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Abstract

In this paper we consider the general Diophantine equation of the form

Bm(x) = g(y)

where g is any nonzero polynomial in one variable over QI , of degree n ≥ 3 and Bm

is the Bernoulli polynomial of degree m ≥ 3. We prove a finiteness theorem for

rational solutions with a bounded denominator.2

For integral polynomials f, g, the study of Diophantine equations of the form f(x) =

g(y) has had a long history. Ideas of Baker, Beukers, Fried, Schinzel, Shorey, Siegel,

Tijdeman and others culminated in 2000, in a general finiteness theorem due to Y.Bilu

and R.Tichy [3], for Diophantine equations of the form f(x) = g(y) where f, g are

polynomials in one variable with rational coefficients. To apply Siegel’s theorem on

finiteness of integral points on the curve given by the equation f(x) = g(y), one needs to

compute the genus of this curve and, when the genus is zero, to determine the number

of points at infinity. The Bilu-Tichy theorem produces a set F of five families of pairs of

polynomials (called standard pairs) over QI , such that any pair (f, g) of polynomials over

QI for which the curve f(x) = g(y) has genus zero and at most two points at infinity, is a

pair in F upto a linear change of variables. Moreover, they show that each pair (f, g) for
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which f(x) = g(y) has infinitely many solutions can be determined from standard pairs -

the precise statement is given in Theorem D below. This theorem has been used to solve

various classes of equations of the form f(x) = g(y). In [1], [2], [7], [8], [9], equations

involving the Bernoulli polynomials and polynomials of the form x(x+1) · · · (x+m−1)+r

with r rational, were studied. We recall that the Bernoulli polynomials Bm(x) are defined

by the generating series
tetx

et − 1
=

∞∑

m=0

Bm(x)
tm

m!
.

Then, Bm(x) =
∑m

i=0

(
m
i

)
Bm−ix

i where Br = Br(0) is the r-th Bernoulli number. In

[8], [9], equations of the following forms were analyzed and proved to have only finitely

many integral solutions in x, y with some exceptions (all of which are completely deter-

mined) :

aBm(x) = bBn(y) + C(y) ,

aBm(x) = b(y(y + 1) · · · (y + n − 1) + C(y) ,

a(x(x + 1) · · · (x + m − 1) = bBn(y) + C(y).

where a, b ∈ Q∗, and m ≥ n > deg(C) + 2.

In this paper we consider the general Diophantine equation of the form

Bm(x) = g(y)

where m ≥ 3 and g is any nonzero polynomial over QI , of degree n ≥ 3. We prove a

finiteness theorem for rational solutions with a bounded denominator. Here, for rational

polynomials F, G, one says that the equation F (x) = G(y) has infinitely many rational

solutions with a bounded denominator if there exist a positive integer λ such that F (x) =

G(y) has infinitely many rational solutions x, y satisfying x, y ∈ 1
λ
ZZ.

We prove :

Main Theorem.

Suppose Bm(x) = g(y) has infinitely many rational solutions x, y with bounded denomi-

nator. Then, we are in one of the following cases.

(i) g(y) = Bm(h(y)) for some h is a polynomial over QI .

(ii) m is even and g(y) = φ(h(y)), where h is a polynomial over QI , whose square-free

part has at most two zeroes, such that h takes infinitely many square values in ZZ and, φ

is the unique polynomial such that Bm(x) = φ((x − 1
2
)2).
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(iii) m = 3, (6, n) = 1 and g(x) = r3Dn(δ(x), α3) where r, α ∈ QI satisfy r2αn = 1
12

, δ is

a linear polynomial over QI and Dn(x, c) is the Dickson polynomial

Dn(x, c) =

[n

2
]∑

i=0

n

n − i

(
n − i

i

)
(−c)ixn−2i.

Furthermore, in each of these cases, there are infinitely many solutions with a bounded

denominator.

In [8] and [9], the following results were proved :

Theorem A ( [8]).

