Ji
) =

{
ki i = 0

ki 1 ≤ j ≤ b

As Π = ∅, we may, and do, assume that Σ = Ab ⊂ S2. Suppose now that x is a point

on S2 which lies in that component of S2\J0 which does not meet Σ. Then we wish to note

that the result of stereographically projecting (Σ,∆), with x viewed as the north pole, is a

planar tangle, say T , in the sense of Jones, and that δk0Z(T ) : ⊗{Pki
: 1 ≤ i ≤ b} → Pk0

and ζ∆ ∈ ⊗{Pki
: 1 ≤ i ≤ b}

∐
{Pk0} correspond via the natural isomorphism between

L(⊗{Pki
: 1 ≤ i ≤ b}, Pk0) and ⊗

{
{P ∗

ki
: 1 ≤ i ≤ b}

∐
{Pk0}

}
.

(Reason: In order to compute ζ∆, we first ‘make it good’ which involves replacing

∗∆(J0) by (∗ + 1)∆(J0), then stereographically projecting the result from some point on

the surface to obtain a network, say N - which can be seen to be trk0 ◦ (Mk0 ◦D2 T ).

Hence,

(Z(N ))(x0 ⊗ · · · ⊗ xb) = δk0τk0(x0(Z(T )(x1 ⊗ · · · ⊗ xb)) ;
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this means that

ζ∆̃ =
∑

δk0τk0(e
(0)
i0

(Z(T )(e
(1)
i1

⊗ · · · ⊗ e
(b)
ib

)) ei0
(0) ⊗ · · · ⊗ eib

(b) ,

where {e(t)
it
} denotes a basis for Pkt and {eit

(t)} is the dual basis for P ∗
kt
.

Hence,

ζ∆

=
∑

δk0τk0(e
(0)
i0

(Z(T ))(e
(1)
i1

⊗ · · · ⊗ e
(b)
ib

)) β−1
k0

(ei0
(0)) ⊗ ei1

(1) ⊗ · · · ⊗ eib
(b)

= δk0

∑
(Z(T ))(e

(1)
i1

⊗ · · · ⊗ e
(b)
ib

) ⊗ ei1
(1) ⊗ · · · ⊗ eib

(b) by eq.(3.6) ,

as desired.)

Case 3: Π 6= ∅.

Fix a sufficiently small tubular neighbourhood UΠ of ∪{γ : γ ∈ Π}) whose bound-

ary meets `∆ transversely. (The ‘sufficiently small’ requirement will ensure that our

construction below will be independent of the choice of UΠ.) Then to each component

Ω ∈ C(Σ\UΠ) - which is (diffeomorphic to) an Ab - we wish to specify a decoration ∆(Ω).

Let us write Cnew for the set of those J ∈ C(∂Ω) for which J 6⊂ ∂Σ, where Ω ∈ C(Σ\UΠ).

First note that, by ‘restriction’, the decoration ∆ naturally specifies all ingredients

of ∆Ω with the exception of ∗∆(Ω)(J) when J ∈ Cnew (and, of course, Ω ∈ C(Σ \ UΠ) is

such that J ∈ C(∂Ω)). Choose the family

{∗∆(Ω)(J) : J ∈ Cnew}

subject only to the following conditions, but otherwise arbitrarily:

For each γ ∈ Π, let Uγ denote the component of UΠ which contains γ. Then, C(∂(Σ \

Uγ))∩Cnew = {J1(γ), J2(γ)} (say). Suppose Ji(γ) ∈ C(∂Ωi(γ)) where Ωi(γ) ∈ C(Σ \UΠ),

for i = 1, 2. (Notice that J1(γ) 6= J2(γ), although the Ωi(γ) need not necessarily be

distinct.) The conditions we demand are:

(i) if γ ∩ `∆ 6= ∅, then the points ∗∆(Ωi(γ))(Ji(γ)), i = 1, 2 must lie in the same

connected component of Uγ ∩ `∆; and

(ii) if γ ∩ `∆ = ∅, then {∗∆(Ωi(γ))(Ji(γ)) : i = 1, 2} = {B,W}.

Let us write V (∂(Ω,∆(Ω)) to denote the Hilbert space corresponding to (the element

of Obj in the equivalence class) [(∂Ω,∆(Ω)|∂Ω)]. Each (Ω,∆(Ω)) is a decorated 2-

manifold to which we may apply the analysis of Case 2, to obtain a vector

ζ∆(Ω) ∈ V (∂(Ω,∆(Ω)) =
⊗

{Pcol(J,∆(Ω)|J ) : J ∈ C(∂Ω)} . (3.8)
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Notice that
⊗

{V (∂(Ω,∆(Ω)) : Ω ∈ C(Σ \ UΠ)} (3.9)

=
⊗

{Pcol(J,∆(Ω)|J) : J ∈ C(∂Ω), Ω ∈ C(Σ \ UΠ)}

=
⊗

{Pcol(J,∆(Ω)|J) : J ∈ C(∂Σ)
∐

Cnew} . (3.10)

Our two conditions above imply that
⊗

{Pcol(J,∆(Ω)|J ) : J ∈ Cnew}

is an unordered tensor product with an even number of terms which naturally split off

into pairs of the form {Pk, P
∗
k } for some k ∈ C; then the obvious ‘contractions’ result

in a natural linear surjection of
⊗

{V (∂(Ω,∆(Ω)) : Ω ∈ C(Σ \ UΠ)} onto V (∂(Σ,∆)).

Finally, define ζ∆ to be the image, under this contraction, of

κ(∆,Π)
⊗

{ζ∆(Ω) : Ω ∈ C(Σ \ UΠ)} ,

where

κ(∆,Π) = δ−
1
2

|Π∩`∆| .

We need, now, to verify that the definition of ζ∆ is independent of the choices avail-

able in the definitions of the ∆(Ω)’s. It should be clear that the constant κ(∆,Π) is

independent of the choices under discussion. There are two components to this verifica-

tion:

(a) For a fixed J(0) ∈ C(∂Σ), define the decoration ∆̃J(0) of Σ by demanding that

`e∆J(0)
= `∆

she∆J(0)
= sh∆

{∗e∆J(0)
(J)} =

{
{∗∆(J)} if J 6= J(0)

(∗ + 1)∆(J(0)) if J = J(0)
.

The first of the two components above is the observation - which follows from equation

3.7 - that

ζe∆J(0)
=
⊗(

{idPcol(J,∆|J)
: J ∈ C(∂Σ \ {J(0)})} ∪ βcol(J(0),∆|J(0))

)
ζ∆ . (3.11)

(b) The second component is the fact that the following diagram commutes, for all

k ∈ Col:
Pk ⊗ P ∗

k

↘

βk ⊗ β−1
k ↓ C

↗

P ∗
k ⊗ Pk
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(This is nothing but a re-statement of the fact that τk is a trace - i.e., τk(xy) =

τk(yx) ∀ x, y ∈ Pk.)

Now, in order to verify that our definition of ζ∆ is indeed independent of the choices

present in the definition of the ∆(Ω)’s, it is sufficient to verify that two possible choices

{∆j(Ω) : Ω ∈ C(Σ \ UΠ)}, j = 1, 2 yield the same ζ∆ provided they are related in the

following special manner:

there exists a γ ∈ Π such that

∗∆1(Ω)(J) =





∗∆2(Ω)(J) if J 6= Ji(γ), i = 1, 2

(∗ + 1)∆2(Ω1(γ))(J) if J = J1(γ)

(∗ − 1)∆2(Ω2(γ))(J) if J = J2(γ)

.

(Basically, we are saying here that it is enough to tackle one γ at a time and to move

the ∗ point one step at a time.)

If the {∆i(Ω)} are so related, notice that if J ∈ C(∂Ω), Ω ∈ C(Σ \ UΠ), then

col(J,∆1(Ω)|J) =

{
col(J,∆2(Ω)|J) if J ∈ {Ji(γ) : i = 1, 2}

col(J,∆1(Ω)|J) otherwise
.

If we define - see equation (3.9) -

Vj =
⊗

{V (∂(Ω,∆j(Ω))) : Ω ∈ C(Σ \ UΠ)}

=
⊗

{Pcol(J,∆j(Ω)|J ) : J ∈ C(∂Σ)
∐

Cnew} .

and the operator A : V1 → V2 by A = ⊗AJ where

AJ =

{
βcol(Jj(γ),∆1(Ω)|Jj (γ)) if J = Jj(γ), j = 1, 2

idPcol(J,∆1(Ω)|J )
otherwise

,

the definitions4 are seen to imply, by equation (3.7), that

⊗{ζ∆2(Ω) : Ω ∈ C(Σ \ UΠ)} = A(⊗{ζ∆1(Ω) : Ω ∈ C(Σ \ UΠ)}) .

