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Incidence matrices

I X , Y sets I ⊂ X × Y incidence relation.
I A incidence matrix over a field k .
I η : kX → kY , x 7→

∑
(x ,y)∈I y

I If a group G acts on X and Y , preserving I then η is a
kG-module homomorphism.

I Im η is a kG-submodule of kY of dimension rank A.
I Study submodule structure of kY to study incidence, and

vice versa.
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I q = pt , V = V (q) an (n + 1)-dimensional Fq-vector space.
I G = GL(V ) ∼= GL(n + 1,q).
I k algebraically closed field of characteristic p.
I P = {1-diml. subspaces of V}, the points.
I kP = k1⊕ YP as kG-modules,

YP = {f ∈ kP |
∑
y∈P

f (y) = 0}.
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I Bardoe-Sin (2000) determined the kG-submodule
structure of k [V ] and kP .

I Multiplicity-free modules, submodule lattice is lattice of
ideals in some partial ordering on the set of composition
factors.

I Earlier work on related groups and modules by Delsarte,
Doty, Hirschfeld, Kovacs, Krop, Kuhn.
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The set H

I Let H denote the set of t-tuples (s0, . . . , st−1) of integers
satisfying (for j = 0,. . . , t − 1)

1. 1 ≤ sj ≤ n;
2. 0 ≤ psj+1 − sj ≤ (p − 1)(n + 1). (Subcripts mod t .)

I Let H be partially ordered in the natural way:
(s′0, . . . , s

′
t−1) ≤ (s0, . . . , st−1) if and only if s′j ≤ sj for all j .
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Theorem

(a) The module kP is multiplicity free and has composition
factors L(s0, . . . , st−1) parametrized by the set
H ∪ {(0, . . . ,0)}.

(b) For (s0, . . . , st−1) ∈ H, let λj = psj+1 − sj . Then the simple
kG-module L(s0, . . . , st−1) is isomorphic to the twisted
tensor product

t−1⊗
j=0

(S
λj

)(p
j ),

where S
λ

denotes the component of degree λ in the
truncated polynomial ring S = k [X0, . . . ,Xn]/(X

p
i )n

i=0 and
the superscripts (pj) indicate twisting by powers of the
Frobenius map.



Cont’d

Theorem
(Cont’d)
(c) For each submodule M of YP , let HM ⊆ H be the set of its

composition factors. Then HM is an ideal of the partially
ordered set (H,≤), i.e if (s0, . . . , st−1) ∈ HM and
(s′0, . . . , s

′
t−1) ≤ (s0, . . . , st−1), then (s′0, . . . , s

′
t−1) ∈ HM .

(d) The mapping M 7→ HM defines a lattice isomorphism
between the submodule lattice of YP and the lattice of
ideals, ordered by inclusion, of the partially ordered set
(H,≤)



Stabilization of module structure

I Condition (2) in the definition of H is automatically satisfied
when t = 1, (i.e. q = p) or when p ≥ n.

I Thus, in both of these cases, the submodule lattice of YP is
isomorphic to the lattice of ideals in the t-fold product of
the integer interval [1,n].

I In particular, it does not depend on p.
I When t = 1 the submodules of kP are well in coding

theory, as generalizations of the Reed-Muller codes.
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Submodule generated by an element

I To apply the theorem, we need to be able to read off the
submodule generated by a given element.

I kP has a monomial basis, each monomial defines an
element of H ∪ {(0, . . . ,0)}.

I For f ∈ kP , let Hf ⊆ H ∪ {(0, . . . ,0)} denote the set of
tuples of the basis monomials appearing with nonzero
coefficients in the the expression for f .

Theorem
The kG-submodule of kP generated by f is the smallest
submodule having all the L(s0, . . . , st−1) for (s0, . . . , st−1) ∈ Hf
as composition factors.
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Hamada’s Formula

I Cr ⊆ kP , subspace spanned by the r -dimensional
subspaces of P.

