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Incidence matrices

X, Y sets | ¢ X x Y incidence relation.

A incidence matrix over a field k.

77 . kX — kY, X — Z(X,y)E/y

If a group G acts on X and Y, preserving / then nis a
kG-module homomorphism.

Im7 is a kG-submodule of k¥ of dimension rank A.

Study submodule structure of k¥ to study incidence, and
vice versa.
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qg=p', V= V(q)an (n+ 1)-dimensional F4-vector space.
G=GL(V)=GL(n+1,q).

k algebraically closed field of characteristic p.

P = {1-diml. subspaces of V}, the points.

kP = k1 @ Yp as kG-modules,

Yo ={fckP| S f(y)=0}.

yepP
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» Bardoe-Sin (2000) determined the kG-submodule
structure of k[V] and k".

» Multiplicity-free modules, submodule lattice is lattice of
ideals in some partial ordering on the set of composition
factors.

» Earlier work on related groups and modules by Delsarte,
Doty, Hirschfeld, Kovacs, Krop, Kuhn.
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The set H

» Let H denote the set of t-tuples (s, - .., S;_1) of integers
satisfying (forj =0,...,t—1)
1.1<s <
2. 0<psj1—s<(p—1)(n+1). (Subcripts mod t.)
» Let H be partially ordered in the natural way:
(Sg>---18t_1) < (S0,.-.,5t—1) if and only if s]’- < g; for all j.



Theorem

(@)

(b)

The module kP is multiplicity free and has composition
factors L(so, . .., St_1) parametrized by the set
HU{(0,...,0)}.

For(so,...,St—1) € H, let \; = psj,1 — s;. Then the simple
kG-module L(sy, ..., S:_1) is isomorphic to the twisted

tensor product
t—1

®(§’\1)(p")7

j=0

where S denotes the component of degree X\ in the
truncated polynomial ring S = k[Xo, ..., Xl /(XP)1_, and
the superscripts (p’') indicate twisting by powers of the
Frobenius map.



Contd

Theorem

(Contd)

(c) For each submodule M of Yp, let Hyy C H be the set of its
composition factors. Then Hy, is an ideal of the partially
ordered set (H,<), i.e if (Sp,...,St_1) € Hy and
(Sg>---18t_1) < (S0,--.,5t_1), then (s, ...,s;_1) € Hu.

(d) The mapping M — H,, defines a lattice isomorphism
between the submodule lattice of Yp and the lattice of
ideals, ordered by inclusion, of the partially ordered set
(H, <)
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Stabilization of module structure

» Condition (2) in the definition of H is automatically satisfied
when t =1, (i.e. g = p) orwhen p > n.

» Thus, in both of these cases, the submodule lattice of Yp is
isomorphic to the lattice of ideals in the ¢-fold product of
the integer interval [1, n].

» In particular, it does not depend on p.

» When t = 1 the submodules of k” are well in coding
theory, as generalizations of the Reed-Muller codes.



Submodule generated by an element

» To apply the theorem, we need to be able to read off the
submodule generated by a given element.



Submodule generated by an element

» To apply the theorem, we need to be able to read off the
submodule generated by a given element.

» kP has a monomial basis, each monomial defines an
element of HU {(0,...,0)}.



Submodule generated by an element

» To apply the theorem, we need to be able to read off the
submodule generated by a given element.

» kP has a monomial basis, each monomial defines an
element of HU {(0,...,0)}.

» For f € kP, let H; C HU {(0,...,0)} denote the set of
tuples of the basis monomials appearing with nonzero
coefficients in the the expression for f.



Submodule generated by an element

» To apply the theorem, we need to be able to read off the
submodule generated by a given element.

» kP has a monomial basis, each monomial defines an
element of HU {(0,...,0)}.

» For f € kP, let H; C HU {(0,...,0)} denote the set of
tuples of the basis monomials appearing with nonzero
coefficients in the the expression for f.

Theorem

The kG-submodule of kP generated by f is the smallest
submodule having all the L(so, . ..,St_1) for (Sp,...,St—1) € Hs
as composition factors.
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Hamada’s Formula

» C; C kP, subspace spanned by the r-dimensional
subspaces of P.

» C,is equal to kG, where L is defined by the equations
Xi=0,i=r+1...,n. lts characteristic function can be

written as
n
= JJ0-x"= S ()i
i=r+1 IC{r+1,...,n}
For I # () the monomial x?~' has H-tuple (|/|, ..., |/]),

which lies below the H-tuple (n—r,...,n—r) of
—1
H/n:r—H Xiq :



Hamada’s Formula
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Hamada’s Formula

PS/+1 Sj

-1 =

d|mC,_1-|- Z H Z <n+1><n+p3j+1n— Sj—lp>,

(S05--8t—1)j=0 =0

summed over (Sp,...,S—1) € Hwith1 <5, <n—r.

» Inamdar-Sastry (2001) gave an alternative proof that C, is
spanned by monomials, hence of Hamada’s formula.



Delsarte’s Theorem

Corollary

1. f € kP belongs to C,* iff every monomial that occurs in f
belongs to C,*.

