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OPEN MANIFOLDS, OZSVATH-SZABO INVARIANTS AND EXOTIC R*’S

SIDDHARTHA GADGIL

ABSTRACT. We construct an invariant of certain open four-manifolds using the Heegaard Floer theory
of Ozsvath and Szabo. We show that there is a manifold X homeomorphic to R* for which the invariant
is non-trivial, showing that X is an exotic R*. This is the first invariant that detects exotic R*’s.

1. INTRODUCTION

In this paper, we construct invariants of certain open 4-manifolds using the Heegaard Floer theory
of Ozsvath and Szabo, and show that our invariants can detect exotic R*s. Previous constructions of
exotic R*s used indirect arguments to establish exoticity.

Given an (n + 1)-dimensional field theory, a direct limit construction can be used to construct an
invariant of open (n + 1)-dimensional manifolds (which we see in detail later). The subtlety in the
case of Ozsvath-Szabo invariants is that they do not give a field theory, but satisfy a more complicated
composition law. However if we restrict to a class of cobordisms, which we call admissible cobordisms,
we do get a field theory. Using this, we construct our invariants.

Recall that the Ozsvath-Szabo invariants of a smooth, oriented 3-manifold M associate homology
groups to M equipped with a Spin¢ structure t. Further, given a smooth cobordisms W between 3-
manifolds M; and Ms and a Spin® structure s on W, we get an induced map on the groups associated
to the restrictions of s to M; and M>. To make this into a field theory, one needs a composition rule for
a cobordism W; from M; to My equipped with a Spin® structure s; and a cobordism W5 from M to
M3 equipped with a Spin® structure sy with s1|a, = s2|m,. However, such Spin® structures s; and so
do not in general uniquely determine a Spin® structure on the composition W = Wy [| , W2 of Wi and
W,. However we have a weaker composition law, where we sum over Spin‘structures on W restricting
to s1 and s».

We now find sufficient conditions under which s; and ss uniquely determine a Spin¢ structure s on
W. The Spin® structures on a manifold X are a torseur of H?(X,Z). Consider the Mayer-Vietoris
sequence for W = W; U W,

- HY (W) @ HX(Wa) —» HY (M) > H2(W) — H2(Wy) @ H2(Ws) — H2(M,)

From this sequence, it follows that, given s; and s; as above, there is a unique Spin® structure s on
W which restricts to s and s, if and only if the coboundary map § : H!(M>) — H%(W) is trivial. This
is equivalent to the map induced by inclusions H(W;)® H!(W>) — H! (M) being surjective. Motivated
by this, we make the following definition.

Definition 1.1. A smooth 4-dimensional cobordism W from M; to M> is admissible if the map induced
by inclusion H' (W) — H'(Ms) is surjective.
We shall see basic properties of such cobordisms in Section 2. We now turn to the corresponding

notions for open manifolds. Let X be an open 4-manifold which we assume for simplicity has one end.

Date: March 16, 2005.
1991 Mathematics Subject Classification. Primary 57R58; Secondary 53D35,57M27,57N10.
1



2 SIDDHARTHA GADGIL

Let K1 C Ky C ... be an exhaustion of X by compact manifolds and let M; = 9K;. We assume
here and henceforth (for all exhaustions) that K; C int(K;y1). For i < j, let W;; = K; — int(K;) be
cobordisms from M; to M;.

Definition 1.2. The exhaustion {K;} of X is said to be admissible if each cobordism W;;, i,j € N,
i < j, is admissible. The manifold X is said to be admissible if it has an admissible exhaustion.

We shall need to consider the appropriate notion of Spin¢ structures for the ends of 4-manifolds.

Definition 1.3. An asymptotic Spin¢ structure s on X is a Spin® structure on X — K for a compact
subset K C X. Two asymptotic Spin® structures s; and so, defined on X — K; and X — K, are said
to be equal if there is a compact set Ko D K, K2 with s1|p—k, = S2|m— Ko -

Given an admissible open 4-manifold X and an asymptotic Spin® structure s, we can define invariants
of X, which we call the End Floer Homology, using direct limits. We shall see in Section 3 that an
admissible exhaustion gives a directed system.

Theorem 1.4. There is an invariant HE(X, s) which is the direct limits of the reduced Heegaard Floer
homology groups H FT'"

" a(Mi, s|nm;) under morphisms induced by the cobordisms Wij. Furthermore this

is independent of the admissible exhaustion of X.

