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EMBEDDED SPHERES IN S2 × S1# . . . #S2 × S1

SIDDHARTHA GADGIL

Abstract. We give an algorithm to decide which elements of π2(#kS2
× S1) can be represented by

embedded spheres up to conjugacy. Such spheres correspond to splittings of the free group Fk on k

generators. We also give an algorithm to decide when classes in π2(#kS2
× S1) can be represented by

disjoint embedded spheres.

Our methods may be useful in studying the splitting complex of a free group, and hence the group

of outer automorphisms.

1. Introduction

We study here embedded spheres in a 3-manifold of the form M = #k(S2 × S1), i.e., the connected

sum of k copies of S2 × S1. Group theoretically such spheres correspond to splittings of the free group

Fk on k generators [20][29]. Understanding these is likely to be useful in studying Out(Fk), which is

closely related to the mapping class group of the manifolds M [20], and more generally in studying the

mapping class group of reducible 3-manifolds.

The first question we consider is whether a class in π2(M) can be represented up to conjugacy by an

embedded sphere in M . Let M̃ be the universal cover of M . Observe that π2(M) = π2(M̃) = H2(M̃)

by Hurewicz theorem. We shall implicitly use this identification throughout.

We first consider when A ∈ H2(M̃) = π2(M) can be represented by an embedded sphere in M̃ . We

shall make use of intersection numbers (and Poincaré duality) for non-compact manifolds. Represent A

by a (not necessarily connected) surface in M̃ (also denoted A). Given a proper map c : R → M̃ which

is transversal to A, we consider the algebraic intersection number c · A (for details see Section 2). This

depends only on the homology class of A and the proper homotopy class of c. The following gives a

criterion for A to be represented by an embedded sphere.

Theorem 1.1. The class A ∈ H2(M̃) can be represented by an embedded sphere if and only if, for each

proper map c : R → M̃ , c · A ∈ {0, 1,−1}.

For an embedded sphere S ∈ M with lift S̃ ∈ M , all the translates of S̃ are disjoint from S̃. In

particular, if A = [S̃] is the class represented by S̃, then A and gA can be represented by disjoint

spheres for each deck transformation g. Thus, our next step is to give a criterion for when two classes

A and B in H2(M̃) can be represented by disjoint spheres.

Theorem 1.2. Let A and B be classes in H2(M̃) that can be represented by embedded spheres. Then

A and B can be represented by disjoint embedded spheres if and only if there do not exist proper maps

c, c′ : R → M̃ with c · A = 1 = c · B and c′ · A = 1 = −c′ · B.

The two above theorems let us determine when, for a class A ∈ π2(M) = H2(M̃), the homology classes

A and gA can be represented by disjoint spheres for each g ∈ π1(M). However to get an embedded
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sphere in M , we need more. Namely, such a sphere S exists if and only if there is a sphere S̃ disjoint

from all its translates gS̃.

Theorem 1.3. Suppose A ∈ π2(M) = H2(M̃) is a class such that for each deck transformation g ∈

π1(M), A and gA can be represented by disjoint spheres in M̃ . Then A can be represented up to

conjugacy by an embedded sphere S ∈ M .

Thus, we have a criterion for deciding whether a conjugacy class in π2(M) can be represented by an

embedded sphere. However our criterion a priori involves checking conditions for infinitely many proper

maps c, c′ : R → M̃ and infinitely many group elements g. We shall show that it suffices to check only

finitely many conditions. This gives the following result.

Theorem 1.4. There is an algorithm that decides whether a conjugacy class A ∈ π2(M) can be repre-

sented by an embedded sphere in M .

Our methods extend to deciding when two classes A and B can be represented by disjoint spheres in

M . This is based on an analogue of Theorem 1.3.

Theorem 1.5. Suppose A and B are conjugacy classes in π2(M) that can be represented by embedded

spheres in M . Then A and B can be represented by disjoint spheres in M if and only if for each

g ∈ π1(M), A and gB can be represented by disjoint spheres in M̃ .

Theorem 1.6. There is an algorithm that decides whether conjugacy classes A, B ∈ π2(M) can be

represented by disjoint embedded spheres in M .