It is seen from our ‘second component (b)’ above that the images under the sur-

jections (induced by the ‘natural contractions’) from the Vj’s to V (∂(Σ,∆)) of the

vectors ⊗{ζ∆j(Ω) : Ω ∈ C(Σ \ UΠ)} are the same; in other words, both the choices

{∆j(Ω) : Ω ∈ C(Σ \ Π)} give rise to the same vector ζ∆, as desired.

We emphasise that if M = [(Σ,∆,Π, φ0, φ1)] is a morphism, then

(a) the Hilbert space V (∂M) depends only on ∂(Σ,∆);

(b) the associated vector, which we have chosen to call ζ∆ above, depends à priori

on the planar decorated 2-manifold (Σ,∆,Π), and is independent of the φj’s.

Our next step is to prove the following proposition.

4We adopt the convention here that βk̄ = β−1

k
for k ∈ C.
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Proposition 3.3 If (Σ(i),∆(i),Π(i), φ
(i)
0 , φ

(i)
1 ), i = 1, 2 are pre-morphisms, if we let ζi =

ζ∆i
denote the vectors associated, as above, to the triples (Σ(i),∆(i),Π(i)), and if the above

pre-morphisms are related by a move of type J, J ∈ {I, II, III}, then ζ1 = ζ2.

Proof: We shall argue case by case.

Case (I): J = I

Let φ define the Type I move between the two pre-morphisms as in Definition 2.6 (i).

First consider the subcase where Π1 = ∅. If φ = id, there is nothing to prove; but in

view of the observation (b) in the discussion of Case 1, we may choose the identification

of Σ1 with an Ab to be ψ ◦φ, where ψ : Σ2 → Ab is the chosen identification for Σ1 , and

hence reduce to the case φ = id.

If Π 6= ∅, then, in the notation of Case 3, first choose tubular neighbourhoods UΠj

so that UΠ2 = φ(UΠ1), then make choices to ensure that ∆2(φ(Ω)) = φ∗(∆1(Ω)), ∀Ω ∈

C(Σ1 \UΠ1), and then observe that the analysis of the last paragraph applies to each pair

(Ω, φ(Ω)),Ω ∈ C(Σ1 \ UΠ1), and finally contract to obtain the desired conclusion.

Case (III): J = III

It clearly suffices to treat the case when Π2 = Π1

∐
{γ0}, and of course Σ(1) =

Σ(2), ∆(1) = ∆(2), φ
(1)
i = φ

(2)
i . To start with, we may assume that the tubular neighbour-

hoods UΠj
, j = 1, 2 are such that UΠ2 = UΠ1

∐
U0, where U0 is a tubular neighbourhood of

γ0. Then there exists a unique component Ω0 ∈ C(Σ1\UΠ1) such that γ0 ⊂ Ω0. Next, if we

choose ∆1(Ω) = ∆2(Ω) ∀Ω 6= Ω0, it is clear that also ζ∆1(Ω) = ζ∆2(Ω) ∀Ω 6= Ω0. So we only

need to worry about Ω0; equivalently, we may as well assume that Π1 = ∅, Π2 = {γ0}.

In other words, we may assume that Σ1 = Ab for some b. Consider the subcase where

all components J ∈ C(∂Σ1) are good, and are of colours, say, k0, k2, · · · , kb. Choose

any point x ∈ Σ1 \ (∂Σ1 ∪ `∆1 ∪ γ0) and let N be the planar network obtained by

stereographically projecting Σ1 onto the plane with x as the north pole. The partition

function of N specifies a map ⊗{Pki
: 0 ≤ i ≤ b} → C and hence an element of

⊗{Pki
: 0 ≤ i ≤ b} which is, by definition, ζ∆1.

In order to compute ζ∆2, we may assume that the boundary of U0 meets `∆2 transver-

sally, and only at smooth points. Note that Σ2 \ U0 has exactly two components - one

of which contains x and will be denoted by Ω1 and the other by Ω2. Choose decorations

for Ω1 and Ω2 - by appropriately choosing ∗∆(Ω1) and ∗∆(Ω2) - such that all bound-

ary components of Ω1 are good while exactly one boundary component of Ω2, namely

the one - call it γ′′0 - which meets ∂U0, is bad. Suppose that col(γ ′0,∆(Ω1)|γ′
0
) = k -

where, of course γ ′0 denotes the boundary component of Ω1 which meets ∂U0. Then

col(γ′′0 ,∆(Ω2)|γ′′
0
) = k. Also suppose that Ω1 contains the boundary components of Σ2

20



with colours ki0, · · · , kia while Ω2 contains the boundary components of Σ2 with colours

kia+1, · · · , kib where {i0, · · · , ib} = {1, · · · , b}.

To compute ζ∆(Ω1), stereographically project Ω1 from x and call the planar network

so obtained as N1. The partition function of N1 gives a map Z(N1) : ⊗{Pk}
∐
{Pkit

:

0 ≤ t ≤ a} → C or equivalently the element ζ∆(Ω1) ∈ ⊗{Pk}
∐
{Pkit

: 0 ≤ t ≤ a}.

To compute ζ∆(Ω2), stereographically project Ω2 from x and observe that as in Remark

3.2, the result is a planar tangle say, T , and by that remark, ζ∆(Ω2) ∈ ⊗{Pk}
∐
{Pkit

:

a + 1 ≤ t ≤ b} and δk Z(T ) : ⊗{Pkit
: a + 1 ≤ t ≤ b} → Pk are related by canonical

isomorphisms between the spaces in which they live. Observe, on the other hand, that

κ(∆2, {γ0}) = δ−k.

Now note that N = N1 ◦γ0 T ; the basic property of a planar algebra then ensures

that Z(N ) = Z(N1) ◦ (⊗{Z(T )}
∐
{idPkit

: 0 ≤ t ≤ a}). Finally chasing the three

isomorphisms above - which relate the vectors ζ∆1, ζ∆(Ω1) and ζ∆(Ω2) to the operators

Z(N ), Z(N1) and δk Z(T ) respectively - shows that ζ∆2 which is κ(∆2, {γ0}) times

the contraction of ζ∆(Ω1) and ζ∆(Ω2) is indeed equal to ζ∆1; this finishes the proof in this

subcase.

The case that not all boundary components of Σ1 are good follows, on applying the

conclusion in above subcase to the improved decoration ∆̃1.

Case (II): J = II

First consider the case when Π(1) ∩Π(2) = ∅. In this case, put Π = Π(1) ∪Π(2). Then

by the already proved ‘invariance of ζ under type III moves’ we see that both ζi, i = 1, 2

are equal to the ζ associated with the pre-morphism given by (Σ(1),∆(1),Π, φ
(1)
0 , φ

(1)
1 ).

So, only the case when Π(1) ∩ Π(2) 6= ∅ needs to be handled. For this case, we will

need a couple of facts about transversality - namely Corollary 5.10 and Proposition 5.8

- both statements and proofs of which have been relegated to §5.

For notational simplicity, let us write (Σ,∆) = (Σ(i),∆(i)), i = 1, 2 and Π0 =

Π(1),Π1 = Π(2). Let us write Bt = ∪{γ : γ ∈ Πt}, t = 0, 1 and A = `∆. Thus,

what we are given is that there exists a diffeotopy, say F , of Σ such that (i) Ft(B0) = Bt,

and (ii) Bt and A meet transversally, for t = 0, 1. Let us define Bt = Ft(B0) ∀t ∈ [0, 1].

Thanks to Proposition 5.8, we may even assume that Bt meets A transversally for

t ∈ D, where D is a dense set in [0, 1]. For each t ∈ D, if we let Πt = C(Bt), then it

follows that (Σ,∆,Πt, φ
(i)
0 , φ

(i)
1 ) may be regarded as a pre-morphism. Let us write ζt for

the vector associated to the premorphism (Σ,∆,Πt, φ
(i)
0 , φ

(i)
1 ).

First, choose a small tubular neighbourhood U of B0. By definition, there is a

diffeomorphism H ofB0×[−1, 1] onto the closure Ū of U , such thatH(x, 0) = x, ∀x ∈ B0.

Let B′ = H(B0×{1}). We assume that U has been chosen ‘sufficiently small’ as to ensure

21



that B′ meets A transversally.

We assert next that if d denotes any metric on Σ (which yields its topology), there

exists an ε > 0 such that

d(x, y) ≥ ε, ∀ x ∈ Ft(B0), y ∈ Ft(B
′), ∀t ∈ [0, 1].

