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G finite classical group (symplectic, orthogonal, unitary).
P the set of singular points of the standard module V

k, algebraically closed field of (defining) characteristic p.
We consider the permutation module k”.

Main difficulty is that for orthogonal an unitary groups, P is
a proper subset of P(V).
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Sp(2m, q), g = p' odd

» We consider the submodule structures of k[ V], A[d], and
Yp, under the action of Sp(V).

» S :=truncated symmetric power (prev. S) with
0< )\ <2m(p—1).

» S* remain simple except when A = m(p — 1), in which
case we have
SmP-1) =St @ S,

» ST and S~ are simple k Sp(V)-modules,

dim(S™) = (dp-1)m+P™)/2,  dim(S™) = (dp-1)m—P")/2.
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The modules S™ and S—.

» (Wong, Lahtohnen (1990))

» Use multi-index notation X Y? for monomials in
symplectic coords Xj, Y;, 0 <i< m.

» For any multi-index 3, we define
|8l =3, bi, B! =TI, bi!, and
B=(P—-1-=b,...,p—1—bp).

» Denote monomials in the quotient module S™(P—1) using
bars. The map

7. 8me-1) Sm(p_1), Yavﬂ = (71)'5'a![3!Y376

is a k Sp(V)-homomorphism with 72 = 1. S* and S~ are
the eigenspaces.
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» (Chandler-Sin Xiang, 2007)

» Construct a special basis of k[V], of symplectic basis
functions.

» Describe the submodule structure of the kG-submodule of
k[V] and k generated by an arbitrary symplectic basis
function.

» Describe the part of the submodule lattice of k[V] and k”
involving the above submodules.

» This includes images of incidence maps 7, : kX — kP,
where Z, is the set of totally isotropic r-subspaces.

» Symplectic analogue of Hamada’s p-rank formula,

» When m = 2, get a closed formula for the p-rank of the
symplectic GQ.
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Basis of special functions

» St and S~ have bases consisting of images of monomials:
Xaya
and sums and differences of monomials:
xyP 4 (—1)IBl+ma181xBy ™

» The monomials together with binomials with a “+” sign
form a basis of ST, binomials with a “—” sign form a basis
of S~.
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» Symplectic basis functions of type A = (Ag, A1, ..., At_1).

t—1
fP

f=fff . 7

where each fj which we will call the j-th digit of f, is either
a basis monomial or binomial of k[V] of degree A,;. If

Aj # (p — 1)m, then f; can be any basis monomial of
degree ); in which the degree in each variable is at most
p—1.1fA\; = (p—1)m, then f; can be any of the S* and
S~ basis functions.

» The union of these sets of functions over all X is our
special basis for k[V].

» By restricting the types for the symplectic basis functions
we can obtain bases for A[d], and k”.
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The posets S and S[d]

> A={(o,- A1 |0 < < 2m(p — 1) ¥}, “Types”

» Definition
For A € A, let s be the corresponding H-type in H[d]. Set

Js)={jlo<j<t—1, N=m(p—1)}

Forany s, s’ € H[d], let

Z(S,SI) = {j | Sj/- = §j, Sj/'+

1 = Sji+1, Aj = m(p —1)}. We define
S[d] ={(s,€) | s € H[d], e C J(S)}.
In the case [d] = [0], we also define
S={(s,e) | seH,eCJ(s)}

We define (s',¢') < (s,¢) ifand only if s’ < s and
enZ(s',s)=€enZ(,s).
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(s,e) € S[d] forsome [d] € Z/(q — 1)Z, as follows. If f is of type
A, then s is the corresponding H-type. The set e C J(s), called
the signature, is defined to be the set of j € J(s) for which the
image of the j-th digit £, of f in S™P~") belongs to S*.
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(s,e) € S[d] forsome [d] € Z/(q — 1)Z, as follows. If f is of type
A, then s is the corresponding H-type. The set e C J(s), called
the signature, is defined to be the set of j € J(s) for which the
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» k Sp(V)-composition factors of k[V] are given by their
types, together with the additional choice of signs for each
Jwith \; = m(p —1).
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In terms of H-types, we see that each H-type gives a

k GL(V)-composition factor and then the choice of signs
determines the simple k Sp( V) composition factor of this
simple k GL(V)-module.

Thus S indexes the k Sp(V)-composition factors of Yp,
S[d], [d] # [0] label the k Sp(V)-composition factors of
Ald].

However it should be noted that different elements of S or
S[d] can label isomorphic composition factors, due to the
fact that S* = S2M(P—1)- ag k Sp(V)-modules.

L(s, €)[d] denotes the simple summand of L(s)[d] where
we take the + summand for each j € € and the —
summand for each j € J(s) \ e. When s € H, we may use
the simpler notation L(s,¢).



Symplectic Analogue of Hamada’s formula

Next we give the symplectic analogue of Hamada'’s formula for
the p-rank of the incidence matrix between points and m-flats of
W(2m — 1, q) in terms of t, where g = p', p an odd prime.

Theorem
Let AT (p") be the incidence matrix between points and m-flats

of W(2m — 1, p"). Assume that p is odd. Then
t—1
rankp(A??m(pt)) =1+ Z H d(sj,sj+1)7
Vj,1<s<m j=0
where

_ [ dim(ST) = (dmp—1) + P ™/2, if sj = sj41 =m,
(85,8j01) — dy;, where \j = psj. 1 — §j, otherwise.
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Sp(4, q) generalized quadrangle g odd.