Note that by results of [20], homotopy classes of embedded spheres in M are the same as isotopy

classes of embedded spheres in M . In group theoretic terms, isotopy classes of embedded spheres in M

correspond to conjugacy classes of splittings of the free group Fk. Disjoint spheres in M correspond

to splittings compatible up to conjugacy. Recall that a splitting of a group G is a graph of group

decomposition of G for a graph with one edge. Two splittings are said to be compatible if there is a

graph of groups decomposition of G with respect to a graph with two edges e and f , so that the graph of

groups decompositions obtained by collapsing the edges e and f are respectively the two given splittings.

For more details, see, for instance, [26].

The analogous problem of when a conjugacy class in the fundamental group of a surface can be

represented by a simple closed curve has also be solved using intersection numbers [2] [25]. The situation

there is different as the universal cover is 1-ended. In [4] it was shown that in fact geodesics on a surface

minimize intersection numbers and self-intersection numbers. Analogous results for least-area surfaces

in 3-manifolds were shown in [5].

A related question of when a finite set in the free group can be separated, or geometrically when a

finite collection of homotopy classes of simple-closed curves in M can be represented by curves disjoint

from an essential sphere in M , was considered in [30] using methods of Whitehead. An algorithm was

given to answer this question, as also for the analogous question of simple closed curves on the surface

of a handlebody. The space of ends of M̃ was used to prove a basic result concerning free groups in [3].

The complex of curves of a surface has proved very useful in studying both the mapping class group of

a surface and 3-manifold topology (see [1], [6], [7], [16], [17], [18], [21], [22], [23] and [24]). Analogously,

the splitting complex of a free group Fk [9], or equivalently the sphere complex [20] has been used to

deduce results about the outer automorphisms of a free group (see [8], [10], [11], [12], [13], [14] and [19]).

Many fruitful results regarding the complex of curves have been obtained by studying the relation

between distances in the complex of curves and intersection numbers. Thus one may hope that similar
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results regarding the splitting complex (and hence Out(Fk)) may be obtained using our methods. A

particularly interesting question is to what extent the splitting complex is δ-hyperbolicity. The analogue

for the complex of curves was proved using intersection numbers by Bowditch [1].

We now give an outline of the paper. In Section 2 we recall basic facts about ends and intersection

numbers, give a Serre-Bass type construction M̃ and make some simple observations about its homology.

In section 3 we give a proof of Theorem 1.1 and in Section 4 we give a proof of Theorem 1.2. We recall

the relevant results of Scott and Swarup and use these to complete the proofs of Theorems 1.3 and 1.5

in Section 5. Finally, in section 6 we complete the proofs of Theorems 1.4 and 1.6.

Acknowledgements. We thank G. Ananda Swarup and Dishant Pancholi for helpful conversations, and

Allen Hatcher and Nathalie Wahl for helpful comments and references.

2. Preliminaries

Let M = #k(S2 × S1). An alternative description of M can be given as follows. Consider the

spheres S3 and let Ai, Bi, 1 ≤ i ≤ k, be a collection of 2k disjoint embedded balls in S3. Let P be the

complement of the union of the interiors of these balls and let Si (respectively Ti) denote the boundary

of Ai (respectively Bi). Then M is obtained from P by gluing together Si and Ti with an orientation

reversing diffeomorphism ϕi for each i, 1 ≤ i ≤ k.

We give a related description for M̃ . Namely identify π1(M) with the free group G on generators αi,

1 ≤ i ≤ k, and let T be the Cayley graph of G with respect to these generators. Then T is a tree with

vertices G. The space M̃ is obtained by taking a copy gP of P for each vertex P , and identifying gSi

with gαiTi, using ϕi, for each g ∈ G, and each generator αi, 1 ≤ i ≤ k. This construction is standard

in a topological approach to Serre-Bass theory (see, for instance, [27]).

Observe that if τ is a finite subtree of T , then Kτ = ∪g∈τgP is a compact, simply-connected space

homeomorphic to a space of the form S3 −∪n
j=1int(Di) with Di disjoint embedded balls in S3. Further,

the boundary components of P are spheres corresponding to edges of T with exactly one vertex in τ .

Let δτ denote the set of such edges. The sets Kτ give an exhaustion of M̃ . Further, H1(M̃) is the

inverse limit of the groups H1(Kτ ) with respect to maps induced by inclusions (as the maps induced by

inclusions are surjections and so the inverse system satisfies the Mittag-Lefler condition).