I Cr is equal to kGχL, where L is defined by the equations
Xi = 0, i = r + 1 . . . ,n. Its characteristic function can be
written as

χL =
n∏

i=r+1

(1− xq−1
i ) =

∑
I⊆{r+1,...,n}

(−1)|I|xq−1
I .

For I 6= ∅ the monomial xq−1
I has H-tuple (|I|, . . . , |I|),

which lies below the H-tuple (n − r , . . . ,n − r) of∏n
i=r+1 xq−1

i .
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Hamada’s Formula

dim Cr = 1+
∑

(s0,...,st−1)

t−1∏
j=0

b
psj+1−sj

p c∑
i=0

(−1)i
(

n + 1
i

)(
n + psj+1 − sj − ip

n

)
,

summed over (s0, . . . , st−1) ∈ H with 1 ≤ sj ≤ n − r .
I Inamdar-Sastry (2001) gave an alternative proof that Cr is

spanned by monomials, hence of Hamada’s formula.
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Delsarte’s Theorem

Corollary

1. f ∈ kP belongs to Cr
⊥ iff every monomial that occurs in f

belongs to Cr
⊥.

2. Cr
⊥ has a basis of monomials of type (s0, . . . , st) such that

sj < r for some r .

Delsarte (1970). Glynn-Hirschfield call this the “main theorem
on geometric codes”



Action on vectors

I Action of Z (G) on k [V (q)] yields

k [V (q)] =
⊕

[d ]∈Z/(q−1)Z

A[d ],

where A[d ] is the span of the images of monomials of
degree congruent to d mod q − 1.

I A[0] ∼= k ⊕ kP .
I Similar methods give structure of A[d ] for [d ] 6= [0].
I Write d = d0 + d1p + · · ·+ dt−1pt−1, (0 ≤ dj ≤ p − 1).
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Let H[d ] denote the set of t-tuples (r0, . . . , rt−1) of integers
satisfying (for j = 0,. . . , t − 1)

1. 0 ≤ rj ≤ n;
2. 0 ≤ dj + prj+1 − rj ≤ (p − 1)(n + 1). (Subcripts mod t .)

Let H[d ] be partially ordered in the natural way:
(r ′0, . . . , r

′
t−1) ≤ (r0, . . . , rt−1) if and only if r ′j ≤ rj for all j .



Theorem

(a) The module A[d ] is multiplicity free and has composition
factors L[d ](r0, . . . , rt−1) parametrized by the set H[d ].

(b) For (r0, . . . , rt−1) ∈ H[d ], let λj = dj + prj+1 − rj . Then the
simple kG-module L[d ](r0, . . . , rt−1) is isomorphic to the
twisted tensor product

t−1⊗
j=0

(S
λj

)(p
j ).

(c) For each submodule M of A[d ], let H[d ]M ⊆ H[d ] be the
set of its composition factors. Then H[d ]M is an ideal of the
partially ordered set (H[d ],≤).

(d) The mapping M 7→ H[d ]M defines a lattice isomorphism
between the submodule lattice of A[d ] and the lattice of
ideals, ordered by inclusion, of the partially ordered set
(H[d ],≤)



Structure of symmetric powers

I Sd ⊆ k [X0, . . . ,Xn], the space of homogeneous
polynomials of degree d .

I View as module for the algebraic group GL(n + 1, k).
I When d < q − 1 the map Sd → A[d ] is an embedding of

kG-modules with image F0[d ]. Thus, Sd corresponds to
the ideal

H[d ]Sd = {(r0, . . . , rt−1) ∈ H[d ] | r0 = 0}.

This gives the submodule structure of Sd as a module for
G = GL(n + 1,pt).

