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Abstract

A sequence an ↓ 0 forms a rate of random mixing for an unitary system

(G,µ, π,H) if for any u, v ∈ H

lim sup
| < π(gω

n )u, v > |

an

< ∞

a.e. ω in the probability space (GN, µN) of the random walk induced by µ. We

study the class of locally compact groups none of whose representation has any

rate of random mixing and prove that this class contains Moore groups and certain

solvable groups which includes the group of affine transformations on a local field.
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1 Introduction and Preliminaries

Let G be a locally compact group and P(G) be the space of regular Borel probability

measures on G with weak topology which is the coarsest topology for which the functions

µ 7→ µ(f) are continuous for all continuous bounded function f on G.

For µ ∈ P(G) and n ≥ 1, let µn denote the n-th convolution product of µ with itself.

A probability measure µ ∈ P(G) is called adapted if it is not supported on a proper

closed subgroup and µ is called strictly aperiodic if it is not supported on a coset of a

proper closed normal subgroup.

A probability measure µ ∈ P(G) is called spread-out if µk is not singular with respect

to a Haar measure on G for some k ≥ 1.

Let µ be a probability measure on G. Let GN be denote the product space Π∞
i=1G

which is the space of paths ω = (ωn) of the random walk and µN be the product measure

1



Π∞
i=1µ. Then (GN, µN) is called the probability space of the random walk induced by µ.

For any sequence ω = (ωn) ∈ GN, we define the nth random product by

gω
n = wnw2 · · ·w1

for any n ≥ 1.

We say that (G, µ, π,H) is an unitary system if G is a locally compact group, µ ∈

P(G) is adapted and strictly aperiodic spread-out probability measure and π is an unitary

representation of G on a Hilbert space H.

Definition Let (G, µ, π,H) be an unitary system. A decreasing sequence (an) with

an → 0 is said to form a rate of random mixing for (G, µ, π,H) if for every u, v ∈ H,

with probability one:

lim sup
| < π(gω

n)u, v > |

an

< ∞.

The notion of rate of random mixing was introduced in [8] to bound the critical

exponential rate of mixing from below. Since every irreducible representation of a locally

compact abelian group is one-dimensional and by Theorem 2.13 of [8], we get that no

unitary representation of a locally compact abelian group has any rate of random mixing.

Shalom raises the question of characterizing groups with this property. It follows from

Corollary 5.5 of [1] and Theorem 2.8 of [8] that there are unitary representations of

non-amenable groups having a rate of random mixing.

In this note we prove that no unitary representation of Moore groups (that is, groups

for which all irreducible unitary representations are finite-dimensional) and certain solv-

able groups (which includes the group of affine transformations on a local field of char-

acteristic zero) has any rate of random mixing.

We now prove the following useful lemmas first of which is easy to verify and we omit

the proof.

Lemma 1.1 Let (G, µ, π,H) be a unitary system and H be a normal subgroup of G

contained in the kernel of π. Then (an) is a rate of random mixing for (G, µ, π,H) if

and only if (an) is a rate of random mixing for (G/H, µ̃, π̃,H) where µ̃ is the projection

of µ onto G/H and π̃ is the factor representation of π.

Lemma 1.2 Let (G, µ, π,H) be a unitary system with π irreducible. Then there exists a

compact normal subgroup K of G such that K is contained in the kernel of π and G/K

is second countable and (an) is a rate of random mixing for (G, µ, π,H) if and only if

(an) is a rate of random mixing for (G/K, µ̃, π̃,H) where µ̃ is the projection of µ onto

G/K and π̃ is the factor representation of π.
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Proof Since µ is adapted, G is σ-compact and hence G can be approximated by second

countable groups. Let v ∈ H be a unit vector. Then there exists a compact normal

subgroup K of G such that G/K is second countable and ||π(g)v− v|| < 1 for all g ∈ K.

This implies that ||π(ωK)v − v|| < 1 where ωK is the normalized Haar measure on K.