We next recall the notion of ends of a space. Let X be a topological space. For a compact set K ⊂ X ,

let C(K) denote the set of components of X − K. For L compact with K ⊂ L, we have a natural map

C(L) → C(K). Thus, as compact subsets of X define a directed system under inclusion, we can define

the set of ends E(X) as the inverse limit of the sets C(K). Further we can compute the inverse limit

with respect to any exhaustion by compact sets.

It is easy to see that a proper map f : X → Y induces a map E(f) : E(X) → E(Y ) and that if

f : X → Y and g : Y → Z are proper maps, then E(g ◦ f) = E(g) ◦ E(f). In particular, the real line

R has two ends which can be regarded as −∞ and ∞. Hence a proper map c : R → X gives a pair of

ends c− and c+ of X .

Now consider proper maps c : R → M̃ . As M̃ is a union of the simply-connected compact sets Kτ ,

the following lemma is straightforward.

Lemma 2.1. There is a one-one correspondence between proper homotopy classes of maps c : R → M̃

and pairs (c−, c+) ∈ E(M̃) × E(M̃).

By a proper path in a manifold Q, possibly with boundary and possibly non-compact, we henceforth

mean a map c : I → Q for a set I ⊂ R of the form I = [a, b], I = [a,∞) or I = R, such that the inverse

image of ∂Q is ∂I and the inverse image of a compact set is compact.
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We shall refer to a curve c as above as a proper path from c− to c+ or as a proper path joining c− and

c+. We denote such a path c by (c−, c+). This is well defined up to proper homotopy. In particular, for

a homology class A ∈ H2(M̃), the intersection number (c−, c+) · A (which we define in detail below) is

well defined and can be computed using any proper path joining c− and c+. We shall use this implicitly

throughout.

For a proper path c : R → M̃ and an element A ∈ H2(M̃), we can define the algebraic intersection

number between c · A by making c transversal to A and computing the intersection number. We

formalise this using the exhaustion of M̃ by the sets Kτ . Namely, if c : R → M is a proper path, then

there is an interval [−L, L] such that c−1(Kτ ) ⊂ [−L, L]. It follows that c|[−L,L] gives an element in

H1(M̃, M̃ − int(Kτ )) = H1(Kτ , ∂Kτ) = H2(Kτ ), where the first isomorophism is by excision and the

second by Poincaré duality. On passing to inverse limits, we see that c gives an element of H 2(M̃).

Evaluating this element on A gives c · A.

Note that every class A ∈ H2(M̃) is supported in Kτ for some finite tree τ , and a proper path c gives

an element of H2(Kτ ). Further, as the closures of the complementary components of Kτ in M are all

non-compact, any proper path α : [0, 1] → Kτ can be extended to a proper path c : R → M̃ whose

intersection with Kτ is α. In particular, the cohomology class in H2(Kτ ) = H1(Kτ , ∂Kτ) corresponding

to α is the image under the map induced by inclusion of the class corresponding to c. It follows that

α · A = c · A for A ∈ H2(Kτ ).

We use the above observations and the fact that Kτ is a compact, simply-connected space homeo-

morphic to S3 with finitely many balls deleted, with the boundary components corresponding to the

edges in δτ to deduce some elementary results concerning the homology of M̃ .

First note that each edge of T has corresponding to it a sphere of the form gSi for some i, and such

spheres are the boundary components of Kτ . As H2(Kτ ) is generated by its boundary components it

follows that these spheres generate H2(M̃).

Next, note that if A and B are two homology classes, then for some finite subtree τ ⊂ T they are

both supported by Kτ . If A is not homologous to B, then as H1(Kτ ) = 0, by Poincaré duality there

exists a proper path α in Kτ such that α · A 6= α · B. By extending α to a proper path c : R → M̃ ,

we deduce that there is a proper path c : R → M̃ with c · A = c · B. Thus an element A ∈ H2(M) is

determined by the intersection numbers c · A for proper paths c : R → M̃ .

Finally, if S is an embedded sphere in M , then S separates M̃ into two components. If the closure of

one of these is compact, then S is homologically trivial. Otherwise we can find a proper path c : R → M̃

with c · S = 1, from which it follows that S is primitive.