For any polynomial C over QI and m ≥ n > deg C + 2, the equation

aBm(x) = bBn(y) + C(y)

has only finitely many rational solutions with bounded denominators except when m =

n, a = ±b and C(y) ≡ 0; in these exceptional cases, there are infinitely many rational

solutions with bounded denominators if, and only if a = b or a = −b and m = n is odd.

In particular, if c is a nonzero constant, then the equation

aBm(x) = bBn(y) + c

has only finitely many solutions for all m, n > 2.

Theorem B ( [9]).

Let C be any polynomial over QI and m ≥ n > deg(C) + 2. Then, the equation

aBm(x) = b(y(y + 1) · · · (y + n − 1) + C(y)

has only finitely many rational solutions x, y with a bounded denominator, except in the

following situations :

(i) m = n, m + 1 is a perfect square, a = b(
√

m + 1)m,

(ii) m = 2n, n+1
3

is a perfect square, a = b(n
2

√
n+1

3
)n.

In each case, there is a uniquely determined polynomial C for which the equation has

infinitely many rational solutions with a bounded denominator. Further, C is identically

zero when m = n = 3 and has degree n − 4 when n > 3.

Theorem C ( [9]).

Let C be any polynomial over QI and m ≥ n > deg(C) + 2. Then, the equation

a(x(x + 1) · · · (x + m − 1) = bBn(y) + C(y)
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has only finitely many rational solutions with bounded denominator excepting the follow-

ing situations when it has infinitely many :

m = n, m + 1 is a perfect square, b = a(
√

m + 1)m.

In these situations, the polynomial C is also uniquely determined, and has degree m− 4.

Remarks.

1. The Theorems A and B fall into the case (i) above.

2. In each of the three cases of the main theorem, there are infinitely many solutions.

This is obvious in cases (i) and (ii). In case (iii), for each n as above, there exist

infinitely many r, α such that r2αn = 1
12

. For instance, writing n = 2N + 1, for any k,

take r = 3Nk+N+k

2
, α = 32k+1.

Let us state precisely the result from [3] which will be our main tool here.

Theorem D ( [3]).

For non-constant polynomials f, g over QI , the following are equivalent:

(a) The equation f(x) = g(y) has infinitely many rational solutions in x, y with a

bounded denominator.

(b) We have f = φ(f1(λ)) and g = φ(g1(µ)) where λ, µ are linear polynomials over

QI , φ is some polynomial over QI , and (f1(x), g1(x)) is a standard pair over QI such that

the equation f1(x) = g1(y) has infinitely many rational solutions x, y with a bounded

denominator.

Standard pairs are defined as follows. In what follows, a and b are nonzero elements of

some field, m and n are positive integers, and p(x) is a nonzero polynomial (which may

be constant).

Standard Pairs

A standard pair of the first kind is

(xt, axrp(x)t) or (axrp(x)t, xt)

where 0 ≤ r < t, (r, t) = 1 and r + deg p > 0.

A standard pair of the second kind is

(x2, (ax2 + b)p(x)2) or ((ax2 + b)p(x)2, x2).

4



A standard pair of the third kind is

(Dk(x, at), Dt(x, ak))

where (k, t) = 1. Here Dt is the t-th Dickson polynomial

Dt(x, c) =

[ t

2
]∑

i=0

t

t − i

(
t − i

i

)
(−c)ixt−2i.

A standard pair of the fourth kind is

(a−t/2Dt(x, a), b−k/2Dk(x, a))

where (k, t) = 2.

A standard pair of the fifth kind is

((ax2 − 1)3, 3x4 − 4x3) or (3x4 − 4x3, (ax2 − 1)3).

By a standard pair over a field k, we mean that a, b ∈ k, and p ∈ k[x].

The theorem of Bilu and Tichy above involves decompositions of polynomials which we

recall :

A decomposition of a polynomial F (x) ∈ C[x] is an equality of the form F (x) =

G1(G2(x)), where G1(x), G2(x) ∈ C[x]. The decomposition is called nontrivial if deg

G1 > 1, deg G2 > 1.