Thus, π(ωK)v is a K-invariant non-zero vector in H. Since K is normal, the space of

K-invariant vectors is an invariant subspace. Since π is irreducible, K is contained in

the kernel of π. Now the second part follows from Lemma 1.1.

In view of Lemma 1.2, we may assume that the class of groups under consideration

consists of second countable groups.

2 Moore groups

Proposition 2.1 Let (G, µ, π,H) be any unitary system. Suppose the unitary represen-

tation π is of finite-dimension. Then for u and v in H, < π(gω
kn

)u, v >→ 0 a.e ω for

some subsequence (kn) of positive integers if and only if there exist orthogonal invariant

subspaces U and V of H such that u ∈ U and v ∈ V .

Remark 2.1 We would like to remark that Proposition 2.1 is strictly stronger than not

admitting any rate of random mixing and it may be seen by showing that the only if

part of Proposition 2.1 is not true for the left regular representation of non-compact

groups. Since the left regular representation of amenable groups weakly contain the

trivial representation, left regular representation of amenable groups have no rate of

random mixing. Let G be a non-compact locally compact group and R be the left

regular representation of G. Suppose µ is any adapted and strictly aperiodic spread-out

probability measure on G and f ∈ L2(G) be any non-negative function. Then
∫

< R(gω
n)f, f > dµN(ω) =

∫
< R(g)f, f > dµn(g) =< R(µ)f, f >→ 0

by Theorem 2.8 of [2]. Since < R(g)f, f >≥ 0 for all g ∈ G, there exists a subsequence

(kn) such that

< R(gω
kn

)f, f >→ 0

a.e. ω (see for example Theorem 3.12 of [7]).

Proof Let U be the group of unitary operators on H. Since H is of finite-dimension,

U is compact. Let K be the closure of π(G). Then K ⊂ U and hence K is compact.

Suppose there exists a subsequence (kn) of positive integers and vectors u and v in

H such that < π(gω
kn

)u, v >→ 0 a.e. ω. For n ≥ 1, let fn: GN → R be defined by

fn(ω) = | < π(gω
kn

)u, v > |
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for all ω ∈ GN. Then fn is uniformly bounded and fn(w) → 0 a.e. ω. By Lebesque

dominated convergence theorem,
∫

| < π(g)u, v > |dµkn(g) =

∫
fn(w)dµN(ω) → 0

as n → ∞.

Let f : K → R be defined by

f(t) = | < t(u), v > |

for all t ∈ K. Then f is a continuous bounded function and
∫

f(t)dπ(µ)kn(t) =

∫
f(π(g))dµkn(g) → 0

as n → ∞. Since µ is adapted and strictly aperiodic in G, π(µ) is also adapted and

strictly aperiodic in K. Thus, by Kawada-Ito theorem π(µ)n → ωK in P(K) where ωK

is the normalized Haar measure on K (see [4]). Since f is a continuous bounded function

on K, we get that ∫
f(t)dπ(µ)n(t) →

∫
f(t)dωK(t)

as n → ∞. Thus, ∫
f(t)dωK(t) = 0.

Since f ≥ 0 is a continuous function on K, f(t) = 0 for all t ∈ K. This in particular,

implies that < π(g)u, v >= 0 for all g ∈ G. Let U be the subspace of H spanned by

{π(g)u | g ∈ G}. Then U is a closed invariant subspace of H such that u ∈ U and

v ∈ U⊥. Thus, vectors u and v are in two orthogonal invariant subspaces. Converse is

easy to prove.

We now apply Proposition 2.1 to finite-dimensional representations and in particular

to Moore groups. A locally compact group G is called a Moore group if irreducible

unitary representations of G are finite-dimensional.

Theorem 2.1 Let (G, µ, π,H) be any unitary system. If π is finite-dimensional, then

π has no rate of random mixing. In particular, no representation of a Moore group has

any rate of random mixing.

