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Abstract

Let k be a global field and let kv be the completion of k with respect to v, a non-

archimedean place of k. Let G be a connected, simply-connected algebraic group over k,

which is absolutely almost simple of kv-rank 1. Let G = G(kv). Let Γ be an arithmetic

lattice in G and let C = C(Γ) be its congruence kernel. We determine the structure of

C, providing a complete solution of the congruence subgroup problem for Γ. It is shown

that C is a free profinite product, one of whose factors is F̂ω, the free profinite group on

countably many generators. This result is already known for a number of special cases.

These include the important (non-uniform) example Γ = SL2(O(S)), where O(S) is the

the ring of S-integers in k, with S = {v}, which plays a central role in the theory of

Drinfeld modules. The proof makes use of a decomposition theorem of Lubotzky, arising

from the action of Γ on the Bruhat-Tits tree associated with G.
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Introduction

Let k be a global field and let G be a connected, simply-connected algebraic group

over k, which is absolutely almost simple. For each non-empty, finite set S of places

of k, containing all the archimedean places, let O(S) denote the corresponding ring of

S-integers in k. The problem of determining whether or not a finite index subgroup of

the arithmetic group, G(O(S)), contains a principal congruence subgroup (modulo some

non-zero O(S)-ideal), the so-called congruence subgroup problem or CSP, has attracted a

great deal of attention since the 19th century. As a measure of the extent of those finite

index subgroups of G(O(S)) which are not congruence, its so-called non-congruence sub-

groups, Serre [S1] has introduced a profinite group, C(S,G), called the (S-)congruence

kernel of G. In his terminology [S1] the CSP for this group has an affirmative answer if

this kernel is finite. Otherwise the CSP has an essentially negative answer. The principal

result in [S1] is that, for the case G = SL2, the congruence kernel C(S,G) is finite if

and only if cardS ≥ 2. Moreover Serre has formulated the famous congruence subgroup

conjecture [PR, p.556], which states that the answer to the CSP is determined entirely

by the S-rank of G, rankSG. (See [Mar, p.258].) It is known [Mar, (2.16) Theorem,

p.269] that C(S,G) is finite (cyclic), when G is k-isotropic and rankSG ≥ 2. It is also

known that C(S,G) is infinite for many “rank one” G (for example, G = SL2). The

conjecture however remains open for some of these cases. (See, for example, [L3].) The

congruence kernel C(S, H) can be defined in a similar way for every subgroup H of G(k)

which is commensurable with G(O(S)). (From this definition it is clear that C(S, H) is

finite if and only if C(S,G) is finite.)

The books of Margulis [Mar, p.268] and Platonov/Rapinchuk [PR, Section 9.5] em-

phasise the importance of determining the structure of the congruence kernel. (Lubotzky

refers to this as the complete solution of the CSP.) In this paper we are concerned

with the structure of infinite congruence kernels. The first result of this type is due to

Mel’nikov [Me], who shows that, for the case where G = SL2, k = Q and S = {∞}, (i.e.

G(O(S)) = SL2(Z), the classical modular group), the congruence kernel is isomorphic

to F̂ω, the free profinite group on countably many generators. Lubotzky [L1] has proved

that, when G = SL2 and card S = 1, the congruence kernel of SL2(O(S)) has a closed

subgroup isomorphic to F̂ω, reproving Mel’nikov’s result in the process. (When char

k = 0 and card S = 1, it is known that k = Q or Q(
√
−d), with S = {∞}, where d

is a square-free positive rational integer.) In [Mas2] it is shown that, when G = SL2

and card S = 1, the congruence kernel maps onto every free profinite group of finite rank.
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In this paper we extend these results by determining the structure of the congruence

kernel of an arithmetic lattice in a rank one algebraic group over a local field, providing

a complete solution of the CSP for this case. With the above notation let Vk be the set

of places of k and let (the local field) kv be the completion of k with respect to v. In

addition to the above hypotheses we assume that G has kv-rank 1. We denote the set

of kv-rational points, G(kv), by G. Let Γ be a lattice in G, i.e. a discrete subgroup of

(the locally compact group) G for which µ(G/Γ) is finite, where µ is a Haar measure on

G. As usual Γ is said to be cocompact (resp. non-uniform) if G/Γ is compact (resp. not

compact). We assume further that Γ is (S−)arithmetic, i.e. Γ is commensurable with

G(O), where O = O(S) is as above.