We shall also need a twisted version of these invariants. Let K C X be a compact set, s a Spin®-
structure on X — K and w a 2-form on X — K. Then we consider the reduced Floer theory with w-twisted
coefficients (as in [10]). Once more we get a directed system whose limit gives an invariant HE(X, s).

By taking an exhaustion of R* by balls, we have the following proposition.

Proposition 1.5. For the unique asymptotic Spin® structure s on R*, we have HE(R?, s) = 0.

Our main result is that there are manifolds homeomorphic to R* but with non-vanishing end Floer
homology.

Theorem 1.6. There is a 4-manifold X homeomorphic to R* such that there is a compact set K C X,
a spinC structure s on X — K and a closed 2-form w on X — K with HE(X,s) # 0 with w-twisted
coefficients.

Thus, X is an exotic R*. Previous constructions of exotic R*’s used indirect arguments to show that
they are exotic. The End Floer homology is the first invariant that detects exotic R*’s.

2. ADMISSIBLE COBORDISMS AND ADMISSIBLE ENDS

We henceforth assume that all our manifolds are smooth and oriented and all cobordisms are compact
and 4-dimensional. By W : M; — M5 we mean a smooth cobordism from the closed 3-manifold M; to
the closed 3-manifold M,. Given Wy : M7 — Ms and W5 : My — M3, W5 o W7 denotes the composition
of the cobordisms W; and Ws.

In this section we prove some simple results concerning admissible cobordisms and admissible ends.

Lemma 2.1. Suppose Wy : M7 — My and Wy : M — M3 are admissible cobordisms, then W = WyoW;
is admissible.

Proof. We need to show that the map H*(W) — H'(M3) induced by inclusion is surjective. This is the
composition of maps H' (W) — H'(W5) and H'(W,) — H'(Ms3) induced by inclusion, with the latter
surjective by hypothesis. We shall show that the map H!(W) — H'(W>) is surjective.
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Let a € H'(W>) be a class. Let i; : My — W;, j = 1,2, be inclusion maps. Consider the Mayer-
Vietoris sequence

o HYW) = HY (W) @ H' (W) "5 B (M) — ...

By admissibility of Wy, there is a class 8 € H'(W;) with if(8) = i3(a). Hence the image of the class
(a,—pB) € HY (W) ® HY(Ws) in HY(My) is zero, and so (a, —3) is the image of a class ¢ € HY(W). In
particular « is the image of ¢ under the map induced by inclusion. O

Lemma 2.2. Suppose W1 : My — Ms and W5 : My — M3 are cobordisms with W = WyoWy admissible.
Then Wy is admissible.

Proof. By hypothesis the map H'(W) — H'(Ms3) is surjective. This factors through the map H! (W) —
H'(Ms3), which must also be surjective. O

We need criteria for when cobordisms corresponding to attaching handles are admissible.

Lemma 2.3. Let M = M; be a 3-manifold, W the cobordism corresponding to a handle addition and
M, the other boundary components of W. The following hold.

(1) A product cobordism is admissible.

(2) The cobordism corresponding to attaching a 1-handle to a closed 3-manifold M is admissible.

(3) If K is a knot in a closed 3-manifold which represents o primitive, non-torsion element in
Hy (M), then the cobordism corresponding to attaching a 2-handle to M is admissible.

Proof. We shall show that the map induced by the inclusion from H;(M3) to Hy (W) is an isomorphism
in each case. As the map on cohomology is the adjoint of this map, it follows that it is a surjection.
The case of a product cobordism is immediate. In the second case we see that Hy(Ms) = Hi (W) =
Hy(M) & Z with the isomorphism induced by inclusion. In the third case we have Hy(M) = H & Z,
with [K] generating the Z component. It is easy to see that H,(W) = H;(M2) = H. O

Now let X be an open manifold and let Ky C K5 C ... be an exhaustion of X and M; and W;; be
as before.

Lemma 2.4. The exhaustion {K;} is admissible if and only if each of the manifolds K; 1 —int(K;) is

admissible.
Proof. Each W;; is the composition of cobordisms K11 —int(K;). The result follows by Lemma 2.1. O

Thus, if X is obtained from a compact manifold K by attaching handles as in Lemma 2.3 then X is
admissible. Our examples of exotic R*s will be of this form.
It is immediate from the definition that any refinement of an admissible cobordism is admissible. To

show independence of our invariants under exhaustions, we need the following lemma.