3. Embedded spheres in M̃

We now characterise which homology classes in M̃ can be represented by embedded spheres.

Proof of Theorem 1.1. Suppose A can be represented by an embedded sphere S. Then the complement

of S consists of two components with closures X1 and X2. As S is compact, the space of ends of M̃ is

also partitioned into sets Ei = E(Xi). For a pair of ends (c−, c+), if both c− and c+ are contained in the

same Ei, we have a corresponding proper path c disjoint from S. Otherwise we can choose c intersecting

S in one point. In either case, c · A is 0, 1 or −1. Computing intersection numbers (c−, c+) · A using

these paths, it follows that c · A is always 0, 1 or −1.

Conversely, assume that for each c = (c−, c+), c · A is one of 0, 1 or −1. Let A be represented

by a (not necessarily connected) smooth, closed surface, which we also denote A. Let K = Kτ ⊃ A.

Then K is a compact, 3-dimensional, connected manifold contained in M̃ such that the closure Wi of

each complementary component of K is non-compact. As M̃ is simply-connected and K is connected,
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Ni = ∂Wi is connected for each Wi. Note that there are finitely many sets Wi and E(M̃) is partitioned

into the sets E(Wi).

We define a relation on the space of ends E(M̃) as follows. For a pair of ends e0 and e1, let c be

a proper path joining e0 to e1. We define e0 ∼ e1 if c · A = 0. We shall show that the relation ∼ is

an equivalence relation. When A is a non-trivial homology class we show that there are exactly two

equivalence classes.

We first need a lemma.

Lemma 3.1. For ends e, f and g of M̃ .

• (e, f) · A = −(f, e) · A

• (e, g) · A = (e, f) · A + (f, g) · A

Proof. The first part is immediate from the definitions. Suppose now e, f and g are ends and let c and

c′ be proper paths from e to f and from f to g respectively. Let k be such that f ∈ E(Wk). Then there

exist T ∈ R such that c([T,∞)) ⊂ Wk and c′((−∞,−T ]) ⊂ Wk . Let γ be a path in Wk joining c(T )

and c′(−T ). Consider the path c′′ = c|(−∞,T ] ∗ γ ∗ c′|[−T,∞) : R → M̃ . This is a proper path from e to

g and its intersection points with A are the union of those of c with A and c′ with A, with the signs

associated to the points of c′′ ∩ A agreeing with the signs for c ∩ A and c′ ∩ A. Computing (e, g) · A

using c′′, we see (e, g) · A = (e, f) · A + (f, g) · A as claimed. �

By the above, ∼ is an equivalence relation. We next show that there are at most two equivalence

classes. This follows from the next lemma.

Lemma 3.2. Suppose e 6∼ f and e 6∼ g. Then f ∼ g and (e, f) · A = (e, g) · A.

Proof. By Lemma 3.1, we have

(f, g) · A = (e, g) · A − (e, f) · A

By hypothesis, each of (e, g) ·A and (e, f) ·A is ±1 and their difference (f, g) ·A is 0, 1 or −1. It follows

that (e, f) · A = (e, g) · A and (f, g) · A = 0, i.e., f ∼ g. �

Now as A 6= 0 in homology, as elements of H2(M) are determined by intersection numbers with

proper paths, there are ends e and f such that (e, f) · A 6= 0, i.e., e 6∼ f . Thus there are exactly two

equivalence classes of ends which we denote E1 and E2.

Next, observe that given two points in E(Wi), for some i, there is a path joining these in the

complement of K, hence of A. It follows that these are equivalent. Hence each E(Wi) is contained in E1

or E2. We now construct a proper function f : M̃ → R. Namely, for each i, if E(Wi) ⊂ E1 (respectively

E(Wi) ⊂ E2), we construct a proper function f : Wi → [−1,−∞) (respectively f : Wi → [1,∞)). We

extend this across K to get a proper function f : M̃ → R.

As M̃ is simply-connected, we can use standard techniques due to Whitehead and Stallings [28][29]

to show that, after a proper homotopy of f , we can assume that S = f−1(0) is a sphere. The details are

analogous to the proof of Knesser’s conjecture in [15]. Namely, by Lemma 6.5 of [15], we can assume

that each component of f−1(0) is incompressible, hence a sphere. Suppose f−1(0) has more than one

component, we take a path α joining two components. As in the proof of Theorem 7.1 of [15], we can

replace α by a path joining two components whose interior is disjoint from f−1(0). As R is simply-

connected, f ◦ α is a homotopically trivial loop in R. Modifying f in a neighbourhood of α reduces the

number of components of f−1(0). After finitely many iterations of this process, f−1(0) is connected.