(Reason: If not, we can find a sequence (tn, xn, yn) ∈ [0, 1]×B0×B′ such that d(Ftn(xn), Ftn(yn)) ≤
1
n

for all n. In view of the compactness present, we may - pass to a subsequence, if nec-

essary, and - assume that there exists (t, x, y) ∈ [0, 1] ×B0 ×B′ such that (tn, xn, yn) →

(t, x, y); but this implies that B0 ∩ B′ 6= ∅, thus arriving at the contradiction which

proves the assertion.)

By arguing in a very similar manner to the reasoning of the last paragraph, we find

that there exists η > 0 so that

|t1 − t2| < η ⇒ d(Ft1(x), Ft2(x)) < ε/2 ∀x ∈ B.

Next, we may choose points 0 = t0 < t1 < t2 < ... < tk = 1 so that (i) |ti−ti+1| < η∀i,

and (ii) each ti belongs to the dense set D described a few paragraphs earlier.

Notice that our construction ensures that Fti(B
′) does not intersect either Bti or

Bti+1
, for each i. Now it may be the case that Fti(B

′) does not meet A transversally;

in that case, we may appeal to Corollary 5.10 to deduce that there is a nearby curve,

say B′
t - within ε/2 - that is isotopic to Fti(B

′) and intersects A transversally. Now, the

curve B′
t gives rise to a premorphism and the associated vector, say ζ ′t agrees with both

ζti and ζti+1
by the reasoning of the first paragraph in the discussion of this case. Finally,

we conclude that ζ0 = ζ1, as desired. 2

We have thus associated a vector ζ∆ to a pre-morphism (Σ,∆,Π, φ0, φ1) which de-

pends only on the morphism defined by that pre-morphism. Hence, if M denotes the

morphism [(Σ,∆,Π, φ0, φ1)], we may unambiguously write ζM for this vector ζ∆; by

definition, we have

ζM ∈ V (∂M) . (3.12)

Lemma 3.4 For any morphism M , we have

ζM̄(ξ) = 〈ξ, ζM〉 , ∀ ξ ∈ V (∂M) . (3.13)

Proof: Assume that M = [(Σ,∆,Π, φ0, φ1)], so that M̄ = [(Σ,∆,Π, φ1, φ0)].

We consider two cases.

Case 1: Π = ∅.
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We may assume that Cg,∆(∂Σ) = {J0, · · · , Ja} and Cb,∆(∂Σ) = {Ja+1, · · · , Jb}. Let

us write ∆̃ for the ‘improved decoration’ as before. Then the components of ∂Σ have

colours k̄0, · · · , k̄b (say) according to ∆̃.

We pause to make some notational conventions regarding orthonormal bases. Choose

an orthonormal basis {e(t)
it : 1 ≤ it ≤ dim Pkt} for Pkt and let {eit

(t) : 1 ≤ it ≤ dim Pkt}

be the dual (also orthonormal) for Pkt

∗; thus,

eit
(t)(·) = 〈·, e(t)

it
〉 = β(e

(t)
it

∗
) . (3.14)

Note that also {e(t)
it

∗
: 1 ≤ it ≤ dim Pkt} is an orthonormal basis for Pkt; let {φit

(t) : 1 ≤

it ≤ dim Pkt} be the dual (orthonormal) for Pkt

∗, and note, as in eq. (3.14) that

φit
(t) = β(e

(t)
it ) . (3.15)

Finally, given multi-indices i = (i0, · · · , ia), j = (ja+1, · · · , jb), we shall write ei = ⊗a
t=0e

(t)
it

,

φi = ⊗a
t=0φ

it
(t), e

∗
i = ⊗a

t=0e
(t)
it

∗
, ej = ⊗b

t=a+1e
(t)
jt

, ej = ⊗b
t=a+1e

jt

(t), and ej
∗

= ⊗b
t=a+1e

jt

(t)

∗

By definition, in order to compute ζM , we need to first compute ζ∆̃; and for this, we

need to stereographically project (Σ, ∆̃) from a point x (in Σ \ (∂Σ ∪ `∆)) to obtain a

planar network, call it N ; then

ζ∆̃ =
∑

i,j

Z(N )(e∗i ⊗ ej) φ
i ⊗ ej ,

and hence, by equations (3.14) and (3.15)

ζM = ζ∆ =
∑

i,j

Z(N )(e∗i ⊗ ej) φ
i ⊗ e∗j .

In order to compute ζM̄ , we need to compute what we had earlier called ζ∆̄, for which

we first need to compute ζ ˜̄∆
. For this, we observe that if we project (Σ, ˜̄∆) from the

same point x, we obtain the planar network N ∗ (which is the adjoint of the network N ,

in the sense of [Jon]); hence, as before,

ζ ˜̄∆
=
∑

i,j

Z(N ∗)(ei ⊗ e∗j ) e
i ⊗ φj ,

whence

ζ∆̄ =
∑

i,j

Z(N ∗)(ei ⊗ e∗j ) e
∗
i ⊗ φj .

Hence,

〈φi ⊗ e∗j , ζM〉 = Z(N )(e∗i ⊗ ej)

= Z(N ∗)(ei ⊗ e∗j )

= ζ∆̄(φi ⊗ e∗j ) ,
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where, in the third line above, we have used the fact that if T is a planar tangle, then

Z(T )(⊗xi)
∗ = Z(T ∗)(⊗x∗i ) .

As φi ⊗ e∗j ranges over a basis for (⊗a
i=0P

∗
ki

) ⊗ (⊗b
i=aPki

) = V (∂M), the proof of the

Lemma, in this case, is complete.

The proof in the other case will appeal to the following easily proved fact.

Assertion: Let H and K be finite dimensional Hilbert spaces. Let CK : H⊗K⊗K∗ → H

and CK∗ : H∗ ⊗ K∗ ⊗ K → H∗ be the natural contraction maps. Then, for any ζ ∈

H ⊗ K ⊗ K∗, the equality CK∗( 〈·, ζ〉 ) = 〈·, CK(ζ)〉 holds.

Case 2: Π 6= ∅.

In this case, let a tubular neighbourhood UΠ of ∪{γ : γ ∈ Π be chosen. For each

component Ω of Σ \ UΠ, we may choose ∆̄(Ω) = ∆(Ω); an application of Case 1 to this

piece results in the equality

ζ∆̄(Ω)(·) = 〈·, ζ∆(Ω)〉 . (3.16)

For each γ ∈ Π, (as before) let {J1(γ), J2(γ)} = {J ∈ C(∂(Σ \ Uγ)) : J 6⊂ ∂Σ} Now

choose H = V (∂(Σ,∆)) and K =
⊗

{Pcol(J1(γ),∆(Ω)|J1(γ)) : γ ∈ Π}. Then K∗ is naturally

identified with
⊗

{Pcol(J2(γ),∆(Ω)|J2(γ)) : γ ∈ Π}.

Let ζ ∈ H⊗K⊗K∗ be
⊗

{ζ∆(Ω) : Ω ∈ C(Σ\UΠ)}). Then, by definition, ζM = κ(∆,Π) CK(ζ)

while equation 3.16 shows that ζM̄ = κ(∆̄, Π̄) CK∗( 〈·, ζ〉 ). As κ(∆,Π) = κ(∆̄, Π̄),

an appeal to the foregoing ‘Assertion’ finishes the proof in this case, and hence of the

Lemma. 2

Definition 3.5 Given a morphism M = [(Σ,∆,Π, φ0, φ1)], let Z0(M) be the operator

from V (Xf0) to V (Xf1) which corresponds, under the natural isomorphism of L(V (Xf0), V (Xf1))

with V (Xf0)
∗ ⊗ V (Xf1)( = V (∂M)), to ζM ; finally define

ZM = δ−
1
4
|∂Σ∩`∆| Z0(M) .

Remark 3.6 If M = [(Σ,∆,Π, φ0, φ1)], the operator ZM defined above is independent

of φ0, φ1 in the sense that if M ′ = [(Σ,∆,Π, φ′
0, φ

′
1)] (corresponds to another possible

splitting up of ∂Σ), then the operators ZM and ZM ′ correspond under the natural iden-

tification

L(V (Xf0), V (Xf1)) = V (∂M)) = V (∂M ′)) = L(V (Xf ′
0
), V (Xf ′

1
)) .

This is true because of two observations: (i) this statement is true for Z0(M) and Z0(M
′)

by virtue of the remarks made in the paragraph - see (b) - preceding Proposition 3.3; and

(ii) the powers of δ appearing in the definition of Z(M) and Z(M ′) are the same.
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Theorem 3.7 The foregoing prescription defines a unitary TQFT on D -by which we

mean that:

(a) The association given by

Obj(D) 3 Xf 7→ V (Xf)

Mor(D) 3M 7→ ZM

defines a functor V from the category D to the category H of finite-dimensional Hilbert

spaces.