Lemma 2.5. Let K1 C Ly C Ky C Lo ... be an exhaustion of X with Ky C Ko C ... and Ly C Ly C ...

admissible exhaustions. Then the exhaustion Ly C Ko C Ly C K3... is admissible.

Proof. Tt suffices to show that the cobordisms K, —int(L;), j > 1 and L; — int(K;), j > 2 are
admissible. This follows from Lemma 2.2 as the cobordisms K —int(K;) and L, —int(L;) are
admissible and we have Kji; — int(K;) = (K41 — int(L;)) o (L; —int(K;)) and Ljq — int(L;) =
(Lj41 — int(Kj)) o (K; — int(L;)). a
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3. INVARIANTS FOR ADMISSIBLE ENDS

We are now ready to define our invariants for an admissible open 4-manifold X. We shall construct
invariants based on reduced Heegaard Floer theory H F:éd. First we recall some facts about Ozsvath-
Szabo theory.

Associated to each closed, oriented 3-manifold M and Spin¢ structure t on M we have abelian groups
H F;’; 4(M,t). Further, given a cobordism W : M; — M, with a Spin€ structure s on W such that ¢; =

(Ml,tl) — HF:;d(M2,t2)
induced by the corresponding homomorphism on HF+. This homomorphism is well defined up to choice
of sign. We shall denote the above cobordism with its Spin® structure by (W, s) : (My,t1) — (M2, t2).

Further, if (W1, s1) : (My,t1) = (M2, t2) and (W, s2) : (Ma,t2) = (M3, t3), with W = W5 o W1, we
have the composition formula

8|am;, we get an induced homomorphism on the abelian groups Fw,, : HF.,

FW2,52°FW1,S1: Z :EFW,S

Slwi =8;

We shall consider the special case when W; is admissible.

Lemma 3.1. If W is admissible then there is a unique Spin® structure s on W with s|w, = s;. For

this Spin® structure Fyy, s, © Fw, s, = T Fw,s

Proof. Recall that Spin® structures are a torseur of H?(-,Z). Consider the Mayer-Vietoris sequence for
W =W;UWs

- HY (W) ® H (Wa) —» H(Ms) > HX2(W) — H2(Wy) @ H2(W») — H2(M,)

By admissibility the map H*(W;) @ H'(W,) — H'(M,) is a surjection, hence H2(W) — H*(W,) &
H?(WS,) is an injection. This shows uniqueness of the Spin® structure. As sq|p, = t2 = s2|u,, existence
follows from the same exact sequence.

The second statement follows from the first using the composition formula. d

For an admissible exhaustion, it follows that we get a directed system of abelian groups up to sign.
It is easy to see that we can choose signs to get a directed system, and the direct limit of the system
does not depend on the choice of signs.

Definition 3.2. The End Floer homology HE(X, s) is the direct limit of the directed system constructed
above.

Proposition 3.3. This is independent of the admissible exhaustion chosen.

Proof. By elementary properties of direct limits, the limit does not change on passing to a refinement.
Given two admissible exhaustions Ky C Ko C ... and L; C Ly C ..., by passing to an exhaustion we
can assume that K; C Ly C Ko C Ly C .... By Lemma 2.5 the exhaustion L; C Ky C Ly C K3... is
admissible. As L1 C Ly, C ... and Ko C K3 C ... are refinements of this exhaustion, the direct limits
for the exhaustions K1 C Ko C ... and Ly C Ly C ... are the same (as they are both isomorphic to
the direct limit corresponding to the exhaustion Ly C Ky C Ly C K3...) . O

We consider the w-twisted version of this as in [10]. Let K C X be a compact manifold and w a

2-form on X — K. We consider an admissible exhaustion with K C K;. For this, we can define the
+

red

twisted groups HF'" (M;,t;) and homomorphisms associated to W;; which are well defined up to sign
and multiplication by powers of T'. For any composition W = W5 o W, associated with the exhaustion
as above, the coboundary map & : H'(M,) — H?(W) is zero. It follows by the composition rule for

w-twisted coefficients that we have a directed system up to multiplication by powers of T and sign.
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Once more, we can make choices for the homomorphisms to get a directed system and the direct limit
is independent of the choices.

