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Abstract

It is well-known and elementary to show that for any prime p 6= 2, 5, the decimal expan-

sion of 1/p is periodic with period dividing p− 1. In fact, the period is p− 1 if, and only

if, 10 is a primitive root mod p. In 1836, Midy proved that if 1/p has even period 2d,

then writing
1

p
= 0.(UV )(UV ) · · · · · ·

where U, V are blocks of d digits each, one has U + V = 10d − 1 (that is, it is a block

of d 9′s. In January 2004, Brian Ginsberg, a student from Yale University generalised

Midy’s theorem ([G]) to decimal expansions with periods, multiples of 3. His proof is

elementary. The purpose of this note is to solve the problem in complete generality and,

this involves some interesting questions about the cyclic group of order p − 1.

Sums in (Z/pZ)∗

Here is a simple fact which will be useful for us :

Lemma 1.

Let p > 2 be a prime and l > 1 be a divisor of p−1. Let G(p, l) ⊂ {1, 2, · · · , p−1} be the

representatives of the unique subgroup of order l in the group (Z/pZ)∗. Then, the sum

s(p, l) :=
∑

g∈G(p,l) g = rp for some natural number r.

Proof.

If G is a nontrivial subgroup of (Z/pZ)∗ and x 6= e in G, then,

x
∑

g∈G

g =
∑

h∈G

h

so that
∑

g∈G g ≡ 0 mod p.

1



The connection of lemma 1 with the decimal expansion of 1/p is seen from :

Theorem 1.

Let p > 5 be a prime and suppose l > 1 is a natural number such that the decimal

expansion of 1/p is periodic, of period ld. Write

1

p
= 0.(U1U2 · · ·Ul)(U1U2 · · ·Ul) · · · · · ·

where each Ui consists of d digits. Then, one has

U1 + U2 + · · · + Ul = r(10d − 1)

where s(p, l) = rp.

This immediately gives a (different) proof of Midy’s and Ginsberg’s theorems.

Corollary 1.

For a prime p 6= 2, 5, and with notations as above, we have s(p, 2) = s(p, 3) = p. In

particular, Midy’s theorem and Ginsberg’s theorem follow.

Proof.

Note that G(p, 2) = {1, p − 1} and G(p, 3) = {1, x, y} for some x, y < p − 1. Since

1 + x + y ≡ 0 mod p and, is < 1 + 2(p − 1), it follows that 1 + x + y = p.

Proof of Theorem 1.

Note that since 10 has order ld mod p, the elements of G(p, l) are the images of 10id; 1 ≤
i ≤ l modulo p. Thus, if ri is the fractional part {10id/p}, then,

l∑

i=1

ri = r.

Now,
1

p
= 0.(U1U2 · · ·Ul)(U1U2 · · ·Ul) · · · · · ·

10d

p
= U1.(U2U3 · · ·UlU1)(U2U3 · · ·UlU1) · · · · · ·

102d

p
= U1U2.(U3U4 · · ·U1U2)(U3U4 · · ·U1U2) · · · · · ·

· · · · · · · · · · · · · · ·
10(l−1)d

p
= U1U2 · · ·Ul−1.(UlU1 · · ·Ul−1)(UlU1 · · ·Ul−1) · · · · · ·
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Notice thus that U1U2 · · ·Ui = [10id/p] for all i < l. Thus, the sum of the numbers to the

left of the decimal points on the right hand sides of the above equations, is
∑l−1

i=1[10id/p].

Therefore, the sum of the decimals on the right hand side of the above equations, is
∑l−1

i=0{10id/p} = r.

But, this sum of decimals is clearly U1+U2+···+Ul

10d−1
. This proves that U1+· · ·+Ul = r(10d−1).

In view of this Theorem, when one looks for generalisations of Midy’s theorem etc., it is

sufficient to consider the more general problem of determining what s(p, l) is for various

primes p and divisors l of p − 1. Note that the latter problem is more general because

the former one addresses only the cases when l divides the order of 10 mod p. The

computation of s(p, l) for any prime p and any divisor l of p − 1 is equivalent to the

computation of the sum U1 + · · · + Ul where 1/p is expressed in base b for a primitive

root b mod p. In particular, the question arises as to whether s(p, l) equals p for any

l > 3 at all ? We shall show now that there are some cases when it does and some cases

when it does not.

Mersenne, Sophie Germain and Dirichlet

Mersenne primes are prime numbers of the form 2n − 1 (evidently, n must be prime

then). We then have two primes p, n with p much larger compared to n. Another class

of primes is the set of those primes q for which 2q +1 is also prime. They came up in the

proof of the first case of Fermat’s last theorem due to Sophie Germain for such primes q.

In contrast with the Mersenne primes, here the two primes q, 2q + 1 are comparable in

size. Neither of these classes of primes is known to be infinite. The behaviour of s(p, l)

is different for these two classes as we show now.

Lemma 2.

Let p = 2l − 1 be a (Mersenne) prime. Then, s(p, l) = p.

Proof. Clearly, 2l = 1 in (Z/pZ)∗. Therefore, 2 has order l in this group. This implies

that

G(p, l) = {1, 2, 22, · · · , 2l−1}.

Hence s(p, l) = 2l − 1 = p.

Lemma 3.