Example. When char k > 0, S = {v} and G = SL2, the group Γ = SL2(O) is a (non-

uniform) arithmetic lattice (in SL2(kv)). This lattice, which plays a central role in the

theory of Drinfeld modules, is the principal focus of attention in Chapter II of Serre’s

book [S2].

We now fix a linear representation of G (of degree n, say). For each O-ideal q we put

Γ(q) = {X ∈ Γ : X ≡ In (mod q)} ,

the principal congruence subgroup of level q. Let Λ be a subgroup of finite index in

Γ. The S-arithmetic and S-congruence subgroups of G (via the finite index subgroups

and the subgroups Γ(q) of Γ, resp.) define topologies on Λ which give rise to profinite

completions of Λ denoted by Λ̂ and Λ̄, resp.

Since every S-congruence subgroup is S-arithmetic, there is an exact sequence

1 → C(Γ) → Γ̂ → Γ → 1.

The (profinite) group C(Γ)(= C(S, Γ)) is called the congruence kernel of Γ. Our princi-

pal results are the following.

Theorem A. If Γ is cocompact, then

C(Γ) ∼= F̂ω.

It is well-known that Γ is cocompact when, for example, char k = 0. For examples

of this type see [S2, p.84]. This result however is not a straightforward generalization of

Mel’nikov’s theorem [Me]. On the one hand SL2(Z) is not a lattice in SL2(Qp), where
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Qp is the p-adic completion of Q with respect to any rational prime p. On the other

hand SL2(Z) is a non-uniform lattice in SL2(R). (See [Mar, p.295].) Moreover the third

author [Za2] has proved that the congruence kernel of every arithmetic lattice in SL2(R)

is isomorphic to F̂ω.

Theorem B. If Γ is non-uniform and p = char k, then

C(Γ) ∼= F̂ω q N(Γ),

the free profinite product of F̂ω and N(Γ), where N(Γ) is a free profinite product of

nilpotent pro-p groups, each of class at most 2 and each generated by torsion elements of

p-power order.

The proof is based on the action of G, and hence Γ, on the associated Bruhat-Tits

tree T . For the non-uniform case it makes use of a decomposition theorem for Γ due to

Lubotzky [L2]. This extends a number of existing results. The third author [Za1, Theo-

rem 4.3] has proved Theorem B for the special case G = SL2 and S = {v}. Lubotzky [L1]

has proved that, for this case, C(Γ) has a closed subgroup isomorphic to F̂ω. Lubotzky

has also shown [L2, Theorem 7.5] that C(Γ) is infinite when Γ is non-uniform.

For G, k as above and any S a cohomological formulation of the S-congruence kernel,

C(S,G), has been defined (originally by Moore) called the S-metaplectic kernel, M(S,G).

(See, for example, [Mar, p.269].) The structure of M(S,G) has been determined for many

cases. See [PRap].

1 Arithmetic lattices

This section is devoted to a number of properties of arithmetic lattices which are needed

to establish our principal results. We begin with a general property of lattices.

Lemma 1.1. If Γ is any lattice, then Γ is not virtually solvable.

Proof. It is known that Γ is Zariski-dense in G. (See [Mar, (4.4) Corollary, p.93] and

[Mar, (2.3) Lemma, p.84].) It follows that [Γ, Γ] is Zariski-dense in [G,G] = G, by [B,

Proposition, p.59] and [B, Proposition, p.181]. If Γ is virtually solvable then G is finite,

which contradicts the fact that it has kv-rank 1. �
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For each non-archimedean v ∈ Vk, we denote the completion of O with respect to v

by Ov. This is a local ring with a finite residue field.

We define [PR, p.161] the restricted topological product

G(Ô) =
∏

v 6∈S

G(Ov).

By definition the group G(Ô) is a topological group with a base of neighbourhoods of

the identity consisting of all subgroups of the form

∏

v 6∈S

Mv, (∗)

where each Mv is an open subgroup of G(Ov) and Mv = G(Ov), for all but finitely many

v 6∈ S. Let m denote the maximal ideal of the (local) ring Ov. Then the ”principal

congruence subgroups”, G(mt), where t ≥ 1, provide a base of neighbourhoods of the

identity in G(Ov). (See [PR, p.134].) The group G(O) embeds, via the ”diagonal map”,

in G(Ô). Let G(O) denote the ”congruence completion” of G(O) determined by its

S-congruence subgroups. The hypotheses on G ensure that the following holds.