(b) The functor V carries ‘disjoint unions’ to ‘unordered tensor products’.

(c) The functor V is ‘unitary’ in the sense that it is ‘adjoint-preserving’.

Proof: The verification of (b) is straightforward.

(a) For verifying the identity requirement of a functor, we only need, in view of (b),

to verify that ZidXk
= idV (Xk) for all k ∈ Col, where k is as defined in the next section.

Consider first the case of k ∈ C. For this, begin by observing that idXk
is (see the

paragraph preceding Proposition 2.7) the class of the morphism, with f0 = f1 = k, given

by what is called the ‘identity tangle’ in [Jon] and denoted by Ik
k in [KS1]. It is then

seen from Definition 3.5 and Remark 3.2 that

ZidXk
= δ−kZ0(idXk

) = Z(Ik
k ) = idV (Xk) (3.17)

as desired.

For the case when k̄ ∈ C, notice that idXk
is the class of the morphism, with f0 =

f1 = k̄, given by Ik
k . An appeal to Remark 3.6 and the already proved equation (3.17)

proves that ZidXk
= idV (Xk).

To complete the proof of (a), we needs to check that the functor is well-behaved with

respect to compositions. So, supposeM ′ = [(Σ′,∆′,Π′, φ′
0, φ

′
1)] andM ′′ = [(Σ′′,∆′′,Π′′, φ′′

0, φ
′′
1)],

and that φ′
1 = φ′′

0. The definitions show that ζM ′′◦M ′ is equal to a scalar multiple -

δ−
1
2
|`∆′∩im(φ′

1)| - of the contraction of ζM ′′ ⊗ ζM ′ along V (Xf ′
1
)⊗V (Xf ′′

0
)∗. In other words,

Z0(M
′′ ◦M ′) = δ−

1
2
|`∆′∩im(φ′

1)|Z0(M
′′) ◦ Z0(M

′).

We hence deduce that

ZM ′′◦M ′ = δ−
1
4
(|`∆′∩im(φ′

0)|+|`∆′′∩im(φ′′
1 )|)Z0(M

′′ ◦M ′)

= δ−
1
4
(|`∆′∩im(φ′

0)|+|`∆′∩im(φ′
1)|)+|`∆′′∩im(φ′′

0 )|)+|`∆′′∩im(φ′′
1 )|)Z0(M

′′) ◦ Z0(M
′)

= Z(M ′′) ◦ Z(M ′)
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thereby completing the proof of (a).

As for (c), if M = [(Σ,∆,Π, φ0, φ1)], then

ZM : V (Xf0) → V (Xf1) , ζM ∈ V (Xf0)
∗ ⊗ V (Xf1)

ZM̄ : V (Xf1) → V (Xf0) , ζM̄ ∈ V (Xf0) ⊗ V (Xf1)
∗ .

Let {ei}i and {fj}j denote orthonormal bases for V (Xf0) and V (Xf1) respectively, and

let {ei}i and {f j}j denote their dual orthonormal bases for V (Xf0)
∗ and V (Xf1)

∗ respec-

tively.

If we write d = δ−
1
4
|`∆∩∂Σ|, then we see, thanks to Lemma 3.4, that for arbitrary

indices k, l,

〈fk, ZM(el)〉 = 〈el ⊗ fk,
∑

i

ei ⊗ ZM(ei)〉

= 〈el ⊗ fk, dζM〉

= dζM̄(el ⊗ fk)

=

(
∑

j

ZM̄(fj) ⊗ f j

)
(el ⊗ fk)

= el(ZM̄(fk))

= 〈ZM̄(fk), el〉 ,

thereby ending the proof of (c). 2

4 From TQFTs on D to subfactors

This section is devoted to an ‘almost’ converse to Theorem 3.7. Suppose, then, that

we have a ‘unitary TQFT’ defined on D. In the notation of Remark , let us write

Pk = V (Xk) for k ∈ Col.

The aim of this section is to prove the following result:

Theorem 4.1 If V is a unitary TQFT defined on D, then V arises from a subfactor

planar algebra P as in Theorem 3.7 - with Pk as above, for k ∈ C - if and only if the

following conditions are met:

P0± = C and P1 6= {0} .

Further, the TQFT determines the subfactor planar algebra uniquely.
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We shall prove this theorem by making/establishing a series of observations/assertions.

(0) If V is constructed from of a subfactor planar algebra as in Theorem 3.7, then the

conditions displayed above are indeed met.

(1) If Σ is any object - in a cobordism category on which a TQFT V has been defined

- then V (Σ̄) is naturally identified with (the dual space) V (Σ)∗ in such a way that if

M is a morphism with ∂M = Σ̄1

∐
Σ2 = Σ̄3

∐
Σ4, then the associated linear maps in

Hom(V (Σ1), V (Σ2)) and Hom(V (Σ3), V (Σ4)) correspond via the isomorphism

Hom(V (Σ1), V (Σ2)) ∼= V (∂M) ∼= Hom(V (Σ3), V (Σ4)) (4.18)

(This is a consequence of the self-duality theorem in [Tur].)

(2) Pk̄ = P ∗
k ∀k ∈ Col.

(This follows immediately from (1).)

(3) There exists a positive number δ such that

=Z δ

where the picture on the left corresponds to the morphism given byM0 = [(Σ0,∆,Π, φ0, φ1)],

with Σ being the 2-sphere with the orientation indicated in the picture, `∆ consisting of

one circle with interior shaded black, Π consisting of one circle which may be taken as

the equator, φ0, φ1 : ∅ → Σ0.

Reason : Observe first that the identity morphism idX1
, the ‘multiplication tangle’

M1, and the tangle 11, which are illustrated in the following picture

id
X1

M1

D

D1

2

11

*

*

*

*

*

*
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satisfy the relation:

M1 ◦D1 11 = idX1

This implies that if we write A = Z11, then A 6= 0 (since ZidX1
= idP1 6= 0).

By definition, A : C(= V (∅)) → P1; therefore, we may deduce that, with δ = ‖A‖2,

we have

δ idC = A∗A

= (Z11)
∗Z11

= Z11Z11

= Z11◦11

= ZM0 .

(3’) Assertion (3) remains valid, even when the shading in the figure illustrated in its

statement is reversed so that the interior of the small disc is shaded white and the exterior

black.

Reason: This is because we may use a diffeotopy so that the small circle with black

interior is bloated up so as to fill up the exterior of a small circle antipodal to the given

circle, and a subsequent rotation would change the resulting picture to the one where

the interior of the circle is shaded white.

(4) For k ∈ Col, define

|k| =





0 if k = 0±

k if k ∈ C \ {0+, 0−}

m if k = m̄.m ∈ C

and for f ∈ F , f ∈ F , define

|Xf | =
∑

k∈ Col

f(k)|k| ;

and, finally, for any morphism M ∈ Hom(Xf0, Xf1), define

Z(M) = δ
(|Xf0

|−|Xf1
|)

2 ZM .

(5) Each planar tangle T - as in Remark 3.2 - may be viewed naturally as a morphism

from Xk1

∐
· · ·
∐
Xkb

to Xk0
. (Here and in the sequel, when we regard a planar tangle as

28



a morphism (with Π = ∅), we shall always assume that the orientation of the underlying

planar surface is the usual - anti-clockwise - one.) Observe, then, that

Z(T ) = δ
Pb

i=1 ki−k0
2 ZT1 ∈ Hom(⊗b

i=1Pki
, Pk0) . (4.19)

Then the collection P = {Pk : k ∈ C} has the structure of a planar algebra (in the

sense of the definition in [KS1]) if the multilinear operator associated to a planar tangle

T is defined as Z(T ) (as above). This planar algebra is connected and has modulus δ (in

the terminology of [KS1]). In particular, each Pk, k ∈ C is a unital associative algebra.

Reason : Since our tensor products are unordered, it is fairly clear that the association

of operator to planar tangle is well-behaved with respect to ‘re-numbering of the internal

discs’ of the tangle. It will be convenient to adopt the convention of using a ‘subscript 1’

to indicate the pre-morphism asssociated to a planar tangle; so the morphism associated

to the planar tangle T is denoted by T1.