2. C/* has a basis of monomials of type (s, . . ., St) such that
Sj < r forsomer.

Delsarte (1970). Glynn-Hirschfield call this the “main theorem
on geometric codes”
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Action on vectors

» Action of Z(G) on k[V(q)] yields

kVol= @ Al

[d1€Z/(q—1)Z
where A[d] is the span of the images of monomials of
degree congruent to d mod g — 1.
> A0] = k @ kP.
» Similar methods give structure of A[d] for [d] # [O].
» Writed =dy + dip+---+ di_y1p 1, 0<d <p-1).



Let H[d] denote the set of t-tuples (rp,. .., r—1) of integers
satisfying (forj=0,..., t —1)

1.0 <

2.0<d+pripr—rp<(p—1)(n+1). (Subcripts mod t.)
Let H[d] be partially ordered in the natural way:
(rgs--->r_q) < (ro,...,r—q) if and only if rj’ < r; for all j.



Theorem

(a) The module A[d] is multiplicity free and has composition
factors L[d](ry, - .., r1_1) parametrized by the set H|[d].

(b) For(ry,...,r—1) € H[d], let \; = d; + pri+1 — r;. Then the
simple kG-module L[d|(ry, ..., rr—1) is isomorphic to the
twisted tensor product

(c) For each submodule M of Ald], let H[d]y C H|[d] be the
set of its composition factors. Then H[d]y is an ideal of the
partially ordered set (H[d], <).

(d) The mapping M — H[d]y defines a lattice isomorphism
between the submodule lattice of A[d] and the lattice of

ideals, ordered by inclusion, of the partially ordered set
(H[d], <)
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Structure of symmetric powers

» S9C K[X, ..., Xy], the space of homogeneous
polynomials of degree d.

» View as module for the algebraic group GL(n + 1, k).

» When d < g — 1 the map S¢ — A[d] is an embedding of
kG-modules with image Fo[d]. Thus, S? corresponds to
the ideal

H[d]ss = {(r0,-- .. r-1) € H[d] | o = O}

This gives the submodule structure of S¢ as a module for
G=GL(n+1,pY).

» Fix d and replace p' by a higher power pV. Let A[d](N),
H[d](N), etc. denote the corresponding objects for
G(N) = GL(n+1,pN). Then

H[d](N)Sd = {(fo, ceey I’N_1) S H[d](N) ’ n = 0}



» The p-adic expression for d is unchanged, so that we have
d=0fort<j<N-—1.Let(r,...,rn—1)€ H[d](N)ga.
Then from the definitions we have
0<dy_q1+pro—rn_1=—ry_1, which forces ry_4 = 0.
Repeating this, we obtain r; =0for t <j; < N —1.
Moreover, the conditions on the entries rjfor0 <j <t —1
are exactly the conditions for the t-tuple (rg,...,rr—1) to
belong to H[d]sa.



» The p-adic expression for d is unchanged, so that we have
d=0fort<j<N-—1.Let(r,...,rn—1)€ H[d](N)ga.
Then from the definitions we have
0<dy_q1+pro—rn_1=—ry_1, which forces ry_4 = 0.
Repeating this, we obtain r; =0for t <j; < N —1.
Moreover, the conditions on the entries rjfor0 <j <t —1
are exactly the conditions for the t-tuple (rg,...,rr—1) to
belong to H[d]sa.

Theorem

The submodule lattice of S9 is the same for all of the groups
GL(n+1,p!) for p' —1 > d. Consequently, it is also the same
for the algebraic group GL(n + 1, k). This lattice is isomorphic
to the lattice of ideals in the partially ordered set H[d] ga
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Nonzero intersection

» For1 <d,e<n+1,let A(d, e) be the incidence matrix for
d-subspaces versus e-subspaces, with incidence being
nonzero intersection.

Theorem
The p-rank of A(d, e) is given by the formula

t-1
rank, A(d, €) = 1 + [T m(n+1,psj1 — 55,0 1)

scH j=0
(e)<s<(n—d+1)

» When d = 1 this is Hamada’s formula.

> If s = (sp,...,5;_1) satisfies e < s; < n—d + 1 for all j but
does not belong to H then there is some j’ for which
m(n+1,psy 1 — sy, p—1) = 0. So we can sum over all
tuples s with e < 's; < n— d + 1 instead of just those
belonging to H.
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Generating function formulation

» Eric Moorhouse gave a generating function formulation.

» Let D= D(n,p,d, e) be the matrix with rows and columns
indexed by {e,e+1,...,n—d+ 1} given by
Dss = m(n+1,ps’ —s,p—1). Then rank formula can be
rewritten as

rankp A(d, €) = 1 + trace D'

— 1 + (coefficient of x in trace[(/ — xD)™])

» Study of A(d, e) (partially) motivated by partial m-systems
(Shult-Thas).
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k[V] under affine group action

» Consider k[V(q)] as a module for the Affine group.

» Studied early on by coding theorists Kasami-Peterson-Lin
(1968), Delsarte (1970), Charpin (1982).

» Sin (2012) representation-theoretic, AGL( V)-submodule
structure.

» Doubly transitive permutation modules.
» Composition factors are same as for GL( V)

» Radical series is the same for all groups G with
V C G C AGL(V).
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