Lemma 1.2. ”The Strong Approximation Property”

G(O) ∼= G(Ô).

Proof. By [PR, Theorem 7.12, p.427] it suffices to verify that

GS :=
∏

v∈S

G(Ov)

is not compact. Now by [Mar, (3.2.5), p.63] the group G(O) is a lattice in GS. If GS is

compact then G(O) and hence Γ are finite, which contradicts Lemma 1.1. �

We record another well-known property of Γ.

Lemma 1.3. With the above notation,

C(Γ) =
⋂

q6={0}

Γ̂(q).

It follows that, for all q 6= {0}, there is an exact sequence

1 → C(Γ) → Γ̂(q) → Γ(q) → 1.
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We may assume that Γ and, hence all its subgroups, act on the Bruhat-Tits tree T

associated with G without inversion. As usual let the vertex and edge sets of a graph X be

denoted by V (T ) and E(T ), resp. For each subgroup H of Γ and each w ∈ V (T )∪E(T ),

we denote the stabilizer of w in H by

Hw = {g ∈ H : g(w) = w}.

Since Γ is discrete it follows that Hw is always finite.

From now on we deal with the cocompact and non-uniform cases separately.

2 Cocompact arithmetic lattices

For each positive integer s, let Fs denote the free group of rank s.

Lemma 2.1. If Γ is cocompact, then, for all but finitely many q,

Γ(q) ∼= Fr,

where r = r(q) ≥ 2. Moreover r(q) is unbounded in the following sense.

If r(q) ≥ 2 and

q = q1 	 q2 	 q3 · · ·

is an infinite properly descending chain of O-ideals, then

r(qi) → ∞, as i → ∞.

Proof. It is well-known that the quotient graph

Γ\T is finite.

Let v1, · · · , vt denote the vertices (in V (T )) of a lift j : Γ\T → T . We put

Γi = Γvi
(1 ≤ i ≤ t).

It is clear that, for all but finitely many q,

Γ(q) ∩ Γi = {In} (1 ≤ i ≤ t),

since each Γi is finite.

For such a q all the stabilizers in Γ(q) of the vertices of T are trivial, since Γ(q) is normal

in Γ. Further |Γ : Γ(q)| is finite and so

Γ(q)\T is finite.
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It follows that

Γ(q) ∼= Fr,

for some r. (See [S2, Theorem 4, p.27].) By Lemma 1 it is clear that r ≥ 2.

If r(q) ≥ 2 and

q = q1 � q2 � q3 · · · .

By the well-known Schreier formula,

r(qi) − 1 = |Γ(q) : Γ(qi)|(r(q) − 1).

The result follows since |Γ(q) : Γ(qi)| → ∞, as i → ∞. �

Theorem 2.2. If Γ is cocompact, then

C(Γ) ∼= F̂ω.

Proof. Fix any q for which Lemma 2.1 holds. Let C = C(Γ). Then, by the exact

sequence after Lemma 1.3,

F̂r/C ∼= Γ(q).

Now |G(O) : Γ(q)| is finite and so (by Lemma 1.2) Γ(q) embeds as an open subgroup of

G(Ô) and hence contains an open subgroup O of G(Ô) of type (*).

Since Γ is cocompact, Γ(q) is finitely generated. It follows that G(O), Γ(q) and O are all

finitely generated profinite groups. Consequently the group O does not ”satisfy Schreier’s

formula”. (See [RZ, Lemma 8.4.5, p.320].) Hence Γ(q) does not satisfy Schreier’s for-

mula, since |Γ(q) : O| is finite. The result follows from [RZ, Corollary 8.4.4, p.320]. �

3 Non-uniform arithmetic lattices: discrete results

Here we assume that G/Γ is not compact, in which case k is a function field. We put

char k = p.

It is well-known that an element X of Γ has finite order if and only if X ∈ Γv, for

some v ∈ V (T ).

In order to describe the structure of Γ\T we make the following.

Definitions. Let R be a ray in Γ\T , i.e. an infinite path without backtracking and let

j : R → T be a lift. Let V (j(R)) = {v1, v2, · · ·}. We say that j is stabilizer ascending, if

Γvi
≤ Γvi+1

(i ≥ 1).
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We put

Γ(R) (= Γ(R, j)) := 〈Γv : v ∈ V (j(R))〉.