We need to check that the association of operator to planar tangle is well-behaved

with respect to composition. So suppose T (resp. S) is a planar tangle with b (resp. m)

internal discs D1, · · · , Db (resp. C1, · · · , Cm) of colours k1, · · · , kb (resp. l1, · · · , lm) respec-

tively, and with external disc of colour k0 (resp. ki), for some 1 ≤ i ≤ b. Then the ‘com-

position’ T ◦Di
S is a tangle with internal discs D1, · · · , Di−1, C1, · · · , Cm, Di+1, · · · , Db,

which is obtained by ‘sticking S into the i-th disc of T ’.

Let S ′ denote the pre-morphism given by

S ′ =

(
i−1∐

j=1

idXj

)
∐

S1

∐
(

b∐

j=i+1

idXj

)
.

Then, the pre-morphism (T ◦Di
S)1 corresponding to the tangle T ◦Di

S is equivalent to

the pre-morphism given by

(T ◦Di
S)1 = T1 ◦ S

′ .

Note that we need ‘equivalent’ in the precedinmg sentence, since the pre-morphism given

by the composition on the right has b circles in its planar decomposition while the one on

the left side has none, but since both sides describe planar pieces, all these extra circles

may be ignored using ‘Type III moves’.) Hence,

Z(T ◦Di
S) = δ

Pi−1
j=1

kj+
Pm

p=1 lp+
Pb

q=i+1 kq−k0

2 Z(T◦Di
S)1

= δ

Pi−1
j=1

kj+
Pm

p=1 lp+
Pb

q=i+1 kq−k0

2 ZT1 ◦ ZS′

=

(
δ

Pb
j=1 kj−k0

2 ZT1

)
◦

(
δ

Pm
p=1 lp−ki

2 ZS1

)

= Z(T ) ◦ ⊗({idPkj
: j 6= i} ∪ {ZS}) ,
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thus establishing that P is indeed a planar algebra with respect to the specified structure.

The ‘connected’-ness of this algebra is the statement that P0± = C, while the assertion

about ‘modulus δ’ is the content of assertions (3) and (3’) above.

(6) (This assertion has a version for each k ∈ C, but for convenience of illustration and

exposition, we only describe the case k = 2.)

Let tr2 denote the pre-morphism, with Π = ∅, given by the illustration below - with

Σ = A1, `∆ consisting of four curves each connecting a point on D1 to a point on D2,

and the shading as illustrated below:

*

*

D

D

1

2

tr
2

=

Then Ztr2 is a non-degenerate normalised trace τ2 on P2.

(For general k, there will be 2k strings joiningD1 andD2, with the region immediately

to the north-east of the *’s being black as in the picture. In the case of 0+ (resp., )−),

the entire A1 is shaded white (resp., black).

Reason : Consider the pre-morphism S2 given by the decorated 2-manifold illustrated

below, with Π = ∅, with the φj so chosen that ZS2 : P2 → P2̄:

*

*

S
2

=

It is then seen that the adjoint pre-morphism is given as below, also with Π = ∅, so

ZS̄2
: P2̄ → P2:
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*

*

=S
2

_
=

*

*

*

It is seen from the diagrams that

S̄2 ◦ S2 = idX2
, S2 ◦ S̄2 = idX2̄

.

It follows that ZS2 is unitary, and in particular invertible. However, it is a consequence

of observation (1) above that

(ZS2(X)) (y) = Ztr2(xy) = τ2(xy) .

Non-degeneracy of τ2 is a consequence of the invertibility of ZS2. The fact that τ2 is a

trace is easily verified.

(7) The inner-product and the non-degeneracy of τk - in (5) above - imply the existence

of an invertible, conjugate-linear mapping Pk 3 x 7→ x∗ ∈ Pk via the equation

τk(xy) = 〈y, x∗〉 ∀x, y ∈ Pk .

(8) For any planar tangle T , as in (4) above, and all xi ∈ Pki
, 1 ≤ i ≤ b, we have:

(ZT (⊗{xi : 1 ≤ i ≤ b})∗ = ZT ∗(⊗{x∗i : 1 ≤ i ≤ b}) ,

where the adjoint tangle T ∗ is defined as in [Jon] or [KS1].

In particular, we also have

(Z(T )(⊗{xi : 1 ≤ i ≤ b})∗ = Z(T ∗)(⊗{x∗i : 1 ≤ i ≤ b}) ,

Reason It clearly suffices yto prove that

〈x0, (ZT (⊗{xi : 1 ≤ i ≤ b})∗〉 = 〈x0, ZT ∗(⊗{x∗i : 1 ≤ i ≤ b})〉 , ∀x0 ∈ Pk0

or equivalently that

τk(x0ZT (⊗{xi : 1 ≤ i ≤ b}) = 〈ZT ∗(x0),⊗{xi : 1 ≤ i ≤ b}〉 . (4.20)
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To start with, we need to observe that

T ∗ = Sk0 ◦ T ◦
∐

j=1

Skj
(4.21)

(This is because: T ∗ is obtained from the planar tangle T by rotating the ∗ on the

boundary of the internal discs anti-clockwise to the next point, the ∗ on the boundary of

the external disc clockwise to the next point, and then applying an orientation reversing

map to it; while we need to only apply an orientation reversal to form the ‘bar’ of a

morphism; so that the left side of equation 4.21 is obtained by just rotating the ∗’s in

the manner indicated above. On the other hand, the result of ‘pre-multiplying’ by an S

serves merely to ‘rotate the external ∗ anticlockwise by one’, while ‘post-multiplying’ by

a disjoint union of the S serves merely to ‘rotate the internal ∗’s anti-clockwise by one’.)

If the xi, 0 ≤ i ≤ b, are as in equation (4.20), let us define

fi = ZS(xi) = 〈·, x∗i 〉 ;

since Si is ‘inverse’ to Si, this means xi = ZS(fi). Next, we may appeal to equations

(4.18) and (4.21) to deduce that

〈ZT ∗(x0),⊗{xi : 1 ≤ i ≤ b}〉 = ZT ∗(⊗b
i=1fi)(x0)

= (ZS ◦ ZT (⊗b
i=1xi))(x0)

= τk(ZT (⊗b
i=1xi)x0) ,

as desired.

As for the final statement, it follows from the already established assertion and the

fact that the tangles T and T ∗ have the same k1, · · · , kb; k0 data.

(9) The following special case of (8) above is worth singling out:

(xy)∗ = y∗x∗ , ∀x, y ∈ Pk ;

and hence, 1∗ = 1, where we simply write 1 for the identity 1k of Pk.

Reason : M∗
k = Mop

k ; and the identity in an algebra is unique.

(10) τk(x
∗) = τk(x) , ∀ x ∈ Pk.

Reason :

τk(x) = 〈1, x∗〉

= 〈x∗, 1〉

= 〈x∗, 1∗〉

= τk(x∗) .
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(11) x∗∗ = x , ∀x ∈ Pk.

Reason :

τk(x
∗∗y∗) = τk((yx

∗)∗) by (9)

= τk(yx∗) by (10)

= τk(x∗y)

= 〈x∗, y∗〉

= 〈y∗, x∗〉

= τk(xy
∗) ,

and the non-degeneracy of τk completes the proof.

(12) The left-regular representation λ of the (unital) algebra is a (faithful) ∗-homomorphism

from Pk into L(Pk).

Reason : For all a, x, y ∈ Pk, we have:

〈λ(a)x, y〉 = 〈ax, y〉

= τk(y
∗(ax))

= τk((a
∗y)∗x)

= 〈x, a∗y〉

= 〈x, λ(a∗)y〉 ,

thereby establishing (by the non-degeneracy of the inner-product) that λ(a)∗ = λ(a∗).

(13) Pk is a C∗-algebra (with respect to ∗ being given by (7)), and

tauk is a faithful tracial state on Pk; further, Pk is in standard form with respect to τk.

(14) P is a subfactor planar algebra, and the TQFT associated to it by Theorem 3.7 is

nothing but V .

(15) Only the uniqueness of the subfactor planar algebra remains in order to complete

that proof of Theorem 4.1. Suppose a subfactor planar algebra P gives rise to a TQFT

V as in Theorem 3.7. Then, note that Pk = V (Xk), ∀ k ∈ C, that the index δ2 of the

subfactor is determined by the TQFT (as seen by step (3)), and that the operator Z(T )

associated to a planar tangle is determined by δ and ZT1 - see equation (4.19). 2

Remark 4.2 It is true - and a consequence of the main result of [KS2] - that a TQFT

which arises, as in §3, from a subfactor planar algebra is determined uniquely by the

numerical invariant it asociates to ‘closed cobordisms’. This is in spite of the fact that
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these TQFTs are, in general not5 cobordism-generated; so the truth of the last sentence

is not a consequence of a similar result - see [Tur] or [BHMV], for instance - which

is applicable to ‘cobordism generated TQFTs’. In fact, the methods of [KS2] can be

used to show that, under some minimal conditions on the cobordism category where it

is defined, any unitary TQFT is determined by the numerical invariant it associates to

‘closed cobordisms’.