» We consider the case where m=2 and r = 2.

» Symplectic polar space W(3, g) is a classical generalized
quadrangle.

» In the case where g = p is an odd prime, de Caen and
Moorhouse determined the p-rank of Af,z(p).

» Theorem
Let p be an odd prime and let t > 1 be an integer. Then the
p-rank of A% ,(p') is equal to

1+al +ab,
where

p(p1r1)2 jEp(/O+11)2(p— a7

Qq,Qp =
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» Chandler-Sin-Xiang (2010)

» g = 2!, V a 2m-dimensional symplectic F4-vector space.

» The trucated symmetric powers S are exterior powers
A*(V) and are not simple or semisimple, but rather have
filtrations by Weyl modules, The Weyl modules themselves
are not simple or semisimple.

» I, = I,(t), set of totally r-dimensional isotropic subspaces
(or complements of such).
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» B, 1 = B, 1(t) denote the incidence matrix between P = Z4
and Z,.
Theorem
Letm>2and1<r<2m-—1. Let A be the
(2m —r) x (2m — r)-matrix whose (i, j)-entry is

2 — 2m 2m
MT\2j—i) \2j+i+2r—4m—2-2(m—r)s(r<m))

Then
ranka(By 1(t)) = 1 + Trace(A").

(6(P) = 1 if a statement P holds, and §( P) = 0 otherwise.)

» The significance of the entries a;; is that they are the
dimensions of certain representations of the symplectic
group Sp( V) which are restrictions of representations of
the algebraic group Sp(2m, F4), where F is an algebraic
closure of F.
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» Formula was previously proved by Sastry-Sin (1998) by
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simple modules for Sp(4, g).



» Whenm=r=2,

4 4
(1)

> Eigenvalues are =17 — (1£/17)2 Thus,

2t 2t
rankp(Bo 1(t)) =1+ <1+2\m> + (1_2\@> .

» Formula was previously proved by Sastry-Sin (1998) by
using very detailed information about the extensions of
simple modules for Sp(4, g).

» Sastry-Shukla have investigated the SL(2, g) submodule
structure of k* for this example.
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» So far, no analogous results on submodule structure of k”
for orthogonal or unitary groups.

» We need to understand the submodules of the
homogeneous coordinate ring of the projective variety of
singular points in the algebraically closed case.

> Do HO(rw), w € {wy,wy +we} .

» Complete results on point-hyperplane incidences

(Arslan-Sin, 2011). These also rely on connection to
algebraic groups.
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Orthogonal, unitary groups, hyperplanes, opposites

V = V(q), quadratic form or V(q?) with Hermitian form.

P be the set of singular points, P* the set of polar
hyperplanes

P,P* sets of all points and hyperplanes.
Subdivide incidence matrix A of (P,P*)

Ai A12>
A= A= (A A
<A21 A22 1 ( 11 12)

v

v

v

v

» p-rank of A is well known.

» p-ranks of the A; were determined by Blokhuis and
Moorhouse.

» p-ranks of the A1 was posed as problem by Moorhouse.



Orthogonal case

Theorem
Suppose dim V(q) = n > 4. The following hold.

(a) Assume p=2. Then

1+nt, ifniseven,

kp A1y =
rankp A1 {1+(n_1)t’ if n is odd.



Theorem
(contd)

(b) Assume p > 2. Then the p-rank depends on whether there
exists a positive integer u such that

u=n (mod2) and n—-3<up<p+n->5.

If u exists then

n+p-—2 n+p—4
rankpA11:1+(< nf1 )—( nf1 )

_(up+2 up \\t
() + (%)
Otherwise,

n+p-—2 n+p-—4
rankpA11:1+(< nf1 >—< nf1 ))t



Remark

When n is even, there are two types of nondegenerate forms,
distinguished by the Witt index . However, the p-rank of Aq1 is
the same for both types.



Hermitian case

Theorem

Suppose dim V(g?) = n > 4. The p-rank depends on the
existence of a positive integer u satisfying

n—-2<up<p+n-3

If u exists then

n+p—2\2 n+p—3\2
rank”A”:1+(< . ) _< . >

()G

t

(22 - ()

Otherwise,

rankp A1y =1+
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» When n = 3 or 4, the totally isotropic subspaces of
dimensions one and two form the points and lines of the
Hermitian generalized quadrangle.

» The p-rank of the incidence relation of points and lines of
this generalized quadrangle is still unknown in general.

» we can also compute point-hyperplane p-ranks for
DH(4, g?).

Theorem
The p-rank of the point-hyperplane incidence matrix A1 for the
dual Hermitian generalized quadrangle DH(4, g?) is as follows.

(a) Ifp>2then

+1) (2p+2)\° —1) (2p\®
rankpA11:1+(p(p32 )<p3 ) _p(p32 )(3{3)

<p§1)2)t.

p
T3

(b) pr =2 thenrank, Aj1 =1+ 741,
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» The reduction of the p-rank problem to simple modules is
achieved by reformulating it in terms of representations of
the associated finite classical group.

» By algebraic group representations, we find the structure of
HO(rw)foro <r<p—1.
» Corresponding results for the 27-dimensional module for

the exceptional group Eg. (Submitted to the conference
proceedings.)
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