The direct limit is the End Floer homology HE(X, s) with w-twisted coefficients. As in the untwisted
case, this is well defined.

4. Exotic R*’s

We now construct a manifold X homeomorphic to R* with HE(X) # 0. This is done by first
constructing a convex symplectic manifold W with one convex boundary component Ny and one convex
end and then gluing a compact manifold Y to W along Np.

Let K be a non-trivial slice knot in S® and let N be obtained by 0O-frame surgery about K. Then
N x [0,1] admits a taut foliation by [4], and hence a symplectic structure with both ends convex by [2].
On attaching a 2-handle H to N x {1} corresponding to the surgery canceling the 0-frame surgery about
K, we get a manifold P with boundary S U Ny with Ng = N x {0} and S a 3-sphere. In particular the
end of P — S is homeomorphic to the end of R* by Freedman’s theorem [3].

As in Theorem 3.1 of [5], we can attach a Casson handle in place of the 2-handle H to get a manifold
W which is a convex symplectic manifold and with end homeomorphic to R*. Observe that W is simply-
connected as the 2-handle is attached along the meridian of K, which normally generates 7 (N). Also
observe that in the proof of Theorem 3.1 of [5], the handles attached are as in Lemma 2.3, and hence
the corresponding exhaustion is admissible.

Now, let Y’ be obtained from B* by attaching a 2-handle along K with framing 0. Then Y’ = N.
As K is slice, the generator of H»(Y) = Z can be represented by an embedded sphere ¥. Let Y be
obtained from Y’ by performing surgery along X. Glue W to Y along Y = N = Ny to obtain X.

By a Mayer-Vietoris argument, X has the homology of R*. Further, as 7 (Y") is normally generated
by a meridian of K, to which a Casson handle is attached, 71 (X) = 1. Finally, as the end of X is
homeomorphic to the end of R*, Y is simply-connected at infinity. Thus Y is homeomorphic to R*.

Finally, we show that the End Floer homology for X does not vanish. Consider the exhaustion of
X with K; =Y, hence M; = N and K,, K3, ...being the level sets after attaching successive handles
as above. Note that X — K is symplectic with symplectic form w, and each of the cobordisms Wj;
is a convex symplectic manifold with two boundary components M; and M;. We consider w-twisted
coefficients and the spin® structure s associated to w.

Let £ be the contact structure on N = M. Let ¢t (;[w]) € HET (M, s) be the contact element and

¢t 4(&[w]) its image in the reduced Floer homology. We shall show that the image z; of the contact
+

+
element ¢ red

red

(&; [w]) in the reduced Floer homology group HF'" .(M;,t;) is non-zero for each j. It follows
that the direct limit, i.e., the End Floer homology, is non-zero.

As Wy, is a symplectic manifold with two convex boundary components, Wi; embeds in a symplec-
tic 4-manifold M with both components of M — K; having b > 0 by results of Eliashberg [1] and
Kronheimer-Mrowka [6].

Let j > 1 be fixed. We proceed as in the proof of Theorem 4.2 of [10]. We attach a Giroux handle
to N = M; and then attach a surface bundle over a surface with boundary. Let X; be the union of the
Giroux handle and the surface bundle over a surface with boundary. Let B; be a ball in X;. Similarly
attach X, with b} (X2) > 0 to M, to get a closed symplectic manifold and let B, be a ball in X,. Let
W = le uX.

Let z; be the image of the contact element ¢t (¢;[w]) in the Floer homology group HET(M;,t;).
Observe that z; # 0 if and only if z; is not in the image of HF*°(M;,t;). Ozsvath and Szabo show
that the image of ¢t (¢;[w]) in HF+(S3,50) under the map induced by W — B is non-zero. But by
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Lemma 3.1, as Wy; is admissible, this factors through the map induced by Wi;, and hence the image
of z; in HF*+(S%, s0) is non-zero. But as the cobordism X» — int(Bs) has b > 0, the induced map on
HF* is zero. It follows that z; is not in the image of HF > (M;,t;), i.e. z; # 0, as claimed.

Thus, the End Floer homology of X does not vanish. We have seen that X is homeomorphic to R*.

This completes the proof of Theorem 1.6. O
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