Using results of Raghunathan [R], Lubotzky [L2, Theorem 6.1] has determined the struc-

ture of Γ\T . This extends an earlier result of Serre [S, Theorem 9, p.106] for the special

case G = SL2, Γ = SL2(O) and S = {v}. Baumgartner [Ba] has provided a more

detailed and extended version of Lubotzky’s proof.

Theorem 3.1. With the above notation,

Γ\T = Y ∪ R1 ∪ · · · ∪ Rm,

where Y is a finite subgraph and R1, · · · , Rm (m ≥ 1) are rays.

In addition,

(a) card{V (Y ) ∩ V (Ri)} = 1 (1 ≤ i ≤ m),

(b) E(Y ) ∩ E(Ri) = φ (1 ≤ i ≤ m),

(c) Ri ∩ R` = φ (i 6= `).

Moreover there exists a lift j : Γ\T → T such that

j : Ri → T is stabilizer ascending (1 ≤ i ≤ m).

Lemma 3.2. Let R be a ray in Γ\T and let j : R → T be a lift. Then Γ(R) is contained

in a minimal parabolic kv-subgroup of G, whose unipotent radical is nilpotent of class at

most 2.

Proof. The group Γ(R) stabilizes the end of T corresponding to j(R) and hence is a

subgroup of a minimal parabolic kv-subgroup of G. Since the kv-rank of G is 1, the

unipotent radical of the latter is nilpotent of class at most 2 , by [BT, 4.7 Proposition].

(The authors are indebted to to Professor Gopal Prasad for providing them with this

reference.) �

It is known that in this context “2” is best possible. (See, for example, [PRag].)

On the other hand, if G has a 2-dimensional representation, then the unipotent radical

is abelian (i.e. has class 1). (This happens, of course, when G = SL2.) We now use

Theorem 3.1 to provide a useful free decomposition for Γ(q).
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Lemma 3.3. Let q be a proper O-ideal. Then every element of finite order of Γ(q) is

unipotent of p-power order.

Proof. Let k0 be the (full) field of constants of (the function field) k. Let g ∈ Γ(q) have

finite order and let χg(t) denote its characteristic polynomial over k. Then

χg(t) ≡ (t − 1)n (mod q).

Now each zero of χg(t) is a root of unity and so each coefficient of χg(t) lies in the

algebraic closure of k0 in k, which is k0 itself. Since k0 ≤ O it follows that

χg(t) = (t − 1)n.

�

Lemma 3.4. Let R be a ray in Γ\T and j : R → T a stabilizer ascending lift. For each

proper O-ideal q, the subgroup

Γ(q) ∩ Γ(R)

consists of unipotent matrices and (hence) is nilpotent of class at most 2, generated by

elements of p-power order.

Proof. By definition Γ(R)∩Γ(q) consists of elements of finite order in Γ(q). By Lemma

3.3 therefore it consists of unipotent matrices. It follows that it is contained in the

unipotent radical of the parabolic subgroup referred to in Lemma 3.2. �

Theorem 3.5. For all but finitely many q,

Γ(q) ∼= Fr ∗ Λ(q),

where Λ(q) is a free product of finitely many unipotent groups, each nilpotent of class at

most 2 and each generated by unipotent elements of p-power order.

In addition,

r = r(q) = rkZ(Γ(q)) = dimQH1(Γ(q), Q),

the (finite) free abelian rank of Γ(q).

Proof. By the fundamental theorem of the theory of groups acting on trees [S2, Theorem

13, p.55] Γ is the fundamental group of the graph of groups given by the lift j : Γ\T → T

as described in Theorem 3.1.
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For all but finitely many q,

Γ(q) ∩ Γv = {In},

for all v ∈ V (j(Y )).

We fix such a q. Now Γ(q) is a normal subgroup of finite index in Γ. From standard

results on the decomposition of a normal subgroup of a fundamental group of a graph of

groups, Γ(q) is a free product of a free group Fr and a finite number of subgroups, each

of which is a conjugate of Γ(q)∩Γ(Ri), for some i. The rest follows from Lemma 3.4. �

For the case G = SL2, S = {v} and Γ = SL2(O), Theorem 3.5 is already known

[Mas2, Theorem 2.5].