The sphere S now separates M̃ into subsets X1 and X2. By construction, E(Xi) = Ei. Hence, as a

homology class in M̃ is determined by intersection numbers c · A for proper paths c : R → M̃ , A = [S]

after possibly changing the orientation of S. �
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Remark 3.3. By construction S ⊂ K.

4. Disjoint spheres in M̃

Suppose now that A and B are classes in H2(M̃) = π2(M) which can be represented by embedded

spheres S and T . We shall deduce when S and T can be chosen to be disjoint. Denote the closures of

the components of the complement of S (respectively T ) by X1 and X2 (respectively Y1 and Y2) so that

(e, f) ·A = 1 if and only if e ∈ X1 and f ∈ X2 and (e, f) ·B = 1 if and only if e ∈ Y1 and f ∈ Y2. Recall

that (f, e) · A = −(e, f) · A and (f, e) · B = −(e, f) · B.

Suppose S and T are disjoint. We first consider the case T ⊂ X2. Then X1 is contained in one of

Y1 and Y2. If X1 ⊂ Y1, then for c′ = (e, f), if c′ · A = 1 then e ∈ X1 ⊂ Y1 hence (f, e) · B 6= 1, i.e.,

c′ · B 6= −1. Thus, there does not exist c′ with c′ · A = 1 = −c′ · B.

By considering other cases similarly, we see that there do not exist proper maps c, c′ : R → M̃ with

c · A = 1 = c · B and c′ · A = 1 = −c′ · B.

Conversely, suppose there do not exist proper maps c, c′ : R → M̃ with c · A = 1 = c · B and

c′ · A = 1 = −c′ · B. We define three equivalence relations ∼A, ∼B and ∼ on E(M̃). Namely, e ∼A f

(respectively e ∼B f) if (e, f) · A = 0 (respectively (e, f) · B = 0) and e ∼ f if e ∼A f and e ∼B f . We

shall see that ∼ partitions E(M̃) into at most three equivalence classes.

Let e ∈ E(M̃) be an end. We shall assume that e is fixed. By Lemma 3.2, for ends f , (e, f) · A has

only two possible values, 0 and one of 1 and −1. By replacing A by −A, we assume that for every end f ,

(e, f) ·A ∈ {0, 1}. Similarly, we assume that for every end f , (e, f) ·B ∈ {0, 1}. Thus, for ends f , the pair

((e, f) ·A, (e, f) ·B) has four possible values. By Lemma 3.1, if ((e, f) ·A, (e, f) ·B) = ((e, g) ·A, (e, g) ·B),

then f ∼ g. Hence there are at most four equivalences classes under the relation ∼.

We now show that at least one of these classes is empty. If all the four classes are non-empty, we

can find f , g and h with (e, f) · A = 1, (e, f) · B = 0, (e, g) · A = 0, (e, g) · B = 1, (e, h) · B = 1 and

(e, h) · B = 1. Taking c = (e, h) and c′ = (g, f), by Lemma 3.1 we see that c · A = 1 = c · B and

c′ · A = 1 = −c′ · B, a contradiction.

Remark 4.1. As the four equivalence classes under ∼ are the four intersections E(Xi) ∩ E(Yj), we see

that one of these sets must be empty, i.e. one of the sets Xi ∩ Yj is compact. This is important in the

sequel.

If A and B are not independent, then either A = B or A = −B as both A and B are represented by

embedded spheres and are hence primitive. In this case they can be represented by disjoint embedded

spheres. Hence we may assume that they are independent. As elements of H2(M) are determined by

intersection numbers with proper paths, it follows that there must be three equivalence classes. Let e,

f and g represent the equivalence classes. By changing signs and permuting if necessary, we can assume

that (e, f) · A = 1, (e, f) · B = 0, (e, g) · B = 0 and (e, g) · B = 1.