Let l > 3 be a (Sophie Germain) prime so that p = 2l+1 is also prime. Then, s(p, l) > p.

Proof.
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Evidently, s(p, l) ≥ 1 + 2 + 3 + · · ·+ (l − 1) = l(l − 1)/2 > 2l + 1 if l > 5. For l = 5, it is

directly checked that s(11, 5) = 1 + 3 + 4 + 5 + 9 = 22.

The question as to whether either of the cases s(p, l) = p and s(p, l) > p can occur

infinitely often seems to be difficult to answer. The next result we prove below indicates

that if p is comparable in size to l, then s(p, l) > p for large l. Let us note that the

hypothesis of this proposition is conjecturally satisfied for large enough l in the following

sense. First, by Dirichlet’s theorem on primes in progression, given any l, there is a

prime p so that p ≡ 1 mod l. The prime number theorem gives the lower bound for the

smallest such p to be at least of the order l logl ([R], P.282). Wagstaff noted in 1979

([R], P. 283) that, for heuristic reasons, the smallest such prime is of the order of l(logl)2

for large l except for a set of density zero. Kumar Murty showed in his Bachelor’s thesis

([R], P.281) of 1977 that excepting d belonging to a sequence of density zero, for each

ε > 0, the least p ≡ 1 mod l satisfies p < l2+ε. The pair correlation conjecture - a deep

conjecture of analytic number theory about the zeroes of the Riemann zeta function -

would imply that for any large l, there is a prime p ≡ 1 mod l such that p < l1+ε. The

smallest exponent k such that p < Clk for some C and all large enough l, is known as

Linnik’s constant; the best unconditional result in analytic number theory available at

present gives us k ≤ 5.5. Even the existence of Linnik’s constant is a very deep theorem

due to Linnik.

Proposition 1.

For any prime p ≥ 5 and any prime divisor l of p − 1 such that p < l2/2, one has

s(p, l) > p.

Proof.

For any p ≡ 1 mod l, let the unique subgroup of order l of (Z/pZ)∗ be generated by

x. If G(p, l) = {1, x1, · · · , xl−1} with xi the residue of xi, then at least one of xi and

xl−i is >
√

p, for each 1 ≤ i < l. The reason is as follows. If both xi, xl−i are ≤ √
p,

then we have a contradiction since 1 ≡ xixl−i mod p. Therefore, at least half of the xi’s

for i ≥ 1 are >
√

p. Thus, the largest (l − 1)/2 of them are bigger than the numbers
√

p,
√

p + 1, · · · ,√p + (l− 3)/2. The others (including 1) are bigger than or equal to the

numbers 1, 2, · · · , (l + 1)/2. Hence

s(p, l) >
(l+1)/2∑

i=1

i +

√
p(l − 1)

2
+

(l−3)/2∑

j=1

j =
l2 + 3

4
+

√
p(l − 1)

2
.

Since
√

p < l/
√

2, we can see that s(p, l) > p. This completes the proof.
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Given a prime p and any divisor n of p − 1, it is possible to give an expression for the

natural number s(p,n)
p

. We do this below using an element b of order n mod p (knowing

b is essentially equivalent to knowing a primitive root a mod p because one may take

b = a(p−1)/n). In the formula below, we write logb to denote the logarithm to the base b.

In other words, [logb(d)] = r if br ≤ d < br+1.

Proposition 2.

Let p be a prime, n|(p− 1), and b < p an element of order n in (Z/pZ)∗. Then, we have

s(p, n)

p
=

bn − 1

p(b − 1)
− (n − 1)[

bn−1

p
] +

[ bn−1

p
]∑

i=1

[logb(ip)].

For example, take p = 11, n = 5, b = 4. Then, s(p, n) = 1 + 4 + 5 + 9 + 3 = 22. Since

[log4(11i)] equals 1 for i = 1, equals 2 for 2 ≤ i ≤ 5 and, equals 3 for 6 ≤ i ≤ 23, the

expression on the right side of the proposition gives 31 − 92 + (1 + 8 + 54) = 2.

Another class of examples easily seen from the above is that of Mersenne primes p =

2n − 1. Then, b = 2 and the sum is empty and one evidently has s(p,n)
p

= 1.

Proof.

We separate the powers 1, b, b2, · · · bn−1 in the various ranges ((i − 1)p, ip). Now, the

largest r for which the power br is in the range (0, p), equals [logbp]. Counting in this

manner, we have bri+1, bri+2 · · · , bri+1 in the range (ip, (i + 1)p) where ri = [logb(ip)].

These powers contribute
∑ri+1

j=ri+1(bj − ip) to the sum s(p, n). If t is the largest number

for which rt < n − 1, then the interval (tp, (t + 1)p) contains the powers brt+1, · · · , bn−1.

Hence, we get

s(p, n) =
n−1∑

j=0

bj −
t−1∑

i=1

(ri+1 − ri)ip − (n − 1 − rt)tp

which simplifies to the expression

s(p, n) =
bn − 1

b − 1
− p(n − 1)[

bn−1

p
] +

[ bn−1

p
]∑

i=1

p[logb(ip)].

This completes the proof.

We end with the following question which still remains interesting because finding a

primitive root mod p is far from easy :

Question.
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Given any prime p and any divisor n > 1 of p − 1, give an expression for the natural

number s(p, n)/p in terms of p and n alone.
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