Corollary 3.6. Let U(q) denote the (normal) subgroup of Γ(q) generated by its unipotent

matrices. Then, for all but finitely many q,

Γ(q)/U(q) ∼= Fr,

where r = r(q) = rkZ(Γ(q)).

Proof. We fix an ideal q for which Theorem 3.5 holds. Let Λ(q)∗ denote the normal

subgroup of Γ(q) generated by Λ(q). Now every unipotent element of Γ(q) is of finite

order and so lies in a conjugate of some Γ(q) ∩ Γ(Ri), by Theorem 3.5. It follows that

Λ(q)∗ = U(q). �

We now show that r(q) is not bounded.

Lemma 3.7. With the above notation, for infinitely many q,

r(q) ≥ 2.

If r(q′) ≥ 2 and

q
′ = q1 � q2 � q3 � · · ·

is an infinite properly descending chain of O-ideals, then

r(qi) → ∞, as i → ∞.

Proof. We note that, if

Γ(q) = Fs ∗ H,
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where H is a subgroup of Γ(q), then

r(q) ≥ s.

By Theorem 3.1 together with [S, Theorem 13, p.55] it follows that

Γ = A ∗W B,

where

(i) B = Γ(R), for some ray R and a lift j : R → T ;

(ii) W = Γv, for some v ∈ V (T ).

Now B is infinite (since Γ is non-uniform) and W is finite.

If A = W , then Γ(q) is nilpotent by Lemma 3.4, for any proper q. This contradicts

Lemma 1.1. We conclude that W 6= A.

It is well-known that, for any q,

r(q) ≥ 1 + |Γ : W . Γ(q)| − |Γ : A . Γ(q)| − |Γ : B . Γ(q)|.

We now restrict our attention to the (all but finitely many) q for which

W ∩ Γ(q) = {In}.

Among these are infinitely many q
′ for which

|A · Γ(q′) : Γ(q′)| > |W · Γ(q′) : Γ(q′)| and |B · Γ(q′) : Γ(q′)| > 2|W · Γ(q′) : Γ(q′)|.

It follows that

r(q′) ≥ 2.

For the second part, it is clear that

r(qi+1) ≥ r(qi) ≥ 2 (i ≥ 1).

Fix i. Then, by Theorem 3.5,

Γ(qi) = Fr′ ∗ H,

say, where r′ = r(qi). For any t > i, it follows from the Kurosh subgroup theorem and

the Schreier formula that

r(qt) > r′,

unless Γ(qt) ∩ Fr′ = Fr′ and Γ(qi) = Γ(qt) · Fr′. We choose t so that Γ(qi) 6= Γ(qt). �

Lemma 3.7 is already known for the case G = SL2, S = {v} and Γ = SL2(O). See

the proof of [Mas1, Theorem 3.6].
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4 Non-uniform arithmetic lattices: profinite results

Let A and B be free pro−C groups, where C is a (suitable) class of finite groups. See

[RZ, p.90]. ( The most important examples are the classes of all finite groups and all

finite p-groups.) We will denote by

A q B

the free profinite product (or, more precisely, the free pro−C product) of A and B. See

[RZ, p.361].

Let F̂s denote the free profinite group of rank s, where s ≥ 1, (i.e. the ”full” profinite

completion of the free group Fs).

Lemma 4.1. With the above notation, for all but finitely many q,

Γ̂(q) ∼= F̂r q Λ̂(q),

where

(a) Λ̂(q) is a free profinite product of nilpotent pro-p groups, each of class at most 2

and each generated by torsion elements of p-power order;

(b) the normal subgroup of Γ̂(q) generated by Λ̂(q) is Û(q) ;

(c) r = r(q) is not bounded.

Moreover,

Γ̂(q)/Û(q) ∼= F̂r.

Proof. Follows from Theorem 3.5 and Lemma 3.7. �

A projective group is, by definition, a closed subgroup of a free profinite group.

Lemma 4.2. Let N be a normal, closed, non-open subgroup of Γ̂(q). Then, for all but

finitely many q,

N ∼= P q N(q),

where

(a) N(q) is a closed subgroup of Û(q) and a free profinite product of nilpotent pro-p

groups, each of class at most 2 and each generated by torsion elements of p-power

order;

(b) P is a projective group, all of whose proper, open subgroups are isomorphic to F̂ω.
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Proof. This follows from a result of the third author [Za1, Theorem 2.1]. (See also [Za1,

Theorem 4.1, Lemma 4.2].) �

An immediate consequence of Lemma 4.2 and Lemma 1.3 is the following.