Two decompositions F (x) = G1(G2(x)) and F (x) = H1(H2(x)) are called equiva-

lent if there exist a linear polynomial l(x) ∈ C[x] such that G1(x) = H1(l(x)) and

H2(x) = l(G2(x)). The polynomial called decomposable if it has at least one nontrivial

decomposition, and indecomposable otherwise.

These definitions carry over to any field in place of CI .

Therefore, it becomes important to find all possible decompositions for all the polyno-

mials under consideration. For the Bernoulli polynomials such a decomposition theorem

is not very difficult to prove :

Theorem E ( [1]).

Let m ≥ 2. Then,

(i) Bm is indecomposable if m is odd and,

(ii) if m = 2k, then any nontrivial decomposition of Bm is equivalent to Bm(x) =

φ((x − 1
2
)2) for a unique polynomial φ over Q.
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Proof of the main theorem:

Before proceeding, we note that Bm(x) =
∑m

i=0

(
m
i

)
Bm−ix

i and that B′

m(x) = mBm−1(x).

Further, it is known due to results of Brillhart [4] and Inkeri [?] that the Bernoulli

polynomial Bm has only simple roots if m > 3 is odd, and has no rational roots if m > 2

is even.

If the equation Bm(x) = g(y) has infinitely many solutions, the Bilu-Tichy theorem gives

Bm(x) = φ ◦ f1 ◦ λ(x) and g(x) = φ ◦ g1 ◦ µ(x) where λ, µ are linear polynomials over

QI and (f1, g1) is a standard pair over QI such that f1(x) = g1(y) has infinitely many

rational solutions with bounded denominator. From Theorem E, we know that the only

nontrivial decomposition of Bm up to equivalence has f1(x) = (x − 1
2
)2; therefore there

is a trichotomy :

(a) deg φ = m, or

(b) m = 2d, deg φ = d and Bm(x) = φ(λ(x − 1
2
)2), or

(c) deg φ = 1.

Case (a) deg φ = m and suppose Bm(x) = g(y) has infinitely many solutions. Then as

above, there are linear polynomials λ, µ ∈ Q[x], and a standard pair (f1(x), g1(x)) such

that Bm(x) = φ ◦ f1 ◦ λ(x) and g(x) = φ ◦ g1 ◦ µ(x).

Since deg φ = m = deg Bm, we get that φ(x) = Bm(δ(x)) for some linear polynomial

δ(x) = u + vx ∈ Q[x]. Then, g(x) = Bm(h(x)) where h = δ ◦ g1 ◦ µ. This is as asserted

in case (i) of the theorem.

Case (b) deg φ = m
2
. If the equation Bm(x) = g(y) has infinitely many solutions then,

as before, there are linear polynomials λ(x), µ(x) ∈ QI [x], and a standard pair (f1, g1)

such that Bm(x) = φ ◦ f1 ◦ λ(x) and g(y) = φ ◦ g1 ◦ µ(y) and f1(x) = g1(y) has infinitely

many rational solutions with bounded denominator. Therefore, Bm(x) = φ(δ(f1 ◦λ(x)))

and g(y) = φ(δ(g1 ◦ µ(y))) where δ(x) is a linear polynomial, deg f1 = 2 and φ(x) is

such that Bm(x) = φ((x − 1
2
)2). Write h1(x) = δ(f1(λ(x))), h2(x) = δ(g1(µ(x))). Then

(Bm(x), g(y)) can be written as (φ(h1(x)), φ(h2(y))).

We show that the square-free part of h2(y) has at most two zeroes. In our case, since

h1(x) is the square of a linear polynomial and h1(x) = h2(y) has infinitely many rational

solutions with bounded denominator, it follows immediately from Siegel’s theorem that

h2 has at most two zeroes of odd multiplicity. This completes the discussion of case(b)

and leads to case (ii) of the Theorem.

Case (c) deg φ = 1.

