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Figure: FP when ¢ | |P|
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Suppose V has a non-dengenerate quadratic form or
symplectic form, or a vector space over F . with a
nonsingular hermitian form.

G, the subgroup of GL(V) preserving the form.
Py the set of singular 1-spaces (points).
Action of G on Py is transitive of rank 3

Let W, ® be the nondiagonal orbits of G on Py x Pg, with ¢
the set of singular pairs.
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A:FPo— FPo x Z(X’y)ewy
FPo—Fla XaY

D. G. Higman (1960s)

The summands are the eigenspaces A.

Let k be the eigenvalue of 1, ¢ and d the other
eigenvalues.

A is adjacency map of a strongly regular graph
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» Liebeck (1980-81) studied FPo under the assumption ¢ # d

» graph submodules Uy, U}, where
Uy = (A= AN(x=x) [, x,x € X)
» Found the submodule structures of FX in these cases.



Structure of FPo when ¢ # d

a¢{c,d}: ac{cd}:
FeXaY

Figure: The cases ¢ # d
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» Sp(2m, q) q odd, ¢ = 2 ( Lataille-Sin-Tiep (2003))
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Figure: Sp(2m, q), godd, ¢/ =2



Structure of module of linesform=2,¢ =2

Figure: lines for Sp(4, q), godd, £ =2



Related work on GQ codes

The F»>-permutation modules for rank 2 groups of odd
characteristic have been studied in small ranks by
Bagchi-Brouwer-Wilbrink (1991), and
Brouwer-Haemers-Wilbrink (1992) in connection with the
F>-codes associated with generalized quadrangles.
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Unitary groups in even dimension

¢ fm: Clm:

mM—0O—m
X —<— X

Figure: FPo for GU(2m, g%) when ¢ | (g + 1).



Unitary groups in odd dimension
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Figure: Submodule structure of FPo for GU(2m + 1,g?) when
¢](g+1)and Zisodd or £ =2 and q = 3(mod 4).



Unitary groups in odd dimension

m odd : m even : F

F X
e ;
\ \ \
F><X

Figure: Submodule structure of FPo for GU(2m 4 1,9%) when ¢ =2
and q = 1(mod 4).



Orthogonal groups in odd dimension

m odd : F X m even : F
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Figure: Submodule structure of FPo for GO(2m + 1, q), g odd, when
{=2.



Orthogonal groups in even dimension, maximal index
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Figure: Submodule structure of FPo for GO (2m, g) when ¢ # 2 and
2] (q+1).
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Figure: Submodule structure of FPo for GO~ (2m, g) when ¢ # 2 and
1 (q+1).



Orthogonal groups in even dimension, minimal index
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Figure: Submodule structure of FPo for GO~ (2m, g), g odd, when
(=2
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Remarks

» In all cases, the dimensions and Brauer characters of the
composition factors are computed.

» One can identify the “geometric” submodules, such as
those generated by the characteristic vectors of the max.
isotropic subspaces.
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Further work

» Hall-Nguyen, rank 3 permutation modules on nonsingular
points, O (2), m > 2 and Un(2), m > 4.

» There are two rank 3 permutation modules for Eg(q),
related by an automorphism.
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Coding theory examples

The cross-characteristic theory, in particular ¢ = 2, shows up in
coding theory, in connection with structured Low Density Parity
Check (LDPC) Codes. These may use the F»-incidence
matrices of a family of geometrically defined incidence relations
as generator or parity-check matrices.
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V a 4-dimensional vector space over the field F,
Assume V has a nonsingular alternating bilinear form.

P =P(V), L = the set of totally isotropic 2-dimensional
subspaces , lines in P.

Fix a point pg and a line ¢, through py.
Py = P\pé’
Ly = set of lines that do not meet ;.
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LU(S, q) codes

» V a 4-dimensional vector space over the field Fq

» Assume V has a nonsingular alternating bilinear form.

» P =P(V), L =the set of totally isotropic 2-dimensional
subspaces , lines in P.

» Fix a point py and a line ¢ through py.

> Pr=P\py,

» Li = set of lines that do not meet ;.

» Consider the incidence systems (P, L1),

» M(P, L), M(Py, Lq) incidence matrices with F, entries.
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LU(S, q) codes

» LU(3, q) codes defined by Kim, Peled, Perepelitsa, Pless,
Friedland (2004)

> P* and L* sets in bijection with Fg®
» (a,b,c) € P*isincident with [x, y, z] € L* iff

y=ax+b and z=ay+ec.

» The LU(3, q) codes are defined using the incidence matrix
and its transpose as parity check matrices.

» Kim et. al. gave a conjecture for dim LU(3, q), q odd.

» One can show the incidence systems (P*, L*) is equivalent
to (Py, L1).
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(Bagchi-Brouwer-Wilbrink, 1991)

> If g is even, ranky M(P, L) = 1 4 (AA7)2t 4 (1=y/i7y2t,
(Sastry-Sin)

» If g is odd, rank, M(Py, L1) = ranko, M(P, L) — 2q.
(Sin-Xiang, 2006)

» If g is even, rank, M(Py, L1) = rank, M(P, L) — 2q. (Arslan,
2009)
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O conic.
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Droms and Mellinger used the various point-line incidence
matrices to define families of LDPC codes.
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Codes from a conic

PG(2,q), g odd.

O conic.

Points: O, E (external) / (internal)

Lines: Ta (tangent) , Se (secant), Pa (passant)

Droms and Mellinger used the various point-line incidence
matrices to define families of LDPC codes.

Conjectures for dimensions based on computer
calculations.
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Conjectures of Droms and Mellinger

(g—1)%+1, ifg=1 (mod 4),

1
ko A(E, Se) = { 4
ranke AL, 5€) {l(q—1)2—17 ifg=3 (mod 4).

» Sin-Xiang-Wu (2011) gave a proof.
» Proof uses detailed information about 2-blocks of SL(2, q)
(Landrock 1980).

» Wu has recently solved the corresponding 2-rank
conjectures of Droms and Mellinger for the other possible
incidences of points and lines.
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