Lemma 4.3. With the above notation,

C(Γ) ∼= P q N(Γ),

where

(a) N(Γ) is a closed subgroup of all Û(q) and a free profinite product of nilpotent pro-p

groups, each of class at most 2 and each generated by torsion elements of p-power

order;

(b) P is a projective group, all of whose proper, open subgroups are isomorphic to F̂ω.

Our principal aim in this paper is to replace P with F̂ω in Lemma 4.3. We will refer

to this as the principal result

.

Lemma 4.4. Let A and B be free pro- C groups and let M be a normal, closed subgroup

of

A q B.

Then M ∩ A is a factor in the free profinite decomposition of M .

Proof. Follows from [Za1, Theorem 2.1]. �

Lemma 4.5. Let P be as in Lemma 4.3 and F be isomorphic to F̂ω. Then

P q F ∼= F̂ω.

Proof. See [RZ, Proposition 9.1.11, p. 370]. �

Our next two lemmas deal with a special case for which the principal result holds.

Lemma 4.6. Suppose that the set of positive integers t for which there exists a (contin-

uous) epimorphism

C(Γ) −→ F̂t

is not bounded. Then the principal result holds.
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Proof. This follows from the proof of [Za1, Lemma 4.6]. �

An immediate application is the following.

Lemma 4.7. Suppose that, for all q, the closure of U(q) in Γ, U(q), is open in Γ. Then

the principal result holds.

Proof. The hypothesis ensures that |Γ(q) : U(q)| is finite. We confine our attention

to those (all but finitely many) q for which Theorem 3.5 and Lemma 4.1 hold. Let

C(Γ) = C. Now C · Û(q) is of finite index in C · Γ̂(q) = Γ̂(q). It follows that

C/C ∩ Û(q) ∼= C · Û(q)/Û(q)

is an open subgroup of

Γ̂(q)/Û(q) ∼= F̂r.

By [RZ, Corollary 3.6.4, p.119] C maps onto F̂r′ , for some r′ ≥ r = r(q). The result

follows from Lemmas 3.7 and 4.6. �

Lemma 4.6 applies, for example, to the case G = SL2, S = {v} and Γ = SL2(O) (as

demonstrated in [Za1]). It is known [Mas1, Theorem 3.1] that, when Γ = SL2(O), the

“smallest congruence subgroup” of Γ containing U(q).

⋂

q′ 6={0}

U(q) · Γ(q′) = Γ(q),

for all q. It follows that in this case Γ(q) = U(q), for all q.

We now make use of the Strong Approximation Property for G. We will identify G(O)

with the restricted topological product

G(Ô) =
∏

v 6∈S

G(Ov).

We record a well-known property.

Lemma 4.8. For all v 6∈ S, G(Ov) is virtually a pro-p group.

Proof. In the notation of Section 1, the subgroup G(m) is of finite index in G(Ov) and

is a pro-p group. (See, for example, [PR, Lemma 3.8, p.138].) �

It is convenient at this point to simplify our notation. We put

C = C(Γ) and Λ = Γ(q).
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It will always be assumed that Theorem 3.5 applies to q and (by Lemma 3.7) that

r(q) ≥ 2. We identify Λ with its embedding in G(Ô), (via the ”diagonal” embedding of

Λ). We also identify each G(Ov) with its embedding as a normal subgroup of G(Ôv).

Let

φ : Λ̂ −→ Λ

denote the natural epimorphism.

Definition. For each v 6∈ S, we put

Nv = φ−1(Λ ∩ G(Ov)).

Lemma 4.9. For all v 6∈ S, Nv is a closed, normal subgroup of Λ̂ containing C. Moreover

Nv
∼= Pv q Nv(p),

where

(i) Pv is a projective group, all of whose proper, open subgroups are isomorphic to F̂ω;

(ii) Nv(p) is a closed subgroup of Û(q) and is a free profinite product of nilpotent pro-p

groups, each of class at most 2 and each generated by torsion elements of p-power

order.

Proof. Follows from Lemma 4.2. �

Our next lemmas will be used to establish another condition under which the principal

result holds.

Lemma 4.10. Let | G(O) : Λ |= n and let

π(Λ) =
∏

v 6∈S

(Λ ∩ G(Ov)).

Then, for all g ∈ G(Ô),

gn! ∈ π(Λ).