If the equation Bm(x) = g(y) has infinitely many solutions, then, as before, there are
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linear polynomials λ(x), µ(x) ∈ Q[x], and a standard pair (f1, g1) such that Bm(x) =

φ ◦ f1 ◦ λ(x) and g(y) = φ ◦ g1 ◦ µ(y) and f1(x) = g1(y) has infinitely many rational

solutions with bounded denominator. In this case, we have deg f1 = m and deg g1 =

deg g = n.

Let φ(x) = φ0 + φ1x for some rational numbers φ0, φ1.

Suppose the standard pair (f1, g1) is of the second kind. Then (f1, g1) = (x2, (ax2 +

b)p(x)2) or switched. But this will imply that either m = 2 or n = 2 which is a

contradiction to our assumption that m, n ≥ 3. Therefore (f1, g1) can not be of the

second kind.

Suppose the standard pair (f1, g1) is of the third kind. Then,

(f1(x), g1(y)) = (Dm(x, αn), Dn(x, αm))

Now, Bm(rx + s) = φ0 + φ1Dm(x, αn).

This means
∑m

i=0

(
m
i

)
Bm−i(rx + s)i = φ0 + φ1

∑[m

2
]

i=0dm,ix
m−2i,

where dm,i = m
m−i

(
m−i

i

)
(−αn)i.

Equating the coefficients of xm on both sides, we have rm = φ1.

The coefficient of xm−1 on the right hand side is zero and, so we get
(
m

1

)
rm−1s +

(
m

m − 1

)
B1r

m−1 = 0.

This gives s = 1
2
.

The coefficients of xm−2 gives

m(m − 1)

12
rm−2(6s2 − 6s + 1) =

m

m − 1

(
m − 1

1

)
(−αn)φ1

which on simplification yields r2αn = m−1
24

.

First, assume m ≥ 4. By considering the coefficients of xm−4 and on using the values of

φ1, r2αn, we get m = 9
2

which is a contradiction.

Hence, when m ≥ 4, (f1, g1) can not be a standard pair of the third kind.

If m = 3, we get r2αn = 1
12

. Thus, n is odd, as the power of 3 dividing the right side is

odd. Also (3, n) = 1. Since we have an equality of polynomials

B3(rx +
1

2
) = r3D3(x,

1

12r2
)

and since D3(x, αn) = Dn(x, α3) has infinitely many rational solutions with a bounded

denominator when (3, n) = 1, this case occurs and we are in case (iii) of the theorem.

The same argument goes through if the pair is of the fourth kind as the number φ1 above

is simply replaced by α−m/2φ1. Note that m = 3 cannot occur here as m is even.
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If (f1, g1) is of the fifth kind, then (m, n) = (6, 4) or (4, 6) and (f1(x), g1(y)) = ((αx2 −
1)3, 3x4 − 4x3) or switched. We will give the proof when (m, n) = (6, 4) and a similar

argument works when (m, n) = (4, 6).

Let (m, n) = (6, 4). Then,

B6(x) = φ0 + φ1(α(rx + s)2 − 1)3.

This means that the derivative B ′

6(x) = 6B5(x) has a multiple root with multiplicity

2. However, one knows that B5(x) has only simple roots by the result of Brillhart [4]

quoted in the beginning of the proof of the theorem. Hence (f1, g1) can not be a standard

pair of fifth kind.

Finally, suppose the standard pair (f1, g1) is of the first kind. Then, we have either

Bm(rx + s) = φ0 + φ1x
m

for some r, s ∈ QI with r 6= 0, or

Bm(ux + v) = φ0 + φ1axrp(x)t

where r < t, (r, t) = 1 and r+deg p(x) > 0.

Suppose

Bm(rx + s) = φ0 + φ1x
m

Then coefficient of xm−2 is zero on the right hand side. On the left hand side, the

coefficient of xm−2 is m(m−1)
12

rm−2(6s2−6s+1). Equating this to zero, we get 6s2−6s+1 =

0 for a rational number s, which is impossible. Hence f1(x) can not be xm.