5 Topological Appendix

This section is devoted to the proof of some facts which are needed in earlier proofs.

We have relegated these proofs to this ‘Appendix’ so as to not interrupt the flow of the

treatment in the body of the paper.

5.1 Glueing ‘classes’

This subsection is devoted to establishing a fact - Lemma 5.2 - which is needed in what

we termed ‘Step 2’ in the process of defining composition of morphisms.

Lemma 5.1 Let δ > 0, and 0 < 2ε < 1
2

be given. Then there exists a smooth function:

µ : [δ, 1] × [0, 1] → [0,∞)

satisfying:

(i) µ|[δ,1]×[ 1
2
,1] ≡ 1.

(ii) µ|[δ,1]×[0,ε] ≡ 0.

(iii) µ|[δ,1]×(ε,1] > 0.

(iv)
∫ 1/2

0
µ(a, x)dx = a.

Proof: Choose a smooth function λ : [0, 1] → [0, 1] such that λ ≡ 0 on [0, ε], λ ≡ 1

on [1/2, 1], λ > 0 on (ε, 1], and
∫ 1/2

0
λ(x)d(x) = δ, where δ is as in the hypothesis.

Now choose a smooth function ρ : [0, 1] → [0,∞) such that supp ρ ⊂ [ε, 1/2], and∫ 1/2

0
ρ(x)dx = 1. Consider the function:

µ : [δ, 1] × [0, 1] → [0,∞)

(t, x) 7→ λ(x) + (t− δ)ρ(x)

5For instance, in the case of the subfactor of fixed points under the outer action of a finite group G,

the ζM ’s, for M in Mor(∅, X2) turn out to be elements of CG which are fixed by all inner automorphisms

of G, and hence do not span all of P2 = CG, in case G is non-abelian.
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That µ is smooth is clear, as are the assertions (i),(ii) (iii) of the lemma. For the

fourth, note that

∫ 1/2

0

µ(a, x)dx =

∫ 1/2

0

λ(x)dx+ (a− δ)

∫ 1/2

0

ρ(x)dx = δ + (a− δ) = a

and the proof of the lemma is complete. 2

Lemma 5.2 Let φ : S1 × [0, 1] → S1 × [0, 1] be a diffeomorphism which preserves orien-

tation as well as the ends S1 ×{0} and S1 ×{1}. Let {eiaj}m
j=1 be a finite set of marked

points on S1, where 0 ≤ aj ≤ 2π. Assume that φ({eiaj} × [0, 1]) is contained in (and

hence, equal to) {eiaj} × [0, 1] for all j. Then there exists an ε > 0 and an orientation

preserving diffeomorphism ψ : S1 × [0, 1] → S1 × [0, 1] satisfying:

(i) ψ(ω, t) = (ω, t) for all t ∈ [1/2, 1] and ω ∈ S1.

(ii) ψ(ω, t) ≡ φ(ω, t) for all t ∈ [0, ε] and all ω ∈ S1.

(iii) ψ({eiaj} × [0, 1]) ⊂ {eiaj} × [0, 1] for all j = 1, .., m.

Proof: Write the diffeomorphism φ in terms of its components as:

φ(ω, t) = (ρ(ω, t), σ(ω, t))

Note that ω 7→ ρ(ω, 0) is an orientation preserving diffeomorphism of S1, which fixes the

points eiaj for all j = 1, · · · , m. Also σ(ω, 0) = 0 and ∂tσ(ω, 0) > 0 for all ω ∈ S1 and

t ∈ [0, 1]. We may therefore choose ε > 0 so small as to ensure the validity of (a)-(c)

below:

(a) 0 < 2ε < 1/2.

(b) For t ∈ [0, 2ε], the first projection map ω 7→ ρ(ω, t) is an orientation preserving

diffeomorphism of S1 which fixes the points eiaj for all j = 1, .., m. (This is be-

cause of the hypothesis on φ and because the set of diffeomorphisms is open in

C∞
str(S

1, S1) = C∞
w (S1, S1).)

(c) σ(ω, t) < 1/2 and ∂tσ(ω, t) > 0 for all t ∈ [0, 2ε] and all ω ∈ S1.

Let λ : [0, 1] → [0, 1] be a smooth function such that λ ≡ 1 on [0, ε] and λ ≡ 0 on

[2ε, 1]. Consider the smooth function:

a(ω) :=
1

2
−

∫ 1/2

0

λ(t)∂tσ(ω, t)dt, ω ∈ S1
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Note that a(ω) < 1
2

for all ω; also since λ(t)∂tσ(ω, t) ≤ ∂tσ(ω, t), and λ ≡ 0 on [2ε, 1],

we have, for all ω ∈ S1,

a(ω) =
1

2
−

∫ 1/2

0

λ(t)∂tσ(ω, t)dt =
1

2
−

∫ 2ε

0

λ(t)∂tσ(ω, t)dt

≥
1

2
−

∫ 2ε

0

∂tσ(ω, t)dt =
1

2
− σ(ω, 2ε) > 0

by (c) above. Since S1 is compact and a(ω) is a smooth function of ω, there exists a

δ > 0 such that a(ω) > δ for all ω ∈ S1.

To sum up, we find that ω 7→ a(ω) is a smooth function from S1 to [δ, 1/2]. Now

consider the function:

S : S1 × [0, 1] → [0,∞)

(ω, s) 7→

∫ s

0

(λ(t)∂tσ(ω, t) + µ(a(ω), t))dt

where µ is the smooth function obtained as in Lemma 5.1 - with δ, ε as in this proof. We

have the following facts about the map S:

(d) S is smooth, and S(ω, s) is strictly monotonically increasing in s for all ω ∈ S1.

The smoothness is clear from the definition of S. Furthermore, for all ω ∈ S1 and

t ∈ [0, ε] the integrand is identically ∂tσ(ω, t) (by (ii) of Lemma 5.1 above) which is

strictly positive (by item (c) above). For all ω ∈ S1 and t ∈ (ε, 1], the integrand is

≥ µ(a(ω), t), which is again strictly positive on (ε, 1] (by (iii) of Lemma 5.1 above).

Hence S(ω, s) is strictly increasing in s for all ω ∈ S1.

(e) S(ω, 0) ≡ 0 for all ω ∈ S1. Also S(ω, s) ≡ σ(ω, s) for s ∈ [0, ε] and all ω ∈ S1.

The definition of S implies S(ω, 0) ≡ 0 for all ω. Since λ(s) ≡ 1 and µ(a(ω), s) ≡ 0

for s ∈ [0, ε] (by (ii) of the Lemma 5.1), we have S(ω, s) =
∫ s

0
∂tσ(ω, t)dt = σ(ω, s)

for all s ∈ [0, ε] and all ω ∈ S1, and the second assertion follows.

(f) S(ω, s) ≡ s for s ∈ [1/2, 1] and all ω ∈ S1. In particular, S(ω, 1) ≡ 1 for all ω ∈ S1.

For this assertion, first note that:

S(ω, 1/2) =

∫ 1/2

0

λ(t)∂tσ(ω, t)dt+

∫ 1/2

0

µ(a(ω), t)dt

=

∫ 1/2

0

λ(t)∂tσ(ω, t)dt+ a(ω) (by (iv) of lemma 5.1)

= 1/2 (by the definition of a(ω))
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while for t ≥ 1/2, we have λ(t) ≡ 0 and µ(a(ω), t) ≡ 1 (by (i) of Lemma 5.1), so

that

S(ω, s) = S(ω, 1/2) +

∫ s

1/2

∂tS(ω, t)dt

=
1

2
+

∫ s

1/2

µ(a(ω), t)dt

=
1

2
+

∫ s

1/2

dt

= s for s ∈ [1/2, 1]

(g) S(0) = 0, S(1) = 1, and S(ω,−) maps [0, 1] diffeomorphically to [0, 1] for all ω ∈ S1.

This last assertion is clear from (d), (e), and (f).

Next, the (restricted) map ρ : S1 × [0, 2ε] → S1 may be lifted to a map (of universal

covers)

ρ̃ : R × [0, 2ε] → R

such that

(h) each ρ̃(−, s) is a diffeomorphism of R to itself satisfying:

ρ̃(x+ 2nπ, s) = ρ̃(x, s) + 2nπ for all x ∈ R, s ∈ [0, 2ε] ;

and

(i) ρ̃(aj, s) = aj for all j = 1, · · · , m.