Proof Suppose the sequence (an) forms a rate of random mixing for (G, µ, π,H). Since

π is finite dimensional, H contains a non-trivial irreducible subspace and let u and v be

from a non-trivial irreducible subspace. Then

lim sup
| < π(gω

n)u, v > |

an

< ∞
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for a.e. ω. This implies that | < π(gω
n)u, v > | → 0 a.e. ω. By Proposition 2.1, u and v

are from two invariant orthogonal subspaces. This is a contradiction. Hence the unitary

system (G, µ, π,H) has no rate of random mixing.

Suppose G is a Moore group. Let (G, µ, π,H) be an unitary system. Using Theorem

2.13 of [8], we may assume that π is an irreducible unitary representation of G. Then

H is of finite-dimension. By the previous case, we get that (G, µ, π,H) has no rate of

random mixing.

3 Affine groups

We now show that no representation of affine groups has any rate of random mixing.

Theorem 3.1 Let K be a local field of characteristic zero. Let G be the semidirect

product of K
∗, the multiplicative group of non-zero elements in K and K

n where action

of K
∗ on K

n is given by

a · (a1, · · · , an) = (aa1, · · · , aan)

for all a ∈ K
∗ and (a1, · · · , an) ∈ K

n. Then no representation of G has any rate of

random mixing.

Proof Let π be an irreducible unitary representation of G. Then by Mackey’s Theorem

there exists a character χ of K
n such that π is induced from an irreducible representation,

say ρ, of the stabilizer Gχ of χ (see for example Theorem 6.38 of [3]). If χ is trivial,

then Gχ = G and hence π is an one-dimensional representation. Thus, π has no rate of

random mixing.

If χ is non-trivial, then Gχ = K
n and π is induced from the one-dimensional rep-

resentation χ of K
n. Let dm be a Haar measure on K

∗. Then π is the representation

defined on L2(K∗) by

π(x)f(b) = χ(b−1 · u)f(a−1b)

for all f ∈ L2(K∗), x = (a, u) ∈ G and b ∈ K
∗.

Let V0 be the subspace of K
n of co-dimension one such that χ = 1 on V0. Now for

f ∈ L2(K∗) and v ∈ V0,

π(v)f(b) = χ(b−1 · v)f(b) = f(b)

for all b ∈ K
∗. This shows that π is trivial on V0. Replacing K

n by K
n/V0, we may

assume that n = 1. Thus, the group G is the semidirect product of K
∗ and K.
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We now claim that π weakly contains the trivial representation of G. Since K
∗ is

amenable, there exists a summing sequence of non-null compact sets (Bn) in K
∗ (see 4.15

and 4.16 of [5]). For n ≥ 1, define

fn =
1√

dm(Bn)
1Bn

where 1Bn
is the indicator function on the set Bn. Then (fn) is asymptotically translation

invariant in L2(K∗), that is,

||π(a)fn − fn|| = ||R(a)fn − fn|| → 0

as n → ∞ for all a ∈ K
∗ where R is the left regular representation of K

∗ on L2(K∗).

Now for u ∈ K,

||π(u)fn − fn||
2 = 1

dm(Bn)

∫
Bn

|χ(b−1u) − 1|2dm(b)

≤ 1
dm(Bn)

∫
Bn\Bk

|χ(b−1u) − 1|2dm(b) + 2 dm(Bk)
dm(Bn)

for any k ≤ n. Since χ(b−1u) → 1 as b → ∞, we get that

||π(u)fn − fn||
2 → 0

as n → ∞ for all u ∈ K. Thus, the group {g ∈ G | ||π(g)fn−fn|| → 0} contains K and K
∗

and hence ||π(g)fn − fn|| → 0 for all g ∈ G. This implies that the trivial representation

is weakly contained in π (see Remark 2.1 of [6]). By Theorem 2.13 of [8], any rate of

random mixing of π is also a rate of random mixing of the trivial representation but the

trivial representation has no rate of random mixing. Hence π has no rate of random

mixing.
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