Now suppose f1(x) = axrp(x)t and g1(x) = xt. Note that t = deg g ≥ 3.

Suppose m is even.

Then

Bm(ux + v) = φ0 + φ1axrp(x)t.

deg p > 0 as we have already seen that Bm(x) = φ0 +φ2x
m is impossible for any rational

number φ2.

Now the derivative of B ′

m(x) = mBm−1(x) and from the above equality, every root of

p(x) is a multiple root of Bm−1(x) with multiplicity at least (t− 1). But as m− 1 is odd,

we know that Bm−1(x) has only simple roots by the result of Brillhart quoted earlier [4].

Therefore t = 2; but then deg g = 2, which is a contradiction.

Therefore when m is even f1(x) can not be of the type axrp(x)t.
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Suppose m is odd.

Now f1(x) = axrp(x)t where r, t as above and g1(x) = xt. Then

g(x) = φ0 + φ1µ(x)t

and

Bm(x) = φ0 + φ1aλ(x)rp(λ(x))t.

Thus, for some rational numbers u, v we get, Bm(ux+v) = φ0+φ1axrp(x)t and m = td+r

where d is the degree of the polynomial p. Since the degree of g is at least three, we get

t ≥ 3. Now by looking at the derivative of Bm(ux + v), we have

umBm−1(ux + v) = φ1a[rxr−1p(x)t + tp(x)t−1xrp′(x)]

So every root of p is a multiple root of Bm−1 of multiplicity (t − 1). Therefore, taking

derivative again, it follows that every root of p is a root of Bm−2 of multiplicity at least

t− 2. As m− 2 is odd, Bm−2 has only simple roots; therefore, t ≤ 3. Hence t = 3. Note

also that p must have only simple roots and all its roots are irrational since it is true of

Bm−1 by the result of Inkeri [?] quoted in the beginning of the proof.

Therefore, Bm(rx + s) = φ0 + φ1axrp(x)3 and m = 3d + r. Now as r < t = 3, we get

r = 1 or 2.

If r = 2, then Bm(ux + v) = φ0 + φ1ax2p(x)3. By taking the derivative, it followsthat

mBm−1 has at least one rational root. But we know that, if Bk has a rational root then

k must be odd by Inkeri’s result [?] quoted above. In our case, this gives a contradiction

since m − 1 is even.

Let r = 1. Then Bm(x)− φ0 = λ(x)p(x)3 for a linear polynomial λ(x) and a polynomial

p(x) of degree (m − 1)/3 over QI . As every root of p(x) is a multiple root of Bm(x) − φ0

with multiplicity ≥ 3, such a root is also a root of Bm−1(x) and of Bm−2(x).

From this discussion, it follows that p has no rational roots, since this is true for Bm−1)

and all its roots are simple (since this is true for Bm−2).

We show now that it is impossible for the equality of polynomials

Bm(x) − φ0 = λ(x)p(x)3

to hold where λ is linear and Bm(α) = φ0 and Bm−1(α) = 0. To show this, we note that

since x = 0, 1
2
, 1 are zeroes of Bm(x). Hence, writing λ(x) = c0 + c1x, we have

−φ0 = c0p(0)3 = (c0 + c1/2)p(1/2)3 = (c0 + c1)p(1)3.
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Note that Bm−1(α) = φ0 6= 0 as Bm has only simple roots.

As p is not zero at rational numbers, we have

c0 + c1
2

c0

= s3,
c0 + c1

c0

= t3

for nonzero rational numbers s, t. Hence we have

s3 − 1 = 2(t3 − 1)

where evidently s 6= 1 6= t. The above equation is equivalent to

x3 + y3 = 2z3

in nonzero integers x, y, z which are not all equal (as t 6= 1 6= s). But, it is well-known and

easy to prove ( [5], P.37), that the above equation has no solutions other than xyz = 0

or x = y = z. This completes the proof of the main theorem.
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