We now proceed as in the previous section. Choose surfaces representing A and B and a compact

submanifold K containing these as in the previous section. Let T (a tripod) denote the union of three

half lines Re, Rf and Rg, each homeomorphic to [0,∞), with the points 0 in all of them identified. We

construct a proper map f : M̃ → T by mapping the components Wi of M̃ − int(K) equivalent to e

properly onto Re and analogously for components equivalent to f and g. We extend the map f over K.

Let 1f ∈ Rf and 1g ∈ Rg denote points in Rf and Rg corresponding to 1 in the identifications of Rf

and Rg with [0,∞).

As in the previous section, we use techniques of Whitehead and Stallings to see that, after a proper

homotopy of f , S = f−1(1e) and S′ = f−1(1h) are disjoint spheres representing A and B. To do this,
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first note that as before we can assume that S and S ′ are incompressible. Suppose one of them, say S,

has two components and α is a path joining these components. Then as T is simply-connected, we can

pass to a subinterval to obtain an arc whose endpoints are both in S or both and S ′, and are moreover

contained different components of S or S ′ so that the interior of the arc is disjoint from S and S ′.

We can modify f in a neighbourhood of this arc to reduce the number of components. Iterating this

procedure we obtain f so that S and S ′ are connected. As in the previous section they represent A and

B.

5. Intersection numbers and embedded Spheres

Suppose now that the class A ∈ π2(M) = H2(M̃) can be represented by an embedded sphere S in M̃ .

Further assume that for all g ∈ π1(M), A and gA can be represented by disjoint embedded spheres. We

show that the class A is represented by a splitting of the free group G = π1(M) and hence an embedded

sphere.

This follows from the work of Scott and Swarup [26] using Remark 4.1. We begin by recalling the

relevant notions and results in the special case that is relevant to us.

For a set E ⊂ G, we denote the complement of E by E∗ and by E(∗) we mean one of the sets E and

E∗. Two subsets E and E′ of the group G are said to be almost equal if their symmetric difference is

finite, and a set E is said to be non-trivial if both E and E∗ are infinite. The set E is said to be almost

invariant if E is almost equal to Eg for all g ∈ G. An equivalent condition in terms of the Cayley graph

Γ(G) is that the set δE of edges of Γ(G) with one vertex in E and the other in E∗ is finite.

By the construction of M̃ in Section 2, there is a natural embedding of Γ(G) in M̃ , and in particular

G is identified with a subset of M̃ . Suppose that S ⊂ M̃ is an embedded sphere. Let X1 and X2 be the

closures of the complementary components of S. Let Ei = Xi∩G. Then E1 and E2 form complementary

almost-invariant sets as only finitely many edges of the Cayley graph Γ(G) intersect S, and hence the

set δE1 of edges of Γ(G) with one vertex in E1 and the other in E∗

1 is finite. The sets E
(∗)
1 are called

the almost invariant sets corresponding to S. Note that if embedded spheres S and S ′ are isotopic

(equivalently homologous) then the corresponding almost invariant sets are almost equal.

Note that the sets E(Xi) are determined by the sets Ei (as can be seen by considering the exhaustion

by sets of the form Kτ ). Hence, for two embedded spheres S and S ′, if the corresponding almost

invariant sets are almost equal, then S and S ′ are homologous (as homology classes in M̃ are determined

by intersection numbers c · A).

By the Knesser conjecture (proved by Stallings), splittings of G correspond to embedded spheres in

M . An embedded sphere in M lifts to a collection of embedded spheres in M̃ . The corresponding almost

invariant sets in G are called the almost invariant sets corresponding to the splitting of G.

Theorem 1.12 of [26] gives conditions under which (in our situation) an almost invariant set E gives

rise to a splitting, one of whose almost invariant sets is almost equal to E. We shall verify that these

conditions are satisfied. As a consequence we get a sphere Σ ⊂ M that, up to conjugacy, represents

A ∈ π2(M) = H2(M̃).

Theorem 1.12 of [26] applies for A if for the sets E1 and E2 defined as above, for each g 6= 1, g ∈ G,

exactly three of the sets gEi∩Ej are infinite. By Remark 4.1, at most three of the sets are compact, and

exactly three are compact unless A and gA are homologous. Thus it suffices to show that for g 6= 1, A

and gA are not homologous. The theorem is easy in the case when k = 1 and when A is homologically

trivial, so we may assume that neither of these happens.
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Suppose now gA = A as elements in homology for g 6= 1. Then gmA = A for all m ∈ Z. Let τ be a

finite subtree with the support of A contained in Kτ . Then for m large enough, the distance between τ

and gτ is at least two. The following lemma gives a contradiction, showing that we cannot have A = gA.