Proof. We note that

| G(Ov) : Λ ∩ G(Ov) |=| Λ · G(Ov) : Λ |≤| G(Ô) : Λ |≤ n.

�
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Lemma 4.11. With the above notation,

| G(Ô) : π(Λ) . U(q) |< ∞.

Proof. Let

Λ∗ = Λ/(π(Λ) . U(q)).

Then the (compact, Hausdorff) group Λ∗ is finitely generated by Lemma 4.1 and peri-

odic by Lemma 4.10. It follows from Zel’manov’s celebrated result [Ze] that Λ∗ is finite. �

We are now able to prove the principal result.

Theorem 4.12. If Γ is non-uniform, then

C(Γ) ∼= F̂ω q N(Γ),

where N(Γ) is a free profinite product of nilpotent pro-p groups, each of class at most 2

and each generated by torsion elements of p-power order.

Proof. There are two possibilities, the first of which can be readily dealt with.

Case A: For all q, and all v 6∈ S, Pv ≤ C.

For all q and all v 6∈ S, it follows from Lemma 4.9 that

π(Λ) ≤ U(q).

The principal result then follows from Lemmas 4.7 and 4.11. We consider the remaining

case.

Case B: There exists q and v 6∈ S such that Pv � C.

For such a v there exists an open, normal subgroup L of Nv, containing C, such that

L ∩ Pv 6= Pv.

It follows from Lemma 4.4 that

L ∼= F̂ω q · · · .

Restricting φ to L, there are again two possibilities. If φ(F̂ω) is trivial, then C∩ F̂ω = F̂ω.

Now C is a closed normal subgroup of L. The principal result follows from Lemmas 4.4

and 4.5.
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We may assume from now on therefore that φ(F̂ω) is non-trivial. We note that, for

all n ≥ 2,

L ∼= F̂n q · · · .
Again restricting φ to L there are two cases.

Case (i): φ(F̂n) is finite, for all n ≥ 2.

It follows that, for all n ≥ 2,

C ∩ F̂n
∼= F̂n′ ,

for some n′ ≥ n, by [RZ, Theorem 3.6.2, p.118]. Then, as C is a closed, normal subgroup

of L,

C ∼= F̂n′ q · · · ,
by Lemma 4.4. Thus C maps onto F̂n′ . The principal result follows from Lemma 4.6.

Case (ii): There exists n ≥ 2 such that φ(F̂n) is infinite.

We consider φ(F̂n) as a subgroup of G(Ov). Let M = G(m), as defined in the proof

of Lemma 4.8. Then

(φ−1(M ∩ φ(F̂n))) ∩ F̂n
∼= F̂n′,

for some n′ ≥ n, by [RZ, Theorem 3.6.2, p.118], and, under suitable identifications,

C ∩ F̂n = C ∩ F̂n′.

Suppose that M ∩ φ(F̂n) is non-abelian. Then by [BL] and Lemma 4.8 this group is not

free pro-p and hence does not satisfy Schreier’s formula ([RZ, p.320]), by [RZ, Theorem

8.4.7, p.321]. It follows that F̂n/C ∩ F̂n does not satisfy Schreier’s formula and so

C ∩ F̂n
∼= F̂ω,

by [RZ, Corollary 8.4.4, p.320]. The principal result follows from Lemmas 4.4 and 4.5.

There remains the possibility that M ∩ φ(F̂n) is (finitely generated, infinite and)

abelian. Then by [RZ, Lemma 8.4.5, p.320] this group does not satisfy the Schreier

formula (in which case the principal result holds as above) unless it is infinite cyclic. In

the latter case we can use [RZ, Theorem 8.4.3, p.319] to conclude that again

C ∩ F̂n
∼= F̂ω,

from which the principal result follows, as above. �
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5 Concluding remarks

If the unipotent subgroups which are the factors of Λ(q) in Theorem 3.5 are actually

abelian, then N(Γ) is a free profinite product of groups , each of which is isomorphic to

the direct product of 2ℵ0 copies of Z/pZ. In this case the structure of C(Γ) depends only

on the characteristic of k. This holds, for example, when G(O) has a two-dimensional

representation which applies in particular to the case G = SL2, S = {v} and Γ =

SL2(O). (See [Za1, Theorem 4.3].) From the Tits Classification this also applies to the

case where G is of type C2. See [PRag].
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