Both these assertions follow from item (b) above.

In terms of the maps λ, ρ̃ defined above, now define a mapping as follows:

R̃ : R × [0, 1] → R

(x, s) 7→ λ(s)ρ̃(x, s) + (1 − λ(s))x

and check that:

(j) R̃(x+ 2nπ, s) = R̃(x, s) + 2nπ for all s ∈ [0, 1] and all x ∈ R.

Since ρ̃(−, s) is an orientation preserving diffeomorphism of R, we may deduce that

∂xρ̃(x, s) > 0 for all s and all x. Hence
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(k) For all s ∈ [0, 1] and x ∈ R,

∂xR̃(x, s) = λ(s)∂xρ̃(x, s) + (1 − λ(s)) > 0

(l) R̃(aj, s) = λ(s)aj + (1 − λ(s))aj = aj for all j = 1, · · · , m and all s ∈ [0, 1].

(m) Since λ(s) ≡ 1 for s ∈ [0, ε], we have R̃(x, s) = ρ̃(x, s) for x ∈ [0, ε] and all x ∈ R.

(n) Since λ(s) ≡ 0 for s ∈ [2ε, 1], we have R̃(x, s) = x for s ∈ [2ε, 1] and all x ∈ R.

It follows from (j) above that the map R̃ descends to a map:

R : S1 × [0, 1] → S1

(eix, s) 7→ (ei eR(x,s))

Furthermore

(o) R(eiaj , s) = eiaj for j = 1, .., m.

This follows from item (l) above.

(p) R(ω, s) ≡ ρ(ω, s) for all s ∈ [0, ε].

This follows from item (m) above.

(q) R(ω, s) = ω for all s ∈ [2ε, 1].

This follows from item (n) above.

(r) R(−, s) is an orientation preserving diffeomorphism of S1 for all s ∈ [0, 1].

This is clear from the items (b) and (p) above for s ≤ ε, and from item (q) above

for s ≥ 2ε. For s ∈ [ε, 2ε], it follows from item (k) above, and noting that ρ̃(−, s)

and 1R both map the fundamental interval [0, 2π) diffeomorphically to itself, and

hence so does their convex combination R̃(−, s).

Finally we define the map:

ψ : S1 × [0, 1] → S1 × [0, 1]

(ω, s) 7→ (R(ω, s), S(ω, s))

That ψ is an orientation diffeomorphism follows from items (g) and (r) above. The

assertion (i) of the lemma follows from items (f) and (q) above since 2ε < 1/2. The

assertion (ii) of the lemma follows from items (e) and (p) above. The assertion (iii) of

the lemma follows from items (o) and (g) above. The lemma is proved. 2
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5.2 On transversality

This subsection is devoted to proving some facts concerning transversality - especially

Proposition 5.8 and Corollary 5.10 - which are needed in verifying - in §3 (see the proof

of Case (II) of Proposition 3.4) - that the association M → ζM , of vector to morphism,

is unambiguous.

Definition 5.3 Let M be a smooth manifold, possibly with boundary ∂M , and I =

[0, 1]. Let B be a submanifold of M , with ∂B = B ∩ ∂M if B has a boundary (i.e.

B is a “neat” submanifold). Let iB : B ↪→ M denote the inclusion. A smooth map

f : B × I → M is called an isotopy of iB if each ft := f(·, t) : B → M is a closed

embedding and if f0 = iB.

In case B = M , and f is an isotopy of f0 = iB = IdM , we call f a diffeotopy of M .

If M is non-compact, we say a diffeotopy f is compactly supported if there exists a

compact subset K ⊂M such that ft(x) ≡ x for all x ∈M \K and all t ∈ [0, 1].

Lemma 5.4 (Transversality Lemma) Let M ◦ be a manifold without boundary and let

A◦ be a submanifold which is a closed subset, also without boundary (both are allowed

to be non-compact). Let N be a smooth manifold, possibly having boundary ∂N . Let

f : N →M be a smooth map. Suppose

∂f := f |∂N : ∂N →M◦

is transverse to A◦. Then there exists an open ball S around the origin in some Euclidean

space, and a map:

G : N × S →M◦

such that:

(i) G is a submersion.

(ii) Writing G(·, s) = Gs, we have ∂Gs := Gs|∂N is identically equal to ∂f for all s.

(iii) G0 = f on N .

Proof: See the proof of the Extension Theorem on pp. 72, 73 of [GuPo], and substitute

Y = M◦, X = N , C = ∂N , and Z = A◦. The G they construct is the G of this lemma.

2.

Proposition 5.5 (Modifying an isotopy of a submanifold keeping ends fixed)

Let M◦ be a smooth manifold without boundary (possibly non-compact) , and A◦ (also

possibly non-compact) a smooth submanifold of M ◦ which is a closed subset. Let B be
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any compact manifold without boundary, and let f : B × I → M ◦ be a smooth map.

Assume:

∂f := f0 ∪ f1 : (B × {0}) ∪ (B × {1}) = ∂(B × I) →M ◦

is transverse to A◦ (This is equivalent to saying ft(B) _| A◦ for t = 0, 1). Then there

exists an open ball S around the origin in some Euclidean space, and a smooth map

G : B × I × S →M ◦ such that:

(i) G is a submersion.

(ii) Write Gs := G(·, ·, s), and let ∂Gs denote the restriction of Gs to ∂(B × I) =

(B × {0}) ∪ (B × {1}). Then ∂Gs = ∂f for all s ∈ S.

(iii) G0 ≡ f on B × I.

(iv) If B is a compact boundaryless submanifold of M ◦, and f : B× I →M ◦ an isotopy

of the inclusion map iB of B in M◦ (see Definition 5.3), then by shrinking S to a

smaller open ball if necessary, we have Gs : B × I →M◦ is also an isotopy for all

s ∈ S, with Gs|B×{0} = f0 = iB and Gs|B×{1} = f1 for all s ∈ S.

Proof: In the previous Lemma 5.4, take N = B× I. Then the hypotheses here imply

that ∂f on ∂N is transverse to A◦, and (i), (ii) and (iii) follow from parts (i) (ii) and

(iii) of the said Lemma 5.4.

We need to prove the assertion (iv). To show it, we need to show that Gs|B×{t} is an

embedding for all t ∈ [0, 1] and all s in a possibly smaller open ball S around 0. First

define the map:

H : I × S → C∞
str(B,M

◦)

(t, s) 7→ G((·, t), s)

where the right side is the complete metric space of smooth maps from B to M ◦, with

the strong topology6. (See Theorem 4.4 on p. 62 and the last para of p. 35 of [Hir].)

(The topology implies gn → g iff derivatives of all orders of the sequence gn converge

uniformly to the corresponding derivatives of g on B). Using the fact that B is compact,

and that there are Lipschitz constants available for each derivative DαG over all of the

compact set B × I × S from the smoothness of G, it is easy to check that H defined

above is continuous.

By Theorem 1.4 on p. 37 of [Hir], the subspace Emb(B,M ◦) of smooth embeddings

of B into M◦ is an open subset of C∞
str(B,M

◦). Hence U := H−1(Emb(B,M◦)) is an

6The strong and weak topologies coincide since B is compact
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open subset of I × S. Since H(t, 0) = G((·, t), 0) = ft is an embedding for each t by

the hypothesis that f is an isotopy, it follows that I × {0} ⊂ U . By the compactness

of I, there exists a smaller open ball S ′ ⊂ S such that I × S ′ ⊂ U . It follows that

H(I×S ′) ⊂ Emb(B,M◦), i.e. that G((·, t), s) is an embedding for all t ∈ I and all s ∈ S ′.

This means Gs : B × I →M◦ is an isotopy for each s ∈ S ′. Since Gs(x, 0) ≡ f0(x) = iB,

and Gs(x, 1) ≡ f1(x) for all s ∈ S and all x ∈ B by (ii) above, (iv) follows and the

proposition is proved. 2.

Corollary 5.6 Let M ◦ be a manifold without boundary, A0 a boundaryless submanifold

which is a closed subset, and B ⊂ M a compact submanifold without boundary. Let an

isotopy

f : B × I →M◦

of iB : B ↪→ M◦ be given. Assume that ∂f :=: B × {0} ∪ B × {1} → M ◦ is transverse

to A◦ (viz. ft(B) _| A◦ for t = 0, 1). Then there exists another isotopy f̃ : B × I →M◦

such that:

(i) ∂f̃ = ∂f , (viz. f̃0 = f0 = iB and f̃1 = f1, i.e. the ends of the isotopy are left

unchanged).