I Fix d and replace pt by a higher power pN . Let A[d ](N),
H[d ](N), etc. denote the corresponding objects for
G(N) = GL(n + 1,pN). Then

H[d ](N)Sd = {(r0, . . . , rN−1) ∈ H[d ](N) | r0 = 0}.
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I The p-adic expression for d is unchanged, so that we have
dj = 0 for t ≤ j ≤ N − 1. Let (r0, . . . , rN−1) ∈ H[d ](N)Sd .
Then from the definitions we have
0 ≤ dN−1 + pr0 − rN−1 = −rN−1, which forces rN−1 = 0.
Repeating this, we obtain rj = 0 for t ≤ j ≤ N − 1.
Moreover, the conditions on the entries rj for 0 ≤ j ≤ t − 1
are exactly the conditions for the t-tuple (r0, . . . , rt−1) to
belong to H[d ]Sd .

Theorem
The submodule lattice of Sd is the same for all of the groups
GL(n + 1,pt) for pt − 1 > d. Consequently, it is also the same
for the algebraic group GL(n + 1, k). This lattice is isomorphic
to the lattice of ideals in the partially ordered set H[d ]Sd
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Nonzero intersection

I For 1 ≤ d ,e ≤ n + 1, let A(d ,e) be the incidence matrix for
d-subspaces versus e-subspaces, with incidence being
nonzero intersection.

Theorem
The p-rank of A(d ,e) is given by the formula

rankp A(d ,e) = 1 +
∑
s∈H

(e)≤s≤(n−d+1)

t−1∏
j=0

m(n + 1,psj+1 − sj ,p − 1)

I When d = 1 this is Hamada’s formula.
I If s = (s0, . . . , st−1) satisfies e ≤ sj ≤ n − d + 1 for all j but

does not belong to H then there is some j ′ for which
m(n + 1,psj ′+1 − sj ′ ,p − 1) = 0. So we can sum over all
tuples s with e ≤ sj ≤ n − d + 1 instead of just those
belonging to H.
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I If s = (s0, . . . , st−1) satisfies e ≤ sj ≤ n − d + 1 for all j but

does not belong to H then there is some j ′ for which
m(n + 1,psj ′+1 − sj ′ ,p − 1) = 0. So we can sum over all
tuples s with e ≤ sj ≤ n − d + 1 instead of just those
belonging to H.



Nonzero intersection

I For 1 ≤ d ,e ≤ n + 1, let A(d ,e) be the incidence matrix for
d-subspaces versus e-subspaces, with incidence being
nonzero intersection.

Theorem
The p-rank of A(d ,e) is given by the formula

rankp A(d ,e) = 1 +
∑
s∈H

(e)≤s≤(n−d+1)

t−1∏
j=0

m(n + 1,psj+1 − sj ,p − 1)

I When d = 1 this is Hamada’s formula.
I If s = (s0, . . . , st−1) satisfies e ≤ sj ≤ n − d + 1 for all j but

does not belong to H then there is some j ′ for which
m(n + 1,psj ′+1 − sj ′ ,p − 1) = 0. So we can sum over all
tuples s with e ≤ sj ≤ n − d + 1 instead of just those
belonging to H.



Generating function formulation

I Eric Moorhouse gave a generating function formulation.
I Let D = D(n,p,d ,e) be the matrix with rows and columns

indexed by {e,e + 1, . . . ,n − d + 1} given by
Ds,s′ = m(n + 1,ps′ − s,p − 1). Then rank formula can be
rewritten as

rankp A(d ,e) = 1 + trace Dt

= 1 + (coefficient of x t in trace[(I − xD)−1])

I Study of A(d ,e) (partially) motivated by partial m-systems
(Shult-Thas).
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k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).



k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).



k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).



k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).



k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).



k [V ] under affine group action

I Consider k [V (q)] as a module for the Affine group.
I Studied early on by coding theorists Kasami-Peterson-Lin

(1968), Delsarte (1970), Charpin (1982).
I Sin (2012) representation-theoretic, AGL(V )-submodule

structure.
I Doubly transitive permutation modules.
I Composition factors are same as for GL(V )

I Radical series is the same for all groups G with
V ⊂ G ⊂ AGL(V ).


	Incidence matrices, permutation modules
	`39`42`"613A``45`47`"603AGL(V) acting on points and vectors
	Nonzero intersection
	Affine group action