Lemma 5.1. Assume k ≥ 2. Let τ and τ ′ be finite subtrees in T so that the distance between them is

at least two. Suppose A and B are non-trivial classes in H2(M̃) supported respectively in Kτ and Kτ ′ .

Then A and B are not homologous.

Proof. Let W be the closure of the component of M̃ − Kτ containing Kτ ′ . Then as k ≥ 2, it is easy to

see that the closure of W − Kτ ′ is not compact., hence there is a proper path c′ : [1,∞) → W − Kτ ′

with c′(1) ∈ ∂W . Using this path, it follows that any proper path α : [0, 1] → Kτ extends to a proper

path c : R → M̃ which is disjoint from Kτ ′ .

Now as A is not homologically trivial, there is a proper path α : [0, 1] → Kτ with α · A 6= 0. We

extend this to a path c as above with c · A 6= 0. As c is disjoint from Kτ ′ , c · B = 0. Hence A is not

homologous to B.

�

Thus exactly three of the sets gEi ∩ Ej are infinite. Hence we can apply Theorem 1.12 of [26] to

complete the proof of Theorem 1.3.

The proof of Theorem 1.5 is very similar. We may assume that A and gB are not homologous for all

g ∈ G, as the case when they are homologous is easy. Then we define sets Ei as above and analogous sets

E′

i corresponding to B. The final part of Theorem 1.12 of [26] shows that we get compatible splittings

corresponding to A and B provided for each g 6= 1, g ∈ G, exactly three of the sets gEi ∩ E′

j is infinite.

The proof that this is the case is as above.

6. The Algorithms

We now have necessary and sufficient conditions for deciding whether a class A ∈ π2(M) can be

represented by an embedded sphere in M . However there are a priori infinitely many conditions. To

make this into an algorithm, we reduce these to finitely many conditions.

We use the construction of M̃ given in Section 2. Recall that there is a natural embedding of the

Cayley graph T of the free group G = π1(M) in M̃ . Further we have a canonical sphere in M̃ associated

to each edge of the Cayley graph, and these spheres generate H2(M̃). Note that each of these generating

spheres intersects exactly one edge e of T and with S ∩ e is a single point with transversal intersection.

Observe that any proper path c is properly homotopic to an edge path in T . By the above, elements

of π2(M) correspond to finite linear combinations of edges of T . Let A be such an element, and let

τ ⊂ T be a finite subtree such that Kτ contains the support of A. Then for an edge-path c, c ·A depends

only on the finite edge path α = c ∩ τ contained in τ with endpoints on ∂τ . Further, as T is a tree

without any terminal vertices, any finite edge path α in τ with endpoints on ∂τ is of the form α = c∩ τ

for a proper path c. Hence A is represented by an embedded sphere in M̃ if and only if for every finite

edge path α in τ with endpoints on ∂τ , α ·A is 0, 1 or −1. As this is a finite condition, it can be verified

algorithmically.

Similarly, given two homology classes A and B in H2(M̃), we have an algorithm to decide whether

A and B can be represented by disjoint embedded spheres by taking τ containing the supports of both

A and B.

Finally, if A is a homology class with τ a tree supporting A, we first verify whether A can be embedded

in M̃ . Next there are at most finitely many elements g1,. . . gn in G such that τ ∩ giτ is non-empty. For
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each of these gi we check whether A and giA can be represented by disjoint spheres. Assume henceforth

that A has this property.

By Remark 3.3, A can be represented by an embedded sphere S in K = Kτ . If τ ∩ gτ is empty, so

is K ∩ gK and hence S ∩ gS, i.e. A and gA can be represented by disjoint embedded spheres. Thus we

need to check only finitely many conditions for finitely many gi, which can be done algorithmically.

Similar considerations, using Theorem 1.5 gives an algorithm to decide whether two classes in π2(M)

(more generally finitely many classes in π2(M)) can be represented by disjoint spheres. �
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