(ii) f̃ : B × I →M◦ is transverse to A◦.

(iii) The map f̃t : B → M◦ is transverse to A◦ for almost all t ∈ I (in particular for t

in a dense subset of I).

Proof: By (ii), (iii) and (iv) of the previous proposition 5.5, there is an open ball S

in some Euclidean space, and a smooth map G : B × I × S → M ◦ such that ∂Gs is

identically ∂f for all s, each Gs : B × I → M◦ is an isotopy, and G0 : B × I → M◦ is

the given isotopy f .

Since by (i) of proposition 5.5, G is a submersion, G is transversal to A◦. Since

∂Gs = ∂f for each s ∈ S, and ∂f is transverse to A◦ by hypothesis, it follows that

∂Gs : ∂(B × I) = B × {0} ∪B × {1} →M ◦

is already transverse to A◦ for each s ∈ S, so a fortiori

∂G : (B × {0} ∪B × {1}) × S →M ◦

is transverse to A◦. By the Transversality Theorem on P. 68 of [GuPo] (this time substi-

tute Y = M◦, X = B × I, Z = A◦ and F = G in said theorem), for a dense set of s ∈ S

the map Gs : B × I → M◦ is transverse to A◦. Choose one such s, and define f̃ := Gs.
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Hence f̃ = Gs : B × I → M◦ is transverse to A◦. f̃ is an isotopy by the first para, and

∂f̃ = ∂Gs = ∂f . This shows (i) and (ii).

Now again apply the aforementioned Transversality theorem on p. 68 of [Gu-Po] to

f̃ (with (0, 1) substituted for S, M ◦ for Y , f̃ for F and A◦ for Z) to conclude (iii). This

proves the corollary. 2

Remark 5.7 We note that since S is convex, each Gs is homotopic to G0, so the map

f̃ constructed above is actually homotopic to the given isotopy f (rel B0 ∪ B1). We do

not need this fact, however.

Proposition 5.8 Let M be a compact manifold, with possible boundary ∂M . Let B ⊂

M be a compact boundaryless submanifold which is a closed subset of M and disjoint

from ∂M , and A a submanifold of M which is neat (i.e. with ∂A = A ∩ ∂M). Let

F : M × I → M be a diffeotopy of M with F0(B) = B meeting A transversally, and

F1(B) _| A. Then there exists another diffeotopy F̃ : M × I →M , and a compact subset

K ⊃ B with K ∩ ∂M = φ such that:

(i) F̃ (x, t) ≡ x for all t and all x ∈M \K.

(ii) F̃0|B = F0|B = iB and F̃1|B(x, 1) = F1|B (i.e. the starting and finishing maps of the

original diffeotopy remain unchanged on B).

(iii) F̃t(B) _| A for almost all t ∈ I (in particular for t in a dense subset of I).

Proof: Note that each Ft is a diffeomorphism of M , and hence Ft(∂M) ⊂ (∂M) for all

t. Thus B∩∂M = φ implies that Ft(B)∩∂M = φ for all t ∈ I. Thus F (B×I) ⊂M \∂M .

Let us denote M ◦ := M \ ∂M , a non-compact manifold without boundary, and

A◦ := A \ ∂A = A ∩M ◦, which is a submanifold of M ◦ and a closed subset of it. Let

f : B × I → M◦ denote the restriction of F to B × I. Then, by the hypotheses on F ,

we have f is an isotopy of iB : B ↪→M◦, and

∂f := f|∂(B×I) : B × {0} ∪B × {1} →M ◦

is transverse to A◦. Now we apply the Corollary 5.6 to get a new isotopy:

f̃ : B × I →M◦

such that ∂f̃ ≡ ∂f , that is f̃0 = f0 = iB and f̃1 = f1 and f̃t _| A◦ for almost all t ∈ I.

By the Isotopy Extension Theorem (see Theorem 1.3 on p. 180 of [Hir]), there exists

a diffeotopy:

F̃ : M◦ × I →M◦
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such that (i) F̃ agrees with f̃ on B×I (substitute M ◦ = M and B for V in that theorem),

and (ii) F̃ is compactly supported, viz., there is a compact subset K ⊂ M ◦ containing B

such that F̃t(x) ≡ x for all x ∈M ◦ \K and all t (see the Definition 5.3).

Since F̃t is stationary for all times outside the compact set K, we may define F̃ (x, t) ≡

x for all x ∈ ∂M , and this extends F̃ to M smoothly. (i) follows since F̃ is supported in

K. (ii) and (iii) follow because F̃ = f̃ on B × I. 2

Proposition 5.9 Let M ◦ be a (possibly non-compact) manifold without boundary, and

A◦ ⊂ M be a smooth submanifold which is a closed subset. Let B ⊂ M ◦ be a compact

smooth submanifold of M ◦ without boundary, and let iB : B ↪→M◦ denote the inclusion.

Then there exists an isotopy f : B × [0, 1] →M ◦ such that:

(i) f0 = iB.

(ii) ft : B →M◦ is an embedding for each t.

(iii) f1(B) _| A◦.

(iv) Letting d denote a Riemannian distance in M ◦, and given ε > 0 any positive number,

we can arrange that f1 is an ε-approximation to iB, that is:

sup
x∈B

d(f1(x), x) < ε .

Proof: Substituting N = B in the Lemma 5.2 above, we have an open ball S in some

Euclidean space and a smooth map:

G : B × S →M◦

with G0 = iB and G a submersion. Since G0 = iB is an embedding, we may consider (as

in the proof of (iv) of Prop. 5.3 above) the continuous map:

H : S → C∞
str(B,M

◦)

s 7→ Gs

Using the compactness of B, the consequent fact that the strong and weak topologies on

C∞(B,M◦) coincide, and the fact that Emb(B,M ◦) is an open subset of C∞
str(B,M

◦),

we can again shrink S if necessary to guarantee that Gs : B →M◦ is an embedding for

all s ∈ S (as we did in the proof of Prop. 5.3 above). Indeed, given ε > 0, we can take S

to be a δ-ball such that the distance (in the metric on C∞
str(B,M

◦), see (a) of Theorem

4.4 on p. 62 of [Hir] and the fact that the weak and strong topologies coincide since B
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is compact) between H(s) = Gs and G0 = iB is less than ε for s ∈ S. By the definition

of this strong (=weak) topology it will follow that:

sup
x∈B

(Gs(x), x) < ε for all s ∈ S

By the Transversality Theorem on p.68 of [Gu-Po], there exists a µ ∈ S such that

Gµ : B →M◦ is an embedding transversal to A◦. Define:

f : B × [0, 1] → M ◦

(x, t) 7→ G(x, tµ)

(That is, we are defining f to be the restriction of G to the radial ray joining 0 ∈ S

to µ ∈ S. ) Then clearly f0 = G0 = iB and f1(B) = Gµ(B) meets A◦ transversally, and

(i) and (iii) follow. Since Gs is an embedding for all s ∈ S by the last para, we have each

ft is an embedding, and (ii) follows. The statement (iv) follows from the last line of the

previous paragraph. So f is the required isotopy. 2

Corollary 5.10 Let M be a manifold with boundary ∂M , and A ⊂ M a neat sub-

manifold with ∂A = A ∩ ∂M . Let B be a compact boundaryless submanifold of M lying

inside M◦ := M \ ∂M . Then there exists a diffeotopy F : M × I →M such that:

(i) F0 = IdM .

(ii) There exists a compact K ⊂M ◦, with K ⊃ B such that Ft(x) ≡ x for all x ∈M \K.

(iii) F1(B) _| A.

(iv) For a fixed Riemannian metric d on M , and given ε > 0,

sup
x∈B

d(F1(x), x) < ε

Proof: Consider the noncompact manifold without boundary M ◦ = M \∂M , and set

A◦ := A \ ∂A.

By the Proposition 5.7 above, there is an isotopy:

f : B × I →M◦

with f0 = iB, and f1(B) _| A◦. By the Isotopy Extension Theorem ( Theorem 1.3 on

p. 80 of [Hir]), there exists a compactly supported diffeotopy F̃ : M◦ × I → M◦ such

that F̃0 = IdM◦ and F̃t(x) ≡ x for all x ∈ M ◦ \ K and all t ∈ I (for some compact

neighbourhood K of B in M ◦, and such that F̃|B×I = f .
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Since K ⊂ M◦, we may clearly extend F̃ to M × I by setting Ft(x) ≡ x for all t

and all x ∈ ∂M (as we did in the proof of Prop. 5.6 above), and this is the required

diffeotopy. Since F1 = f1 on B, (iv) follows from (iv) of Proposition 5.9 above. 2
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